Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Koko: px
Aloita esitys sivulta:

Download "Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1"

Transkriptio

1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1

2 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2

3 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen ajatellaan olevan peräisin jostakin jakaumasta Tällä kurssilla käsitellään ilmiöitä, jotka ovat peräisin Bernoulli-, binomi- tai normaalijakaumasta Kokeellisessa tutkimuksessa testataan, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin Testit perustuvat testisuureisiin, jotka noudattavat - Normaalijakaumaa - t-jakaumaa - χ 2 -jakaumaa - F -jakaumaa Vilkkumaa / Kuusinen 3

4 Satunnaismuuttujat, todennäköisyysjakaumat ja tilastolliset mallit Satunnaismuuttuja ξ kuvaa satunnaisilmiön tulosvaihtoehtoja numeerisessa muodossa. - Esim. Huomenna sataa ξ = 1, Huomenna ei sada ξ = 0 Satunnaismuuttujan kaikkiin mahdollisiin arvoihin liitetään todennäköisyydet määrittelemällä satunnaismuuttujan todennäköisyysjakauma. - Esim. P r(ξ = 1) = 0.4, P r(ξ = 0) = 0.6 Tilastollinen malli on satunnaismuuttujan ja sen jakauman yhdistelmä. Vilkkumaa / Kuusinen 4

5 Satunnaismuuttujien tyyppejä Satunnaismuuttujat voidaan jakaa kahteen ryhmään: Diskreetit satunnaismuuttujat - Satunnaismuuttuja on diskreetti, jos sen mahdollisten arvojen joukko koostuu diskreeteistä reaaliakselin pisteistä Jatkuvat satunnaismuuttujat - Satunnaismuuttuja on jatkuva, jos sen arvoalue on jokin reaaliakselin osaväli. Vilkkumaa / Kuusinen 5

6 Diskreetti satunnaismuuttuja - pistetodennäköisyysfunktio Merkitään satunnaismuuttujan ξ arvojen joukkoa T :llä ja otosavaruutta (tulosvaihtoehtojen joukkoa) S:llä: T = {x 1, x 2,..., x n }, jos S on äärellinen T = {x 1, x 2,... }, jos S on numeroituvasti ääretön Reaaliarvoinen funktio f määrittelee pistetodennäköisyysfunktion ξ:lle, jos 1. f(x i ) = P r(ξ = x i ) x i T 2. f(x i ) 0 x i T 3. T f(x i) = 1 Todennäköisyyttä P r(ξ = x i ) = p i sanotaan pistetodennäköisyydeksi. Vilkkumaa / Kuusinen 6

7 Jatkuva satunnaismuutuja - tiheysfunktio Reaaliarvoinen funktio f määrittelee (todennäköisyys-) tiheysfunktion jatkuvalle satunnaismuuttujalle ξ, jos 1. f(x) on x:n jatkuva funktio 2. f(x i ) 0 x 3. + f(x)dx = 1 4. P r(a ξ b) = b a f(x)dx Vilkkumaa / Kuusinen 7

8 Kertymäfunktio Satunnaismuuttujan ξ kertymäfunktio F (x) = P r(ξ x) kuvaa todennäköisyysmassan kertymistä argumentin x kasvaessa. Kertymäfunktiolle pätee: P r(ξ > x) = 1 F (x) P r(a ξ b) = F (b) F (a) Diskreetissä tapauksessa kertymäfunktio saadaan kaavalla F (x) = P r(ξ x) = i x i x Jatkuvassa tapauksessa kertymäfunktio saadaan kaavalla F (x) = P r(ξ x) = x p i f(x)dx Vilkkumaa / Kuusinen 8

9 Jakaumien tunnusluvut Vilkkumaa / Kuusinen 9

10 Odotusarvo Satunnaismuuttujan X odotusarvo on jakauman painopiste, jonka ympärillä satunnaismuuttujan arvot vaihtelevat koetoistosta toiseen. Diskreetin jakauman odotusarvo: E(X) = μ X = i x i p i = i x i f(x i ) Jatkuvan jakauman odotusarvo: E(X) = μ X = + xf(x)dx Vilkkumaa / Kuusinen 10

11 Odotusarvon ominaisuuksia Vakion odotusarvo on vakio itse, koska se ei vaihtele koetoistosta toiseen: E(a) = a Lineaarimuunnokselle Y = a + bx pätee: E(Y ) = a + be(x) Kahden satunnaismuuttujan summalle ja erotukselle pätee: E(X + Y ) = E(X) + E(Y ) E(X Y ) = E(X) E(Y ) Yleisesti satunnaismuuttujien X i, i = 1, 2,..., n painotetulle summalle pätee: ( n ) n E a i X i = a i E(X i ) i=1 i=1 Vilkkumaa / Kuusinen 11

12 Satunnaismuuttujan funktion odotusarvo Odotusarvo diskreetin satunnaismuuttujan X funktiolle g(x) saadaan seuraavasti: E(g(X)) = i g(x i )p i = i g(x i )f(x i ) Vastaavasti jatkuvan satunnaismuuttujan X funktiolle g(x): E(g(X)) = + g(x)f(x)dx Vilkkumaa / Kuusinen 12

13 Varianssi ja standardipoikkeama eli keskihajonta Satunnaismuuttujan X varianssi on satunnaismuuttujan odotusarvosta lasketun poikkeaman neliön odotusarvo. Ts. varianssi kuvaa vaihtelun neliötä. Diskreetin satunnaismuuttujan varianssi: D 2 (X) = Var(X) = σ 2 X = i (x i μ x ) 2 p i = i (x i μ x ) 2 f(x i ) Jatkuvan satunnaismuuttujan varianssi: D 2 (X) = Var(X) = σ 2 X = + (x μ x ) 2 f(x)dx Standardipoikkeama eli keskihajonta saadaan varianssin neliöjuurena: D(X) = D 2 (X) = Var(X) Vilkkumaa / Kuusinen 13

14 Varianssin ominaisuuksia Vakion varianssi on nolla, koska vakio ei vaihtele: D 2 (a) = 0 Lineaarimuunnokselle Y = a + bx pätee: D 2 (Y ) = b 2 D 2 (X) Kahden riippumattoman satunnaismuuttujan summalle ja erotukselle pätee: D 2 (X + Y ) = D 2 (X) + D 2 (Y ) D 2 (X Y ) = D 2 (X) + D 2 (Y ) Satunnaismuuttujan X varianssi voidaan esittää myös seuraavassa muodossa: Var(X) = E(X 2 ) [E(X)] 2 Vilkkumaa / Kuusinen 14

15 Diskreetit jakaumat Vilkkumaa / Kuusinen 15

16 Diskreetti tasainen jakauma Jakauma kuvaa tilannetta, jossa kullakin tulosvaihtoehdolla on sama todennäköisyys (esim. nopan- tai kolikonheitto) Pistetodennäköisyysfunktio: f(x) = P r(x = x) = 1 n, x = x k, k = 1, 2,..., n Odotusarvo: n E(X) = ˉx = 1 n k=1 x k Varianssi: D 2 (X) = 1 n n (x k ˉx) 2 k=1 Vilkkumaa / Kuusinen 16

17 Bernoulli -jakauma 1/2 Bernoulli-koe on koe, jolla on vain kaksi mahdollista tulosvaihtoehtoa. Esimerkiksi kolikon heitto. Olkoon A otosavaruuden S tapahtuma ja P r(a) = p. Määritellään diskreetti satunnaismuuttuja X, joka kuvaa tapahtumaan A liittyvää Bernoulli-koetta: X = Satunnaismuuttujan X jakauma on 1, jos A tapahtuu 0, jos A ei tapahdu P r(x = 1) = p P r(x = 0) = 1 p = q Vilkkumaa / Kuusinen 17

18 Bernoulli-jakauma 2/2 X Bernoulli(p) Satunnaismuuttujan X pistetodennäköisyysfunktio: f(x) = P r(x = x) = p x q 1 x, q = 1 p, x = 0, 1 Odotusarvo: Varianssi: E(X) = p D 2 (X) = pq Vilkkumaa / Kuusinen 18

19 Binomijakauma Kun Bernoulli-koetta toistetaan n kertaa, missä n on etukäteen päätetty, tapahtuman A esiintymiskertojen lukumäärä X noudattaa binomijakaumaa parametreinaan n ja p. Esimerkiksi klaavan esiintymiskertojen lukumäärä. X Bin(n, p) Satunnaismuuttujan X pistetodennäköisyysfunktio: ( ) n f(x) = P r(x = x) = p x q n x, q = 1 p, x = 0, 1, 2,..., n x Odotusarvo: Varianssi: E(X) = np D 2 (X) = npq Vilkkumaa / Kuusinen 19

20 Jatkuvia jakaumia Vilkkumaa / Kuusinen 20

21 Normaalijakauma Normaalijakauma esiintyy monien ilmiöiden yhteydessä luonnossa ja tekniikassa. Esimerkiksi suomalaisten jalan kokoa, ihmisten pituutta ja fysikaalisen mittauksen mittausvirhettä voidaan pitää normaalijakautuneina. X N(μ, σ 2 ) Satunnaismuuttujan X tiheysfunktio: f(x) = 1 1 ( x μ σ 2π e 2 σ Odotusarvo ja varianssi: ) 2 E(X) = μ D 2 (X) = σ 2 Vilkkumaa / Kuusinen 21

22 Normaalijakauman standardointi ja todennäköisyydet Olkoon X N(μ, σ 2 ). Tällöin Z = X μ σ N(0, 1) Operaatiota kutsutaan standardoinniksi ja jakaumaa N(0, 1) standardoiduksi normaalijakaumaksi. Kaikki normaalijakauman todennäköisyydet saadaan määrättyä standardoinnin avulla: ( a μ P r(a X b) = P r σ Z b μ σ ) Vilkkumaa / Kuusinen 22

23 Klikkeri-kysely Olkoon X N(3, 2 2 ). Mikä seuraavista vastaa todennäköisyyttä P r(1 X 5), kun Z N(0, 1)? 1. P r( 0.5 Z 0.5), 2. P r( 1 Z 1), 3. P r(1 Z 5). P r(1 X 5) =? Vilkkumaa / Kuusinen 23

24 Normaalijakaumasta johdettuja jakaumia Vilkkumaa / Kuusinen 24

25 χ 2 -jakauma Olkoot Z i N(0, 1), i = 1, 2,..., n riippumattomia satunnaismuuttujia. X = n i=1 Z2 i χ 2 (n) eli X noudattaa khin neliön jakaumaa vapausasteilla n. Jakauma kuvaa siis normaalijakautuneiden satunnaismuuttujien neliöden summan jakaumaa. Odotusarvo: E(X) = n Vilkkumaa / Kuusinen 25

26 F -jakauma Olkoot X i N(0, 1), i = 1, 2,..., n ja Y i N(0, 1), i = 1, 2,..., m riippumattomia satunnaismuuttujia. Olkoot X = n i=1 X2 i χ 2 (n) ja Y = m i=1 Y i 2 χ 2 (m) sekä F = 1 Y m 1 X n Tällöin F F (m, n) eli F noudattaa Fisherin F -jakaumaa vapausasteilla m ja n. Jos F F (m, n), niin silloin 1 F F (n, m) Vilkkumaa / Kuusinen 26

27 t -jakauma Olkoot X i N(0, 1), i = 1, 2,..., n ja Y N(0, 1) riippumattomia satunnaismuuttujia. Olkoon X = n i=1 X2 i χ 2 (n) sekä Tällöin T t(n) T = Y 1 n X Odotusarvo: E(T ) = 0, n > 1 t-jakauma lähestyy N(0, 1)-jakaumaa vapausasteiden kasvaessa. Vilkkumaa / Kuusinen 27

28 Moniulotteiset todennäköisyysjakaumat Vilkkumaa / Kuusinen 28

29 Johdanto Yksi ainut satunnaismuuttuja ei riitä kuvaamaan useimpia satunnaisilmiöitä. Jos ilmiöön liittyy useita satunnaisia tekijöitä, ovat näiden tekijöiden väliset riippuvuudet tilastollisen mallintamisen kannalta erityisen mielenkiintoisia. Näiden riippuvuuksien mallintaminen tapahtuu yhteisjakauman avulla. Vilkkumaa / Kuusinen 29

30 2D diskreetin jakauman pistetodennäköisyysfunktio Reaaliarvoinen funktio f XY : R 2 R määrittelee diskreettien satunnaismuuttujien X ja Y yhteisjakauman pistetodennäköisyysfunktion, jos 1. f XY (x, y) 0 x, y 2. x y f XY (x, y) = 1 3. Pr(X = x Y = y) = f XY (x, y) Olkoon A R 2 jokin tapahtuma. Tällöin Pr((X, Y ) A) = (x,y) A f XY (x, y) Vilkkumaa / Kuusinen 30

31 2D jatkuvan jakauman tiheysfunktio Reaaliarvoinen jatkuva funktio f XY : R 2 R määrittelee jatkuvien satunnaismuuttujien X ja Y yhteisjakauman tiheysfunktion, jos 1. f XY (x, y) 0 x, y f XY (x, y)dydx = 1 3. Pr(a X b c Y d) = b a Olkoon A R 2 jokin tapahtuma. Tällöin Pr((X, Y ) A) = A d c f XY (x, y)dydx f XY (x, y)dydx Vilkkumaa / Kuusinen 31

32 Kaksiulotteisten jakaumien kertymäfunktiot Satunnaismuuttujien X ja Y yhteisjakauman kertymäfunktio F XY määritellään seuraavasti: F XY (x, y) = Pr(X x Y y) Diskreetille jakaumalle: F XY (x, y) = Pr(X x Y y) = x i x Jatkuvalle jakaumalle: y i y f XY (x i, y i ) F XY (x, y) = Pr(X x Y y) = x y f XY (u, v)dvdu Vilkkumaa / Kuusinen 32

33 Kaksiulotteisten jakaumien reunajakaumat Diskreetissä tapauksessa satunnaismuuttujien X ja Y reunajakaumien pistetodennäköisyysfunktiot saadaan seuraavasti: f X (x) = Pr(X = x) = y f XY (x, y) f Y (y) = Pr(Y = y) = x f XY (x, y) Vastaavasti jatkuvassa tapauksessa satunnaismuuttujien X ja Y reunajakaumien tiheysfunktiot saadaan seuraavasti: f X (x) = f Y (y) = + + f XY (x, y)dy f XY (x, y)dx Vilkkumaa / Kuusinen 33

34 Satunnaismuuttujien riippumattomuus Kaksi satunnaismuuttujaa ovat riippumattomia jos ja vain jos seuraavat yhtäpitävät ehdot toteutuvat (tässä F X (x) ja F Y (y) ovat reunajakaumien kertymäfunktiot): 1. f XY (x, y) = f X (x)f Y (y) 2. F XY (x, y) = F X (x)f Y (y) Yleisesti satunnaismuuttujille X 1, X 2,..., X n, joiden yhteisjakauman pistetn- tai tiheysfunktio on f(x 1, x 2,..., x n ) ja reunajakaumien pistetn- tai tiheysfunktiot ovat f(x i ), i = 1, 2,..., n (sekä vastaavat kertymäfunktiot merkittynä F :llä): 1. f(x 1, x 2,..., x n ) = f(x 1 )f(x 2 ) f(x n ) 2. F (x 1, x 2,..., x n ) = F (x 1 )F (x 2 ) F (x n ) Vilkkumaa / Kuusinen 34

35 Kaksiulotteisen jakauman yleinen odotusarvo Olkoon g : R 2 R jatkuva funktio. Tällöin diskreetissä tapauksessa: E(g(X, Y )) = x y g(x, y)f XY (x, y) Ja vastaavasti jatkuvassa tapauksessa: E(g(X, Y )) = + + g(x, y)f XY (x, y)dydx Vilkkumaa / Kuusinen 35

36 Reunajakaumien odotusarvot Diskreetissä tapauksessa: E(X) = x xf XY (x, y) = x x y f XY (x, y) = x xf X (x) E(Y ) = x y yf XY (x, y) = y y x f XY (x, y) = y yf Y (y) y Ja vastaavasti jatkuvassa tapauksessa: E(X) = = x + xf XY (x, y)dydx f XY (x, y)dydx = + xf X (x)dx Vilkkumaa / Kuusinen 36

37 Kovarianssi Kovarianssi kuvaa kahden satunnaismuuttujan yhteisvaihtelua niiden yhteisjakauman painopisteen (μ X, μ Y ) ympärillä. Cov(X, Y ) = σ XY = E ( (X μ X )(Y μ Y ) ) = E(XY ) E(X)E(Y ) Laskukaavat diskreeteille ja jatkuville jakaumille: Cov(X, Y ) = x Cov(X, Y ) = (x μ X )(y μ Y )f XY (x, y) y + + Cov(X, X) = Var(X) ja Cov(Y, Y ) = Var(Y ). (x μ X )(y μ Y )f XY (x, y) dy dx Vilkkumaa / Kuusinen 37

38 Korrelaatiokerroin Korrelaatiokerroin kuvaa kahden satunnaismuuttujan lineaarisen riippuvuuden voimakkuutta. Cor(X, Y ) = ρ XY = Cov(X, Y ) = Cov(X, Y ) Var(X)Var(Y ) D(X)D(Y ) = σ XY σ X σ Y Vilkkumaa / Kuusinen 38

39 Klikkeri-kysely Mikä seuraavista väittämistä EI pidä paikkaansa? 1. 1 Cor(X, Y ) 1 2. Cor(X, Y ) = 0 X Y 3. Cor(X, Y ) = ±1 jos ja vain jos Y = α + βx, missä β 0. Vilkkumaa / Kuusinen 39

40 Yhteenveto Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin Kokeesta ei voida tehdä luotettavia johtopäätöksiä, ellei koe ole kontrolloitu: - Kokeessa on vertailtava vähintään kahden erilaisen käsittelyn vaikutuksia. - Käsittelyjen kohdistamisessa on käytettävä satunnaistusta. - Kokeessa on tehtävä riittävästi koetoistoja. Vilkkumaa / Kuusinen 40

41 Yhteenveto Kokeita varten on oletettava ilmiötä kuvaavien havaintojen noudattavan jotakin tilastollista mallia, ts. olevan peräisin jostakin jakaumasta Tällä kurssilla havainnot ovat peräisin - Normaalijakaumasta - Binomijakaumasta Tällöin ne testisuureet, joihin kokeet perustuvat, noudattavat - Normaalijakaumaa - t-jakaumaa - χ 2 -jakaumaa - F -jakaumaa Vilkkumaa / Kuusinen 41

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

Moniulotteiset satunnaismuuttujat ja jakaumat

Moniulotteiset satunnaismuuttujat ja jakaumat Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat Johdatus todennäköisyyslaskentaan todennäköisyysjakaumat TKK (c) Ilkka Mellin (4) todennäköisyysjakaumat: Mitä opimme? /5 hden satunnaismuuttujan todennäköisyysjakaumat

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61 3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

Keskihajonta ja korrelaatio

Keskihajonta ja korrelaatio Luku 4 Keskihajonta ja korrelaatio Lasse Leskelä Aalto-yliopisto 19. syyskuuta 2017 4.1 Jakauman varianssi ja keskihajonta Edellisessä luvussa opittiin, että satunnaismuuttujan odotusarvo on X:n jakauman

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tilastollisen päättelyn perusteet

Tilastollisen päättelyn perusteet Tilastollisen päättelyn perusteet Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Motivointiako? opiskelijoiden, jotka kammoavat matematiikkaa tai eivät katso ehtivänsä tai haluavansa

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua 2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 7

031021P Tilastomatematiikka (5 op) viikko 7 0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti

Lisätiedot

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja

Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

8.1 Ehdolliset jakaumat

8.1 Ehdolliset jakaumat 8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Satunnaismuuttujien tunnusluvut

Satunnaismuuttujien tunnusluvut Sisältö 1 Johdanto 1 1.1 Todennäköisyys ja tilastotiede.................. 1 1.2 Havaitut frekvenssit ja empiiriset jakaumat........... 1 1.3 Todennäköisyysmallit....................... 4 1.3.1 Satunnaiskoe.......................

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja niiden todennäköisyysjakaumat

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat .9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Generointi yksinkertaisista diskreeteistä jakaumista

Generointi yksinkertaisista diskreeteistä jakaumista S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Satunnaismuuttujien summa ja keskiarvo

Satunnaismuuttujien summa ja keskiarvo Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot