Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Koko: px
Aloita esitys sivulta:

Download "Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?"

Transkriptio

1 Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus on sama kuin vertailuarvo Suhteellinen osuus poikkeaa vertailuarvosta Suhteellinen osuus on suurempi kuin vertailuarvo Suhteellinen osuus on suurempi kuin vertailuarvo Oletukset 1) Käytössä on riippumaton otos perusjoukosta. 2) Jokaisella havainnolla on yhtä suuri havainnointitodennäköisyys. 3) Odotetut frekvenssit, np 0 ja n[1 p 0 ], ovat suurempia kuin 5. Riskitaso α: 0.05, 0.01, Testisuure ja p-arvo z X np 0 = ~ N(0, 1), np0 ( 1 p0 ) ja X: kiinnostuksen kohteena oleva havaittu frekvenssi, p 0 : suhteellisena osuutena ilmoitettu vertailuarvo, n: otoskoko. Johtopäätökset Jos p > α, nollahypoteesia ei hylätä. Jos p < α, nollahypoteesi hylätään.

2 Esimerkki. Automerkin ABC markkinaosuus vuonna 1997 oli 16.3 %. Seuraavan vuoden kolmen ensimmäisen kuukauden aikana myytiin kaikkiaan autoa, joista ABC-merkkisiä oli Onko automerkin ABC markkinaosuus muuttunut? Arvioidaan tätä yhden suhteellisen osuuden testillä. Hypoteesit H 0 : p = p 0 H 1 : p p 0 Markkinaosuus ei ole muuttunut. Markkinaosuus on muuttunut. Oletukset Tapahtuma: ostaako ABC-auton vai ei. Tässä voidaan kyseenalaistaa satunnaisuus: Onko päätös ostaa jokin tietty automerkki satunnainen? Onko vuoden kolme ensimmäistä kuukautta satunnaisotos koko myynnistä? Odotetut frekvenssit: np 0 = = 3546, n(1 p 0 ) = ( ) = Riskitaso α = 0.01 Testisuure ja p-arvo Havaittu frekvenssi: X = 3269 (X / n = 15.0 %) Odotettu frekvenssi: ks. ed. z = X np np 0 1 p 0 ( 0 ) = ( ) = = p = = Johtopäätös Nollahypoteesi siis hylätään ja sanotaan markkinaosuuden muuttuneen tässä sen todetaan laskeneen (p < 0.001) jos satunnaisuusoletus voidaan tehdä.

3 Tunnuslukumuodossa olevan aineiston analysointi 1. Syötetään aineisto (kaksi muuttujaa): x: 0 1 n: Määritetään oikea tapausmäärä analysoitavalle muuttujalle käyttämällä painotusta Data/Weight Cases... Weight cases by: Frequency variable: n

4 3. Suoritetaan analyysi Analyze/Nonparametric tests/chi Square... Test Variable list: sp Expected values: Values:,163,837

5

6 NPar Tests [DataSet0] Chi-Square Test Frequencies x,00 1,00 Total Observed N Expected N Residual ,9-276, ,1 276, Test Statistics Chi-Square a df Asymp. Sig. x 25,834 1,000 a. 0 cells (,0%) have expected frequencies less than 5. The minimum expected cell frequency is 3545,9. Testisuure ja p-arvo χ 2 = (vrt. z 2 = = ) df = 1 p = = Nollahypoteesi siis hylätään ja sanotaan markkinaosuuden muuttuneen (p < 0.001).

7 Kahden otoksen suhteellisen osuuden testaus Ongelma: Onko suhteellinen osuus sama kahdessa perusjoukossa? Hypoteesit H 0 : P 1 = P 2 H 1 : P 1 P 2 tai H 1 : P 1 > P 2 tai H 1 : P 1 < P 2 Suhteelliset osuudet ovat samat. Suhteelliset osuudet eivät ole samat. Suhteellinen osuus on suurempi ensimmäisessä ryhmässä Suhteellinen osuus on suurempi toisessa ryhmässä Oletukset Käytössä on riippumattomat otokset perusjoukoista ja ryhmät ovat toisistaan riippumattomia. Jokaisella yksittäisellä tapauksella on yhtä suuri tapahtumatodennäköisyys. Molemmissa ryhmissä odotetut frekvenssit (n i P i ja n i [1 P i ], i = 1,2) ovat suurempia kuin 5. Riskitaso α: 0.05, 0.01, Testisuure ja p-arvo P = (n 1 P 1 + n 2 P 2 )/(n 1 + n 2 ) z P P 1 2 = ~ N(0, 1) Johtopäätökset P( 1 P)(1/ n1 1/ n2 ) Jos p > α, nollahypoteesia ei hylätä. Jos p < α, nollahypoteesi hylätään.

8 Esimerkki. Tutkimuksessa haluttiin selvittää ikääntyneiden naisten ja miesten tupakointia. Poimittiin satunnaisotannalla haastatteluun 759 henkilöä (342 miestä ja 417 naista). Miehistä tupakoivan havaittiin 166 ja naisissa 187. Onko ryhmissä suhteellinen osuus sama? Hypoteesit H 0 : P 1 = P 2 H 1 : P 1 P 2 Suhteelliset osuudet ovat samat. Suhteelliset osuudet eivät ole samat. Oletukset Satunnaisuus ja riippumattomuus näyttäisivät olevan kunnossa. Oletetaan tapahtuma jälleen satunnaiseksi. Odotetut frekvenssit: n 1 P 1 = 342 ( ) / 759 = 159 n 1 (1 P 1 ) = 342 ( ) /759 = 183 n 2 P 2 = 417 ( ) / 759 = 194 n 2 (1 P 2 ) = 417 ( ) / 759 = 223 Huom. Nämä ovat samat kuin ristiintaulukosta laskettaessa. Riskitaso α = 0.01 Testisuure ja p-arvo P 1 = 166 / 342 = P 2 = 187 / 417 = P = (n 1 P 1 + n 2 P 2 )/(n 1 + n 2 ) = ( )/( ) = ( ) / 759 = z = P P 1 P( 1 P)(1/ n1 1/ n2 ) 2 = ( )(1/ / 417) = p = Johtopäätökset Nollahypoteesi jää voimaan. Suhteellisia osuuksia pidetään perusjoukon tasolla yhtä suurina (p = 0.310).

9 Tunnuslukumuodossa olevan aineiston analysointi 1. Syötetään aineisto (kaksi muuttujaa): x: y: n: Määritetään oikea tapausmäärä analysoitavalle muuttujalle käyttämällä painotusta. Data/Weight Cases... Weight cases by: Frequency variable: n

10 3. Suoritetaan analyysi Analyze/Descriptive statistics/crosstabs...

11 Row: Column: x y Statistics: Chi-square (continue)

12 Cells : Counts: Observed, Expected, Percentages: Row (continue)

13 Crosstabs [DataSet0] Case Processing Summary sp * smoke Cases Valid Missing Total N Percent N Percent N Percent ,0% 0,0% ,0% sp * smoke Crosstabulation sp Total,00 1,00 Count Expected Count % within sp Count Expected Count % within sp Count Expected Count % within sp smoke,00 1,00 Total ,9 159,1 342,0 51,5% 48,5% 100,0% ,1 193,9 417,0 55,2% 44,8% 100,0% ,0 353,0 759,0 53,5% 46,5% 100,0% Chi-Square Tests Pearson Chi-Square Continuity Correction a Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases Asymp. Sig. Value df (2-sided) 1,031 b 1,310,887 1,346 1,030 1,310 1,029 1, a. Computed only for a 2x2 table Exact Sig. (2-sided) Exact Sig. (1-sided),342,173 b. 0 cells (,0%) have expected count less than 5. The minimum expected count is 159,06. Kahden suhteellisen osuuden testaus vastaa siis 2 2 kokoisen taulukon testaamista χ 2 -testillä. Huom. z 2 = =

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta?

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 2. Tehtävät 2-4 sekä 6 10 liittyvät keväällä 2002 suoritettuun ammattikorkeakoulusta

Lisätiedot

1 Johdanto 2. 2 Aineistot 2. 3 Henkilöstön koulutustausta ja työkokemus 3. 4 Aikuissosiaalityön sisältö 5. 5 Henkilöstön osaaminen 12

1 Johdanto 2. 2 Aineistot 2. 3 Henkilöstön koulutustausta ja työkokemus 3. 4 Aikuissosiaalityön sisältö 5. 5 Henkilöstön osaaminen 12 Sisällysluettelo 1 Johdanto 2 2 Aineistot 2 3 Henkilöstön koulutustausta ja työkokemus 3 4 Aikuissosiaalityön sisältö 5 5 Henkilöstön osaaminen 12 6 Asiakkaiden elämäntilanteisiin vastaaminen 20 7 Asiakkaiden

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 3) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Ratkaisuja luvun 15 tehtäviin

Ratkaisuja luvun 15 tehtäviin Tarja Heikkilä 1. Luettele hyvän tutkimuksen perusvaatimukset ja riskitekijät. Katso Hyvän tutkimuksen perusvaatimukset luvusta 1 ja Tutkimusraporttien arviointi luvusta 4. Esimerkkejä riskitekijöistä

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on? Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Muuttujien väliset riippuvuudet esimerkkejä

Muuttujien väliset riippuvuudet esimerkkejä Tarja Heikkilä Muuttujien väliset riippuvuudet esimerkkejä Sisältö MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN TILASTOLLINEN TESTAUS MERKITSEVYYSTASO MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN SPSS-OHJELMALLA

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja:

RISKITASO. Riskitaso (α) määrittää virhepäätelmän todennäköisyyden. Käytettyjä riskitasoja: RISKITASO Riskitaso (α) määrittää virhepäätelmän todennäköisyyden testattaessa Todennäköisyys, jolla tutkija on valmis hylkäämään nollahypoteesin, vaikka se saattaisikin pitää perusjoukossa paikkansa Käytettyjä

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Tutkitaan iän vaikutusta vastauksiin monella vaihtoehtoisella tavalla

Tutkitaan iän vaikutusta vastauksiin monella vaihtoehtoisella tavalla Tarja Heikkilä Tutkitaan iän vaikutusta vastauksiin monella vaihtoehtoisella tavalla Esimerkki Tutkitaan iän vaikutusta siihen, miten tärkeinä vastaajat pitivät kirjaston yleisöpäätteitä. Aineistona on

Lisätiedot

Graph. COMPUTE x=rv.normal(0,0.04). COMPUTE y=rv.normal(0,0.04). execute.

Graph. COMPUTE x=rv.normal(0,0.04). COMPUTE y=rv.normal(0,0.04). execute. COMPUTE x=rv.ormal(0,0.04). COMPUTE y=rv.ormal(0,0.04). execute. compute hplib_man_r = hplib_man + x. compute arvokons_man_r = arvokons_man + y. GRAPH /SCATTERPLOT(BIVAR)=hplib_man_r WITH arvokons_man_r

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS 1 Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS Tutkimuksen aineiston keräämisessä voidaan käyttää joko laadullista tai määrällistä tutkimusmenetelmää. Tutkimusmenetelmiä voidaan myös yhdistää,

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

OULUN ETELÄISEN INSTITUUTTI 1/2006 SELVITYS OULUN ETELÄISEN ALUEEN OPISKELIJOIDEN KIINNOSTUKSESTA YRITTÄJYYTTÄ JA KAUPPATIETEELLISIÄ OPINTOJA KOHTAAN

OULUN ETELÄISEN INSTITUUTTI 1/2006 SELVITYS OULUN ETELÄISEN ALUEEN OPISKELIJOIDEN KIINNOSTUKSESTA YRITTÄJYYTTÄ JA KAUPPATIETEELLISIÄ OPINTOJA KOHTAAN OULUN ETELÄISEN INSTITUUTTI /00 SELVITYS OULUN ETELÄISEN ALUEEN OPISKELIJOIDEN KIINNOSTUKSESTA YRITTÄJYYTTÄ JA KAUPPATIETEELLISIÄ OPINTOJA KOHTAAN Mari Ahonen i Sisällysluettelo JOHDANTO.... Selvityksen

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

SPSS-ohjeita. Metropolia Pertti Vilpas

SPSS-ohjeita. Metropolia Pertti Vilpas 1 Metropolia Pertti Vilpas SPSS-ohjeita Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

IBM SPSS Statistics 21 (= SPSS 21)

IBM SPSS Statistics 21 (= SPSS 21) Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

SPSS -alkeisopas. Statistical Package for Social Sciences. Tero Mamia

SPSS -alkeisopas. Statistical Package for Social Sciences. Tero Mamia SPSS -alkeisopas Statistical Package for Social Sciences Tero Mamia Tampereen yliopisto 5/2005 Lukijalle Tämä opas on tarkoitettu SPSS for Windows tilasto-ohjelmiston käytön alkeiden opiskeluun. Opas on

Lisätiedot

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4

Tilastotieteen johdantokurssin harjoitustyö. 1 Johdanto...2. 2 Aineiston kuvaus...3. 3 Riippuvuustarkastelut...4 TILTP1 Tilastotieteen johdantokurssin harjoitustyö Tampereen yliopisto 5.11.2007 Perttu Kaijansinkko (84813) perttu.kaijansinkko@uta.fi Pääaine matematiikka/tilastotiede Tarkastaja Tarja Siren 1 Johdanto...2

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

ISSN ISBN OULUN YLIOPISTO Oulun yliopistopaino OULU 2002

ISSN ISBN OULUN YLIOPISTO Oulun yliopistopaino OULU 2002 2 ISSN 1238-9129 ISBN 951-42-6621-8 OULUN YLIOPISTO Oulun yliopistopaino OULU 2002 3 UUTTA OPETUKSESSA Uutta opetuksessa on Oulun yliopiston laitoksille ja tiedekunnille suunnattu julkaisusarja. Sarjan

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

SPSS OPAS. Metropolia Liiketalous

SPSS OPAS. Metropolia Liiketalous 1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio

Lisätiedot

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli Group Statistics Luk1 Kirj1 Kielt1 Khuol1 Kirjall1 Ilmharj1 äyt1 Viest1 Sanaluokat1 Luk2 Kirj2

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Lohkoasetelmat. Kuusinen/Heliövaara 1

Lohkoasetelmat. Kuusinen/Heliövaara 1 Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan

Lisätiedot

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Tutkimuksen suunnittelu / tilastolliset menetelmät Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Kvantitatiivisen tutkimuksen vaiheet Suunnittelu Datan keruu Aineiston analysointi

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 14.4.2012 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Prospektiteoreettinen näkökulma

Prospektiteoreettinen näkökulma Miten paljon saneerausohjelmien onnistumiseen vaikuttaa yrittäjän kannustimet? Prospektiteoreettinen näkökulma Tapio Laakso 29.1.2010 Onnistumisen hyöty yrittäjälle vs. keskeytymisriski (Selvittäjän rooli?

Lisätiedot

TAPAUS-VERROKKITUTKIMUS

TAPAUS-VERROKKITUTKIMUS TAPAUS-VERROKKI TUTKIMUKSEN TYYPIT JA TULOSTEN ANALYYSI Simo Näyhä Jari Jokelainen Kansanterveystieteen ja yleislääketieteen laitoksen jatkokoulutusmeeting.3.4.2007 TAPAUS-VERROKKITUTKIMUS Idea Tutkimusryhmät

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

BUSINESS TO BUSINESS ASIAKKAAN OSTOPROSESSI Case Dunlop Hiflex Oy

BUSINESS TO BUSINESS ASIAKKAAN OSTOPROSESSI Case Dunlop Hiflex Oy BUSINESS TO BUSINESS ASIAKKAAN OSTOPROSESSI Case Dunlop Hiflex Oy Miika Nieminen Opinnäytetyö Tammikuu 2009 Liiketalous Tekijä(t) NIEMINEN, Miika Julkaisun laji Opinnäytetyö Sivumäärä 37 Julkaisun kieli

Lisätiedot

Monivalintamuuttujien käsittely

Monivalintamuuttujien käsittely Tarja Heikkilä Monivalintamuuttujien käsittely Datatiedosto: Yhdistä.sav Yhdistetään SPSS-ohjelmalla samaan kysymykseen kuuluvat muuttujat. Esimerkkiin liittyvä kysymys ja muita vastaavia kysymyksiä on

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.

Lisätiedot

2. Aineiston kuvaaminen graafisesti 1

2. Aineiston kuvaaminen graafisesti 1 2. Aineiston kuvaaminen graafisesti 1 Esimerkki 3. Frekvenssijakaumien muokkaaminen [Hei08, s.151-152] 1. Avataan http://users.metropolia.fi/~pasitr/opas/ran15a/02/esim/pytinki2003.sav. 2. Suoritetaan

Lisätiedot

MS-C2{04 Tilastollisen analyysin perusteet

MS-C2{04 Tilastollisen analyysin perusteet MS-C2{04 Tilastollisen analyysin perusteet Tentti 7.4.20 4A/irtanen Kirjoita selvästi jokaiseen koepaperiin alla mainitussa järjestyksessä: OHlprrn (i) (ii) MS-C204 TAP 7.4.204 opiskelijanumero + kirjain

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 2) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 2005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy

Lisätiedot

USEAN RYHMÄN VERTAILU

USEAN RYHMÄN VERTAILU 11.3.2015 USEAN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Usean ryhmän vertailu Potilasryhmä Ikäryhmä Koulutusaste Sairaala Siviilisääty Hoitomenetelmä

Lisätiedot

Mitä käytännön lääkärin tarvitsee tietää biostatistiikasta?

Mitä käytännön lääkärin tarvitsee tietää biostatistiikasta? Mitä käytännön lääkärin tarvitsee tietää biostatistiikasta? Matti Uhari Lääkärin ammatin harjoittaminen Akateeminen ei pelkkä suorittaja Asiantuntija potilaalle lääketieteellisestä tiedosta Biologinen/luonnontieteellinen

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot