Todennäköisyysjakaumia

Koko: px
Aloita esitys sivulta:

Download "Todennäköisyysjakaumia"

Transkriptio

1 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma Binomijakauma Geometrinen jakauma Poisson jakauma Hypergeometrinen jakauma ja jatkuvia jakaumia Tasainen jakauma Eksponenttijakauma Normaalijakauma χ 2 -jakauma t-jakauma Jakaumien kuvat on piirretty MAPLElla. Voit esimerkkejä muuntamalla piirtää jakaumia eri parametrien arvoilla. jakaumista ja niiden parametreista MAPLEssa?stats,distributions. Esimerkiksi normaalijakauma N(,1) saadaan: > with(stats[statevalf]): with(stats[random]): > plot(pdf[normald[,1]], -3..3); ja poisson jakauma Poi(3) (piirretään pylväitä pisteestä [n,] pisteeseen [n, pf[poisson[3]] ja muuttujan $n arvot määräävät ne x:n arvot, joilla pylväs piirretään) > l := [ [ [n,], [n, pf[poisson[3]](n) ] ] $n=..1 ]: > plot(l, x=..1, color=black, thickness=6);

2 Diskreetti tasajakauma Tasd(a,b), Unifd(a,b), discrete uniform distribution f(x) = 1, x = a, a + 1, a + 2,..., b b a + 1 E(x) = a + b 2, var(x) = (b a + 1) Klassisen todennäköisyyden peruslähtökohta: symmetristen alkeistapausten todennäköisyydet noudattavat diskreettiä tasajakaumaa. Nopanheiton tulos, rahanheitto. Tasd(,1)=Ber(.5). n kuvaaja.17 Tasd(2,7)

3 Bernoullijakauma Ber(p), Bernoulli distribution f(x) = p x (1 p) 1 x, x =, 1 E(x) = p, var(x) = p(1 p) Satunnaismuuttujalla vain kaksi mahdollisuutta (koodattu ja 1). Tapauksen x = 1 todennäköisyys = p. Riippumatta satunnaismuuttujasta tapaus x = 1 on nimetty usein onnistumiseksi (success) ja tapaus x = on epäonnistuminen (failure). Esim. syntyvän lapsen sukupuoli (=tyttö, 1=poika), tentissä onnistuminen. Bernoullikokeella tarkoitetaan juuri bernoullijakaumaa noudattavan satunnaismuuttujan koetta. Kokeiden tulosten oletetaan olevan riippumattomia. Tasd(,1) = Ber(.5), Ber(p) = Bin(1,p). n kuvaaja.7.3 Ber(.3) 1

4 Binomijakauma Bin(n,p), binomial distribution f(x) = ( ) n p x (1 p) n x, x =, 1, 2,..., n x E(x) = np, var(x) = np(1 p) Onnistumisten (todennäköisyys = p) lukumäärä n:ssä bernoullikokeessa esim. kuinka monta klaavaa 5:ssä rahanheitossa. Jos x 1 Bin(n, p) ja x 2 Bin(m, p) ovat riippumattomia, niin x 1 + x 2 Bin(n + m, p). Ber(p) = Bin(1,p). Bin(n,p) Poi(np), kun n on suuri, p on pieni ja np<<n. Bin(n,p) N(np,np(1-p)), kun np 5 ja n(1-p) 5. n kuvaajia Bin(5,.3) Bin(7,.8)

5 Geometrinen jakauma Geom(p), Geo(p), geometric distribution f(x) = p(1 p) x 1, x = 1, 2,... E(x) = 1 p, var(x) = 1 p p 2 Todennäköisyys, että 'onnistuminen' toistetussa bernoullikokeessa tapahtuu x.:llä kerralla. Parametri p on 'onnistumisen' todennäköisyys yksittäisessä kokeessa, esimerkiksi millä todennäköisyydellä rahanheitossa saadaan ensimmäinen klaava viidennellä heitolla. n kuvaaja.4 Geom(.4).2 4 8

6 Poisson jakauma Poi(λ), poisson distribution f(x) = λx x! e λ, x =, 1, 2,... E(x) = λ, var(x) = λ Harvinaisten tapahtumien todennäköisyysjakauma. Jos suoritetaan suuri määrä (n) bernoullikokeita, joissa onnistumisen todennäköisyys (p) on pieni, onnistumisten määrä noudattaa likimain Poisson jakaumaa ja parametri λ np. Poissonin prosessin oletukset (luentomoniste s.22) täyttävässä prosessissa onnistumisten lukumäärä noudattaa likimäärin Poissonin jakaumaa. Jos x 1 P oi(λ 1 ) ja x 2 P oi(λ 2 ) ovat riippumattomia, niin x 1 +x 2 P oi(λ 1 +λ 2 ). Bin(n,p) Poi(np), kun n on suuri, p on pieni ja np<<n. n kuvaaja.2.1 Poi(3) 4 8

7 Hypergeometrinen jakauma Hyperg(N,m,n), hypergeometric distribution ( m N m ) f(x) = x)( n x ( N, max{, n (N m)} x min{n, m}, x Z n) E(x) = nm N, var(x) = nm(n m)(n n) N 3 N Joukossa on N alkiota, joista m:llä on ominaisuus A ja lopuilla ei ole. Poimitaan palauttamatta n alkion otos. Kun x='niiden alkioiden lukumäärä otoksessa, joilla on ominaisuus A', niin x Hyperg(N,m,n). Kun otoskoko n on pieni verrattuna kaikkien alkioiden lukumäärään N, palauttamatta suoritettu otanta palauttaen suoritettu otanta. Siksi hypergeometrista jakaumaa voidaan approksimoida binomijakaumalla: Hyperg(N,m,n) Bin(n, m/n), kun n N/1 n kuvaajia Hyperg(1,4,4) Hyperg(12,9,6)

8 Jatkuva tasainen jakauma Tas(a,b), Unif(a,b), U(a,b), (continuous) uniform distribution f(x) = 1 b a, a x b E(x) = a + b (b a)2, var(x) = 2 12 Monissa tietokoneohjelmissa satunnaisluvun (random number) käsite on luku x T as(, 1). Muiden jatkuvien satunnaislukujen generoinnin perusta algoritmeissa. n kuvaaja.2 Tas(2,7)

9 Eksponenttijakauma Exp(λ), exponential distribution f(x) = λe λx, x, λ > E(x) = 1 λ, var(x) = 1 λ 2 Satunnaismuuttujalla 'unohtuvaisuusominaisuus' P (x > x 1 + x 2 x > x 1 ) = P (x > x 2 ) Elektronisen komponentin ikä n kuvaajia Exp(.5) Exp(1)

10 Normaalijakauma N(µ, σ 2 ), Norm(µ, σ 2 ), normal distribution, Gaussian distribution f(x) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > E(x) = µ, var(x) = σ 2 Jos x N(µ, σ 2 ), niin ax + b N(aµ + b, a 2 σ 2 ), a, b R Jos x 1 N(µ 1, σ 2 1) ja x 2 N(µ 2, σ 2 2), niin x 1 + x 2 N(µ 1 + µ 2, σ σ 2 2). Keskeisen raja-arvolauseen perusteella usean satunnaismuuttujan summa ja siis myös otoskeskiarvo on likimain normaalisti jakautunut riippumatta alkuperäisten satunnaismuuttujien jakaumista. Bin(n,p) N(np,np(1-p)), kun np 5 ja n(1-p) 5. Jos z i N(, 1) ja ovat riippumattomia, niin n i=1 z2 i χ2 (n) n kuvaajia Norm(,1).4.2 Norm(2,9)

11 χ 2 -jakauma χ 2 (n), χ 2 (df), Khii toiseen-jakauma, chi-square distribution f(x) = 1 2 n/2 Γ(n/2) x(n/2) 1 e x/2, x >, n Z + missä Γ on Eulerin gammafunktio Γ(t) = e x x t 1 dx E(x) = n, var(x) = 2n Nimitys: muuttuja on χ 2 -jakautunut vapausastein n (degrees on freedom, df). Jos x 1, x 2,..., x n ovat riippumattomia ja x i N(µ, σ 2 ), niin (n 1)s 2 σ 2 χ 2 (n 1) Jos z i N(, 1) ja ovat riippumattomia, niin n i=1 z2 i χ2 (n) n kuvaajia Chi-square(3) Chi-square(6)

12 t-jakauma t(n), t(df), Studentin t-jakauma, (Student's) t-distribution f(t) = 1 ( ) (n+1)/2 Γ((n + 1)/2) 1 + t2, t R, n Z + nπ Γ(n/2) n missä Γ on Eulerin gammafunktio Γ(t) = e x x t 1 dx E(t) =, n > 1, var(t) = n n 2, n > 2 Nimitys: muuttuja on t-jakautunut vapausastein n (degrees on freedom, df). Origon suhteen symmetrinen jakauma. t-jakauma lähestyy N(,1)-jakaumaa, kun n Jos x 1, x 2,..., x n on otos muuttujasta x N(µ, σ 2 ), niin n kuvaajia x µ s/ n t(n 1).35 t(2).4 t(3)

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012

Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Tilastollisten menetelmien perusteet I TILTP2 Luentorunko, lukuvuosi 2011-2012 Raija Leppälä 17. lokakuuta 2011 Sisältö 1 Johdanto 3 2 Todennäköisyyslaskentaa 5 2.1 Satunnaisilmiö ja tapahtuma 5 2.2 Klassinen

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen

4. Tutkittiin kolikonheittäjän virheetöntä rahaa. Suoritettiin kymmenen MAT-20500 Todennäköisyyslaskenta Laskuharjoituksia / Periodi 2 / 2009-2010 1.1 Peruskäsitteitä 1. Totea Venn-diagrammien avulla oikeaksi demorganin lait A B = A B, A B = A B Jos otosavaruus on ihmiset

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Stefan Emet Matematiikan ja tilastotieteen lts Turun yliopisto 24 Sisältö Johdanto. Todennäköisyys..................................2 Peruskäsitteitä.................................

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Opintomoniste kurssille MAT-25 Todennäköisyyslaskenta, Tampereen teknillinen yliopisto Antti Perttula, Kimmo Vattulainen, Tia Suurhasko Versio 9/212 Sisältö 1 Todennäköisyys 3 1.1

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta

Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien

Lisätiedot

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3

1. JOHDANTO. SIS LLYSLUETTELO sivu 1. JOHDANTO 3 1 2 22.10.2001 Tilastollisten menetelmien perusteet I Syksy 2001 Opintojakson www-sivu: http://www.uta.fi/~strale/p2syksy.html Huom. 1. Luentomateriaali on tarkoitettu ko. opintojakson opiskelijoille.

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien

Lisätiedot

Tilastomatematiikka TUDI

Tilastomatematiikka TUDI Miika Tolonen http://www.mafy.lut.fi/tilmattudi Laboratory of Applied Mathematics Lappeenranta University of Technology 10. syyskuuta 2014 Sisältö I Johdanto 1 Johdanto 2 Satunnaiskokeet ja satunnaismuuttujat

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla

Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Todennäköisyysjakaumien mallintaminen Matlabohjelmalla Tekijä: 55354J timo.nordlund@hut.fi Ohjaaja: Ilkka Mellin Jätetty: 13.8.2003 Sisällysluettelo 1. JOHDANTO... 3 2. OHJELMAKOODI... 4 2.1. RAKENNE...

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.

F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R. Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2

1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1.2 Tilastollinen päättely ja tieteellisyyden kriteerit 2 Sisältö 1 JOHDANTO 1 1.1 Tilastomenetelmät luotettavan tutkimuksen perustana 1 1.1.1 Otos vs. näyte 1 1.1. Tilastollinen päättely ja tieteellisyyden kriteerit TEOREETTINEN JAKAUMA 3.1 Satunnaismuuttuja

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

TILASTOMATEMATIIKKA. Keijo Ruohonen

TILASTOMATEMATIIKKA. Keijo Ruohonen TILASTOMATEMATIIKKA Keijo Ruohonen 20 Sisältö I PERUSOTOSJAKAUMAT JA DATAN KUVAUKSET. Satunnaisotanta.2 Tärkeitä otossuureita 2.3 Datan esitykset ja graafiset metodit 6.4 Otosjakaumat 6.4. Otoskeskiarvon

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1

J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon

Lisätiedot

Stokastiikan perusteet

Stokastiikan perusteet Stokastiikan perusteet Lasse Leskelä 10. joulukuuta 2013 Tiivistelmä Tämä luentomoniste sisältää muistiinpanoja asioista, joita käsiteltiin Jyväskylän yliopiston kurssilla MATA280 Stokastiikan perusteet

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Simulointi. Satunnaisluvut

Simulointi. Satunnaisluvut Simulointi Satunnaisluvut Satunnaisluvut Anyone who considers arithmetic methods of producing random digits is, of course, in a state of sin, John v. Neumann Simuloinnissa käytetään aina näennäisesti satunnaisia

Lisätiedot

Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010. Tehtäväkokoelma

Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010. Tehtäväkokoelma Tilastomatematiikka 1, KESÄ2010/TIMO&AIMO 2010 Tehtäväkokoelma 1. Komponentit k 1,...,k n muodostavat rinnan kytketyn systeemin, jos systeemi toimii aina, kun yksikin komponentti toimii. Komponentit muodostavat

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Johdanto: Deterministisyys ja satunnaisuus Todennäköisyyden määritteleminen Todennäköisyyslaskennan peruskäsitteet TKK (c)

Lisätiedot

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta

031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta 031021P Tilastomatematiikka (5 op) Kurssi-info ja lukion kertausta Jukka Kemppainen Mathematics Division Käytännön asioita Luennot (yht. 7 4 h) ke 12-14 ja pe 8-10 (ks. tarkemmin Oodista tai Nopasta) Harjoitukset

Lisätiedot

Tilastollisten aineistojen kerääminen ja mittaaminen

Tilastollisten aineistojen kerääminen ja mittaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2007) 1 ja mittaaminen >> Tilastollisten aineistojen kerääminen Mittaaminen

Lisätiedot

T-61.281 Luonnollisen kielen tilastollinen käsittely

T-61.281 Luonnollisen kielen tilastollinen käsittely T-6.8 Luonnollisen kielen tilastollinen käsittely Ratkaisut. Ti 7..4, 8:5-: Palautellaan mieliin todennäköisyyslaskuja Versio.. Todennäköisyyksistä ensimmäinen P( sana=lyhenne sana=kolmikirjaiminen ) =.8

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia. ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 1 Ratkaisuehdotuksia ja selittelyjä Tämänkertaiset ratkaisuehdotukset ovat pitkähköjä, ja ne sisältävät paljon selittelyjä. Jatkossa

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Reikä. Säätila. Hammassärky Osuma

Reikä. Säätila. Hammassärky Osuma 190 Nuolen X Y intuitiivinen merkitys on, että X vaikuttaa suoraan Y:hyn Verkon topologia solmut ja nuolet määräävät muuttujien ehdolliset riippumattomuudet Kun topologia on kiinnitetty, pitää vielä määrätä

Lisätiedot

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma

Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen. Heli Holtari. Tilastotieteen pro gradu -tutkielma Tilastokeskuksen liikevaihtoindeksien ennakkotietojen estimointimenetelmän kehittäminen Heli Holtari Tilastotieteen pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

0.08 bussimatkustajaa. 0.92 ei-bussimatkustajaa

0.08 bussimatkustajaa. 0.92 ei-bussimatkustajaa 141216 1 Riski R f C (a) Tarkastellaan kuolemaan johtaneita onnettomuuksia f bussi 13 onnettomuutta f muut 13 onnettomuutta 3 tulipalokuolemaa onnettomus 3 tulipalokuolemaa onnettomus 8 bussimatkustajaa

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla

Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Seuraavassa on esitetty seuraavien laskutoimitusten suoritukset eri laskinmalleilla Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja keskihajonnan

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia.

b6) samaan perusjoukkoon kohdistuu samanaikaisesti useampia tutkimuksia. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 11.3.2011 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Mitä tilastollinen analyysi on?

Mitä tilastollinen analyysi on? Mitä tilastollinen analyysi on? Tilastotiede (engl. statistics) on tieteenala, jonka kohteena ovat numeerisen tilastoaineiston keräämiseen ja muokkaamiseen, esittämiseen, tilastolliseen analyysiin ja tulosten

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen.

Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen. Ekonometria: Tavoite: PerehdyttÄaÄa (empiirisen) ekonometrisen tutkimuksen periaatteisiin, mallintamiseen, tekniikkaan ja käaytäannäon toteuttamiseen. Ekonometria (STAT.2020) Syksy 2005 Seppo PynnÄonen

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

Tilastotieteen perusteet

Tilastotieteen perusteet Tilastotieteen perusteet Esim. Arvostettu juoma-asiantuntija ekonomisti E osallistuu juomien makutestiin, jossa voi saada voi saada arvonimen Melko Suuri Maistaja (MSM *), Suuri maistaja (SM**) tai Erittäin

Lisätiedot

Luonnollisen kielen tilastollinen käsittely. T-61.281 (3 ov) L. Luento 2, 21.1.2003. Luentokalvot: Krista Lagus ja Timo Honkela

Luonnollisen kielen tilastollinen käsittely. T-61.281 (3 ov) L. Luento 2, 21.1.2003. Luentokalvot: Krista Lagus ja Timo Honkela Luonnollisen kielen tilastollinen käsittely T-61.281 (3 ov) L Luento 2, 21.1.2003 Luennot: Laskuharjoitukset: Timo Honkela Vesa Siivola Luentokalvot: Krista Lagus ja Timo Honkela 0.1 Laskuharjoitukset

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi

Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Viikko 1: Johdantoa Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 29-31.10.2008. 1 Tällä viikolla 1. Käytännön järjestelyistä 2. Kurssin sisällöstä ja aikataulusta 3. Johdantoa Mitä koneoppiminen

Lisätiedot

1 TILASTOMENETELMIEN PERUSTEITA

1 TILASTOMENETELMIEN PERUSTEITA 1 TILASTOMENETELMIEN PERUSTEITA Insinööritieteissä suoritetaan usein erilaisia mittauksia tai kokeita, joiden tuloksena saadaan numeerisia havaintoaineistoja tutkittavasta ilmiöstä. Hyvinvointiteknologiassa

Lisätiedot

Matematiikan opiskelun esteiden analysointi logistisella regressioanalyysillä

Matematiikan opiskelun esteiden analysointi logistisella regressioanalyysillä TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto HELI RAASSINA Matematiikan opiskelun esteiden analysointi logistisella regressioanalyysillä DIPLOMITYÖ Aihe hyväksytty Teknis-luonnontieteellisen

Lisätiedot

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen?

10 %. Kuinka monta prosenttia arvo nousi yhteensä näiden muutosten jälkeen? YLIOPPILASTUTKINTO- LAUTAKUNTA 3.3.0 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

TESTINVALINTATEHTÄVIEN VASTAUKSET

TESTINVALINTATEHTÄVIEN VASTAUKSET TESTINVALINTATEHTÄVIEN VASTAUKSET Vastaukset on merkitty keltaisella, muuttujien mittaustasot muuttujan kuvauksen perässä ja muu osa vastauksesta kysymyksen perässä. Tehtävä 1. Talousmatematiikan kurssin

Lisätiedot

a) 0,89 b) 0,01 P (A) = 3/8 P (B) = 3/4 P (A B) = 1/8

a) 0,89 b) 0,01 P (A) = 3/8 P (B) = 3/4 P (A B) = 1/8 Laskuharjoitukset, 5-6.9.2014 Tilastomatematiikka TUDI 1. Olkoot A, B ja C tapahtumia otosavaruudessa S. Määritä joukko-opilliset lausekkeet tapahtumille a) tarkalleen yksi tapahtumista A, B tai C tapahtuu

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Pitkä matematiikka, syksy 05 Mallivastaukset, 3.9.05 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja diplomi-insinööri

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta.

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 9.3.2012 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot