MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi"

Transkriptio

1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

2 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

3 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

4 Jatkuva satunnaisluku Satunnaisluku X on jatkuva, jos sen jakauma voidaan esittää tiheysfunktion f (x) 0 avulla muodossa Pr(X A) = f (x) dx, A R. Tällöin tapahtuman {X = a} todennäköisyys on Pr(X = a) = Pr(X {a}) = f (x) dx = 0. Onko tämä paradoksi? {X = a} on tapahtuma, että X :n arvo on reaaliluku a äärettömän monen desimaalin tarkkuudella. Jos f (a) > 0 ja f on jatkuva pisteessä a, niin A {a} Pr(X (a δ, a + δ)) = mielivaltaisen pienellä δ > 0. a+δ a δ f (x) dx 2δf (a) > 0.

5 Jatkuva tasajakauma Satunnaisluku eli reaaliarvoinen satunnaismuuttuja X noudattaa välin (a, b) tasajakaumaa, jos sillä on tiheysfunktio f (x) = { 1 b a, jos x (a, b), 0, muuten. Esim Merkitään luvulla θ sitä kulmaa, johon rulettipyörä yhden pelikierroksen jälkeen asettuu suhteessa edelliseen tilaansa. Tällöin θ noudattaa välin (0, 2π) tasajakaumaa ja todennäköisyys, että θ (0, π) on Pr(θ (0, π)) = π 0 f (x) dx = π 0 1 2π dx = π 2π = 1 2.

6 Kertymäfunktio Satunnaisluvun X kertymäfunktio F (x) = Pr(X x) kertoo, millä todennäköisyydellä X on enintään x. Tapahtuman {a < X b} tn saadaan kertymäfunktiosta kaavalla Pr(a < X b) = Pr(X b) Pr(X a) = F (b) F (a). Jatkuvan satunnaisluvun kertymäfunktio on tiheysfunktion integraali F (x) = Pr(X (, x]) = x tiheysfunktio on kertymäfunktion derivaatta f (x) = F (x). f (t) dt,

7 Jatkuvan tasajakauman kertymäfunktio Satunnaisluku X noudattaa välin (a, b) tasajakaumaa, jos sillä on tiheysfunktio f (x) = { 1 b a, josx (a, b), 0, muuten. Lasketaan X :n kertymäfunktio: 0, kun x a, F (x) = Pr(X (a, x]) = x 1 x a a b a dt = b a, a < x < b, 1, x b.

8 Eksponenttijakauma Satunnaisluku X noudattaa eksponenttijakaumaa parametrinaan λ > 0, merkitään X Exp(λ), jos sillä on tiheysfunktio { λe λx, x > 0 f (x) = 0, muuten. X :n kertymäfunktio on { x F (x) = 0 λe λt dt = 1 e λx, x 0, 0, x < 0.

9 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

10 Odotusarvo Satunnaisluvun X odotusarvo E[X ] on ei-satunnainen luku, joka määräytyy X :n jakaumasta. Diskreetille satunnaisluvulle, jolla on pistetodennäköisyysfunktio f (x i ) ja arvojoukko {x 1, x 2,..., x n } tai {x 1, x 2, x 3,... }, E[X ] = i x i Pr(X = x i ) = i x i f (x i ). Jatkuvalle satunnaisluvulle, jolla on tiheysfunktio f (x), E[X ] = x f (x) dx. Huom Satunnaisluvulla X ei ole odotusarvoa, jos sen odotusarvon määritelmässä oleva summa tai integraali hajaantuu.

11 Esim. Nopan heitto Symmetrisen nopan tuottama silmäluku X noudattaa joukon {1,..., 6} tasajakaumaa ja X :n pistetodennäköisyysfunktio on Näin ollen X :n odotusarvo on f (k) = 1, k = 1,..., 6. 6 E[X ] = 6 k=1 kf (k) = = 3.5.

12 Esim. Eksponenttijakauma Jos X noudattaa eksponenttijakaumaa parametrinaan λ > 0, on sillä tiheysfunktio { λe λx, x > 0 f (x) = 0, muuten. Näin ollen X :n odotusarvo on x f (x) dx = xλe λx dx = 0 0 x( e λx ) = e λx dx 0 = ( 1λ ) e λx = 1 λ. 0 0 ( e λx ) dx

13 Odotusarvon tulkinta Satunnaisluvun X odotusarvo µ = E[X ] voidaan tulkita seuraavan tärkeän tuloksen avulla. Fakta (Suurten lukujen laki) Jos X 1, X 2, X 3,... ovat riippumattomia satunnaislukuja, jotka noudattavat samaa jakaumaa kuin X, niin todennäköisyydellä 1 1 n n X i µ, kun n. i=1

14 Esim. Noppapeli Noppapelissä voittaa kierroksella i silmäluvun X i verran euroja. Yhden kierroksen odotettu tuotto on E[X i ] = 3.5 EUR. Tuotto suurelta määrältä n kierroksia on suurten lukujen lain mukaan likimain ( ) n 1 n X i = X i n 3.5n. n i=1 i=1

15 Odotusarvon lineaarisuus Kaikille satunnaisluvuille X ja Y ja ei-satunnaisille a R pätee E[a] = a, E[aX ] = a E[X ], E[X + Y ] = E[X ] + E[Y ]. Yleisemmin: [ n ] E a i X i = i=1 n a i E[X i ]. Esim Noppapelissä voittaa kierroksella i silmäluvun X i verran euroja. Tällöin n:n kierroksen tuoton odotusarvo on E[ n i=1 X i] = n i=1 E[X i] = 3.5n euroa. i=1

16 Satunnaismuuttujan muunnoksen odotusarvo Jos g on deterministinen funktio satunnaismuuttujan X :n arvojoukosta reaaliluvuille, niin g(x ) on satunnaisluku, joka liittää satunnaisilmiön realisaatioon s luvun g(x (s)). Satunnaisluvun g(x ) odotusarvo määräytyy funktiosta g ja X :n jakaumasta. Diskreetille satunnaismuuttujalle X, jolla on pistetodennäköisyysfunktio f (x i ), E[g(X )] = i g(x i ) Pr(X = x i ) = i g(x i )f (x i ). Jatkuvalle satunnaisluvulle X, jolla on tiheysfunktio f (x), E[g(X )] = g(x) f (x) dx.

17 Esim. Nopan neliö Olkoon X symmetrisen nopan heiton silmäluku ja g(x) = x 2. Tällöin satunnaisluvun g(x ) = X 2 odotusarvo on 6 g(k)f (k) = k=1 6 k=1 k = = 91 6 = 151 6

18 Varianssi ja keskihajonta Satunnaisluvun X varianssi on ei-satunnainen luku Var(X ) = E [ (X µ) 2], missä µ = E[X ]. Diskreetille satunnaismuuttujalle X, jolla on pistetodennäköisyysfunktio f (x i ), Var(X ) = i (x i µ) 2 Pr(X = x i ) = i (x i µ) 2 f (x i ). Jatkuvalle satunnaisluvulle X, jolla on tiheysfunktio f (x), Var(X ) = (x µ) 2 f (x) dx. Varianssi Var(X ) ja keskihajonta Var(X ) kuvastavat miten paljon X tyypillisesti poikkeaa odotusarvostaan.

19 Varianssin laskusääntöjä Satunnaisluvulle X, jolla on odotusarvo µ = E[X ], pätee Var(X ) = E [ X 2] µ 2, Var(aX ) = a 2 Var(X ), a R. Var(a) = 0. Var(a + X ) = Var(X ). Luku E [ X 2] on X :n toinen momentti. Jos X ja Y ovat tilastollisesti riippumattomat, pätee lisäksi Var(X + Y ) = Var(X ) + Var(Y ). Yleisemmin, jos X 1,..., X n ovat tilastollisesti riippumattomat, pätee ( n ) n Var a i X i = ai 2 Var(X i ). i=1 i=1

20 Esm. Noppapeli Pelataan 100 kierrosta noppapeliä. Mitkä ovat kertyneen tuoton Y = X X 100 odotusarvo, varianssi ja keskihajonta? Koska µ = E[X i ] = 3.5 ja E [ Xi 2 ] = , on yhden kierroksen tuoton varianssi Var(X i ) = E [ Xi 2 ] µ 2 = (3.5) Odotusarvon lineaarisuudesta E[Y ] = = 350. Koska nopanheitot ovat tilastollisesti riippumattomia, on Y :n varianssi Var(Y ) = Var ( 100 ) 100 X i = Var(X i ) 292. i=1 i=1 Y :n keskihajonta on siis Var(Y )

21 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

22 Todennäköisyydet generoiva funktio Jos X : S N on ei-negatiivinen satunnainen kokonaisluku ja f sen ptnf, niin satunnaismuuttujan X todennäköisyydet generoiva funktio (tngf) määritellään asettamalla G X (t) = E[t X ] = t k f (k) k=0 kaikilla t R, joilla oikeanpuoleinen sarja suppenee.

23 Esim. Geometrisesti jakautunut satunnaismuuttuja Joukon 1, 2,... geometrisen jakauman onnistumis-tn:llä p (0, 1) määrää ptnf f (k) = (1 p) k 1 p, k = 1, 2,... Oletetaan, että f määrää satunnaismuuttujan X jakauman. Silloin satunnaismuuttujan X tngf on G X (t) = t k f (k) = k=0 t k (1 p) k 1 ( ) k p = pt t(1 p) k=1 k=0 Oikeanpuoleinen sarja suppenee, kun (1 p) t < 1 ja hajaantuu muulloin. Näin ollen G X (t) = pt 1 (1 p)t, t < 1 1 p.

24 Faktoja Todennäköisyydet generoivan funktion tarkasteluun tarvitaan seuraavia tuloksia, jotka todistetaan kurssilla MS-A0101 Differentiaali- ja integraalilaskenta 1. On olemassa sellainen R 0, että G X (t) suppenee aina kun t < R ja hajaantuu aina kun t > R. Kyseinen luku R on nimeltään sarjan G X (t) suppenemissäde. Funktiolla G X on kaikkien kertalukujen jatkuvat derivaatat välillä ( R, R) ja potenssisarjan G X (t) voi derivoida termeittäin mielivaltaisen monta kertaa aina kun t < R. G X (t):n derivaattaa vastaavalla sarjalla k=1 ktk 1 f (k) on sama suppenemissäde kuin G X (t):n potenssisarjalla.

25 Tng-funktio määrää jakauman Ei-negatiivisen satunnaisen kokonaisluvun X tngf G X on aina määritelty joukossa [ 1, 1] ja se määrää X :n jakauman f yksikäsitteisesti kaavalla f (k) = G (k) X (0), k = 0, 1, 2,..., k! missä G (k) X on funktion G X k:s derivaatta. Tämän todistaminen on yksinkertaista edellä mainittujen faktojen avulla (HT).

26 Olkoon X positiivinen kokonaislukuarvoinen kokonaisluku ja oletetaan, että sen tngf G X on määritelty pisteessä t 0 > 1. Silloin X :n odotusarvo ja varianssi ovat äärellisiä ja ne voidaan laskea kaavoilla E[X ] = G X (1) ja Var(X ) = G X (1) + G X (1) G X (1)2. Todistuksen idea: derivoimalla saadaan joten G X (t) = k=1 kt k 1 f (k) G X (1) = k=1 kf (k) = E[X ] G X (t) = k=2 k(k 1)t k 1 f (k), G X (1) = k=2(k 2 k)f (k) = E [ X 2 X ] = E [ X 2] E [ X ].

27 Esim. Geometrisesti jakautunut satunnaismuuttuja Olkoon X geometrista jakaumaa hyväksymistodennäköisyydellä p (0, 1) noudattava satunnainen kokonaisluku. Silloin X :n odotusarvo ja varianssi saadaan laskettua helposti tngf:n G X (t) = G X (t) = d dt niin pt 1 (1 p)t avulla: Merkitään q = 1 p. Koska pt 1 (1 p)t E[X ] = G X (1) = = p(1 qt) ( q)(pt) (1 qt) 2 = p (1 q) 2 = p (1 (1 p)) 2 = 1 p. Varianssin laskeminen jätetään harjoitustehtäväksi. p (1 qt) 2,

28 Momentit generoiva funktio Todennäköisyydet generoiva funktio voidaan määritellä ainoastaan satunnaisille positiivisille kokonaisluvuille, joka on erittäin rajoittava ehto. Myös jatkuville satunnaismuuttujeille voidaan kuitenkin määritellä momentit generoiva funktio, mgf M X (t) = E [ e tx ], kunhan oikeanpuoleinen odotusarvo on äärellinen.

29 Momentit generoiva funktio Mgf määrää jakauman yksikäsitteisesti, kuten tngf, ja sen avulla voidaan laskea funktion momentit: eksponenttifunktion sarjakehitelmästä saadaan M X (t) = 1 + t E[X ] + t2 E [ X 2] 2! + t3 E [ X 3] , josta nähdään, että X :n momentit E [ X k] saadaan laskettua mgf:n derivaattojen avulla sijoittamalla t = 0: missä M (k) X E[X ] = M X (0) E [ X 2] = M X (0). E [ X 2] = M (k) X (0), on funktion M X k:s derivaatta.

30 Karakteristinen funktio Momentit generoivaa funktiotakaan ei voi määritellä satunnaismuuttujille, joiden momentit kasvavat nopeasti. Kaikille satunnaismuuttujille on kuitenkin olemassa karakterisitinen funktio ϕ X (t) = E [ e itx ], missä i on imaginaariyksikkö, i 2 = 1. Karakteristinen funktio määrää jakauman yksikäsitteisesti, kuten tngf, mutta sen käyttö vaatii kompeleksianalyysin tuntemusta.

31 Satunnaisluvut yhteenveto Diskreetti satunnaisluku Esim. diskreetti tasajakauma, binomijakauma Pistetodennäköisyysfunktio f (x i ) määrää jakauman Tiheysfunktiota ei ole olemassa Pr(X A) = E g(x ) = i i:x i A f (x i ) g(x i ) f (x i ) Jatkuva satunnaisluku Esim. välin tasajakauma, eksponenttijakauma Pistetodennäköisyysfunktio identtisesti nolla Tiheysfunktio f (x) määrää jakauman Pr(X A) = E g(x ) = A f (x) dx g(x) f (x) dx

32 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

33 Yksinkertainen satunnaisotanta Halutaan selvittää, kuinka moni perusjoukon S alkioista kuuluu osajoukooon A. Esim Miten moni tietyn valmistuserän tuotteista on viallisia? Kuinka moni suomalainen kantaa tietylle sairaudelle altistavaa geeniä? Kuinka suuri osuus suomalaisista seuraa Salattuja elämiä? Tutkitaan n satunnaisesti valittua perusjoukon alkioita, ja tehdään tämän pohjalta estimaatti osajoukon A todelliselle koolle.

34 Yhden alkion satunnaisotanta Poimitaan perusjoukosta S satunnaisesti yksi alkio. Kirjataan otannan tulos muodossa { 1, jos poimittu alkio A, X = 0, muuten. Fakta Diskreetti satunnaisluku X noudattaa Bernoulli-jakaumaa parametrinaan p = A S, pistetodennäköisyysfunktio on { 1 p, k = 0, f (k) = p, k = 1.

35 Bernoulli-jakauma f (k) = { 1 p, k = 0, p, k = 1. Bernoulli-jakauman ptnf, p = 0.3

36 Bernoulli-jakauman tunnusluvut X noudattaa Bernoulli-jakaumaa parametrinaan p, jos X :n arvojoukko on {0, 1} ja pistetodenäköisyysfunktio on { 1 p, k = 0, f (k) = Pr(X = k) = Lasketaan X :n odotusarvo ja varianssi: Var(X ) = µ = E(X ) = p, k = 1. 1 kf (k) = 0 f (0) + 1 f (1) = p. k=0 1 (k µ) 2 f (k) = (0 µ) 2 (1 p) + (1 µ) 2 p k=0 = p 2 (1 p) + (1 p) 2 p ( ) = p(1 p) p + (1 p) = p(1 p).

37 Satunnaisotanta palauttaen Poimitaan perusjoukosta S satunnaisesti yksi alkio, tutkitaan kuuluuko se joukkoon A ja palautetaan se perusjoukkoon. Toistetaan tämä n kertaa. X = Osajoukkoon A kuuluvien havaintojen lukumäärä Fakta Diskreetti satunnaisluku X noudattaa binomijakaumaa parametrein n ja p = A S ; pistetodennäköisyysfunktio on ( ) n f (k) = p k (1 p) n k, 0 k n. k

38 Binomijakauma f (k) = ( ) n p k (1 p) n k k Binomijakauman ptnf, n = 15, p = 0.3 Huom Kun n = 1, saadaan Bernoulli-jakauma parametrilla p.

39 Binomijakauman tunnusluvut Diskreetti satunnaisluku X noudattaa binomijakaumaa parametrein n ja p; pistetodennäköisyysfunktio on ( ) n f (k) = p k (1 p) n k, 0 k n. k Lasketaan X :n odotusarvo ja varianssi. Kirjoitetaan X = n k=1 θ k, missä θ 1, θ 2,... ovat riippumattomia ja Bernoulli-jakautuneita parametrinaan p. Tällöin E(X ) = n E(θ k ) = np. k=1 n Var(X ) = Var(θ k ) = np(1 p). k=1

40 Satunnaisotanta ilman palautusta Poimitaan perusjoukosta S satunnaisesti n:n alkion otos. Kuinka moni otoksen alkio kuuluu osajoukkoon A? X = Osajoukkoon A kuuluvien alkioiden lukumäärä otoksessa Fakta Diskreetti satunnaisluku X noudattaa hypergeometrista jakaumaa parametreinaan N, K, n, missä N = S ja K = A ; pistetodennäköisyysfunktio on ( K )( N K ) k n k f (k) = ( N, max(0, n + K N) k min(n, K), n) missä N = S ja K = A.

41 Hypergeometrinen jakauma f (k) = ( K )( N K ) k n k ( N n) Hypergeometrisen jakauman ptnf, N = 100, K = 30, n = 15

42 Hypergeometrinen jakauma vs. binomijakauma HGeom(N, K, n) Bin(n, K/N), kun otantasuhde n N on pieni, eli kun otoksen koko on pieni suhteessa perusjoukon kokoon. E(X ) = np Var(X ) = np(1 p) ( ) n f (k) = p k (1 p) n k k E(X ) = np Var(X ) = np (1 p) ( K )( N K ) k n k f (k) = ( N n) ( ) N n N 1

43 Satunnaisotanta Yhteenveto Perusjoukko kokoa N = S. Osajoukko kokoa K = A. Osajoukon A suhteellinen koko p = K N. Yhden alkion satunnaisotos Bernoulli-jakauma Ber(p) n:n alkion satunnaisotanta palauttaen Binomijakauma Bin(n, p) n:n alkion satunnaisotanta palauttamatta Hypergeometrinen jakauma HGeom(N, K, n). Jos otantasuhde n/n on pieni, pätee approksimaatio HGeom(N, K, n) Bin(n, p), jolloin satunnaisotantaa ilman palautusta voidaan analysoida kuten satunnaisotantaa palauttaen.

44 Sisältö Jatkuvat satunnaisluvut Odotusarvo ja varianssi Generoivat funktiot Satunnaisotanta Normaalijakauma

45 Binomijakauma suurilla n:n arvoilla Diskreetti satunnaisluku X noudattaa Bin(n, p)-jakamaa, missä n = ja p = 0.3. Mikä on tn, että X on suurempi kuin 5000? Laske Pr(X > 5000) = k=5001 ( k ) 0.3 k k. Kokeillaan R:llä: sum(dbinom(5001:10000,10000,0.3)) = 0

46 ... Binomijakauma suurilla n:n arvoilla Ptnf välillä [0, 10000] n = 10000, p = 0.3. Odotusarvo µ = np = 3000 Keskihajonta σ = np(1 p) = Ptnf välillä [2725, 3275] n = 10000, p = 0.3.

47 Normaalijakauma Jatkuva satunnaisluku X noudattaa normaalijakaumaa parametrein µ ja σ 2, merkitään X N(µ, σ 2 ), jos sillä on tiheysfunktio f (x) = 1 (x µ)2 e 2σ 2. 2πσ 2 Tällöin X :n odotusarvo on µ ja varianssi σ 2. Standardoidun normaalijakauman N(0, 1) tiheysfunktio on ja kertymäfunktio on Φ(z) = f (x) = 1 2π e x2 2. z 1 2π e x2 2 dx.

48 Normaaliapproksimaatio Fakta (Keskeinen raja-arvolause) Jos X 1, X 2, X 3,... ovat riippumattomia satunnaislukuja, jotka noudattavat samaa jakaumaa kuin X, jolla on odotusarvo µ ja varianssi σ 2, niin niin todennäköisyydellä 1 ( 1 n ( ) ) Xi µ Pr z Φ(z) kun n. n σ i=1 Merkitään Z N(0, 1): n i=1 X i nµ + nσz, kun n Bin(n, p) np + np(1 p)z, kun n on iso ja p ei liian lähellä nollaa tai ykköstä.

49 Normaalijakauman affiini muunnos Jos X on normaalijakautunut parametrein µ X ja σx 2, niin tällöin myös Y = a + bx on normaalijakautunut parametrein µ Y = E(a + bx ) = a + b E(X ) = a + bµ X σ 2 Y = Var(a + bx ) = Var(a) + Var(bX ) = b2 Var(X )

50 Normaalijakauman standardointi Jos X noudattaa N(µ, σ 2 )-jakaumaa, niin tällöin Z = X µ σ noudattaa standardoitua normaalijakaumaa N(0, 1) ja tapahtuman a < X < b todennäköisyys on ( a µ Pr(a < X < b) = Pr < X µ < b µ ) σ σ σ ( a µ = Pr < Z < b µ ) σ σ ( = Pr Z b µ ) ( Pr Z a µ ) σ σ ( ) ( ) b µ a µ = Φ Φ. σ σ

51 Ensi viikolla tutustumme satunnaisvektoreihin ja moniulotteisiin jakaumiin...

52 Aineistolähteet Luentokalvot pohjautuvat osittain kurssin edellisten vuosien (Ilkka Mellin, Milla Kibble, Juuso Liesiö) luentokalvoihin.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma

Lisätiedot

D ( ) E( ) E( ) 2.917

D ( ) E( ) E( ) 2.917 Mat-2.091 Sovellettu todennäköisyyslasku 4. harjoitukset/ratkaisut Aiheet: Diskreetit jakaumat Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen jakauma, Kertymäfunktio,

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

4. laskuharjoituskierros, vko 7, ratkaisut

4. laskuharjoituskierros, vko 7, ratkaisut 4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.

Lisätiedot

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat

Lisätiedot

Tilastomatematiikka Kevät 2008

Tilastomatematiikka Kevät 2008 Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Satunnaismuuttujien summa ja keskiarvo

Satunnaismuuttujien summa ja keskiarvo Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,

Lisätiedot

5. laskuharjoituskierros, vko 8, ratkaisut

5. laskuharjoituskierros, vko 8, ratkaisut Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio. Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Satunnaismuuttujan odotusarvo ja laskusäännöt

Satunnaismuuttujan odotusarvo ja laskusäännöt Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen

Lisätiedot

11 Raja-arvolauseita ja approksimaatioita

11 Raja-arvolauseita ja approksimaatioita 11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat 1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg 1 Todennäköisyys Satunnaismuuttujat Keskeinen raja-arvolause Aalto-yliopisto. tammikuuta 015 Kaksiulotteiset satunnaismuuttujat

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4. HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

6. laskuharjoitusten vastaukset (viikot 10 11)

6. laskuharjoitusten vastaukset (viikot 10 11) 6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen datan kuvaileminen, mallintaminen ja estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja 4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee

Lisätiedot

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat

Satunnaisluvut, satunnaisvektorit ja niiden jakaumat 1A Satunnaisluvut, satunnaisvektorit ja niiden jakaumat Ensimmäisen harjoituksen tavoitteena on kerrata todennäköisyyden peruskäsitteitä, jotka ovat välttämättömiä stokastisten prosessien käsittelyssä.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

3. laskuharjoituskierros, vko 6, ratkaisut

3. laskuharjoituskierros, vko 6, ratkaisut Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa

Lisätiedot

4.1 Diskreetin satunnaismuuttujan odotusarvo

4.1 Diskreetin satunnaismuuttujan odotusarvo 4 Odotusarvo Seuraavaksi kertaamme, miten satunnaismuuttujan odotusarvo (sv. väntevärde) määritellään diskreetissä ja jatkuvassa tapauksessa. Odotusarvolle käytetään englannikielisessä kirjallisuudessa

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)

JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) J. Virtamo 38.3143 Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2005) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat Kaksiulotteiset todennäköisyysjakaumat

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa I G. Gripenberg Aalto-yliopisto 2. tammikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona

Lisätiedot

4. Todennäköisyyslaskennan kertausta

4. Todennäköisyyslaskennan kertausta luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat

Lisätiedot