Neliömatriisin A rivit (ja sarakkeet) ovat lineaarisesti riippumattomia, joss A 0.

Koko: px
Aloita esitys sivulta:

Download "Neliömatriisin A rivit (ja sarakkeet) ovat lineaarisesti riippumattomia, joss A 0."

Transkriptio

1 Ma Haapae, Matemaatte taloustede II Jväslä lopsto YHTEENVETOA Matrslaseasta Vahdatala e päde matrse ertolasulle. Yleesä e ss ole AB BA! A( BC) AB( C) AB ( + C) AB+ AC ( A+ B) C AC+ BC ( A+ B) A + B ( ca) T ( AB) T T T ca T B A T T T T ( A ) ( A ) T B o smmetre joss B T B. Matrs orm määrtellää jälje avulla: A Tr( A T A). Nelömatrs A äätesmatrs A o olemassa, jos A o e sulaare el A 0. Jos A o e sulaare, AA AA I, jote A. A Nelömatrs A rvt (ja saraeet) ovat leaarsest rppumattoma, joss A 0. Oloo B matrs tppä (r, s). B: aste (ra) el ra R(B) o se leaarsest rppumattome rve (ja samalla saraede) määrä. O ss oltava RB ( ) m( rs, ). o matrs A omasarvo ja omasvetor, jos e toteuttavat htälö ( A I) 0. Determatthtälö A I 0 o matrs A araterste htälö. Kuta lötvää omasarvoa vastaa ääretö määrä vetoreta. Omasvetort saadaa ormalsomalla vetor ptuus öses. Nelömuoto q o postvsest deftt jos se o alla postve (q > 0) postvsest semdeftt muuttuje arvolla e eatve (q 0) eatvsest semdeftt (eä a muuttujat 0) e postve (q 0) eatvsest deftt eatve (q < 0) deftt, jos se saa seä postvsa että eatvsa arvoja Nelömuodo q u Au laadu määrääme Determat avulla: Nelömuoto o postvsest deftt, jos matrs A dsrmat el determat a päämort ovat postvsa. Vastaava elömuoto o eatvsest deftt, jos parttomat päämort ovat eatvsa ja parllset postvsa.

2 Omasarvoje avulla: () Nelömuoto q u Au o postvsest (eatvsest) deftt, joss matrs A a omasarvot ovat postvsa (eatvsa), () Nelömuoto q u Au o postvsest (eatvsest) semdeftt, joss matrs A a omasarvot ovat e eatvsa (e postvsa) ja aa s omasarvosta o olla, () Nelömuoto q u Au o deftt, joss matrs A omasarvot ovat postvsa ja eatvsa. Vetoresta. Oloo mellä paavetort a ja b. Pstede väle etäss o T d( a, b) ( a b) ( a b) Vetor ptuutta mtetää se orms: a a T a a + a a. Vetorjouo ( v, v,..., v ), joho uuluu vetora, o leaarsest rppuva, jos jo se vetoresta vodaa esttää toste leaarombaatoa. Futode osttasdervaatosta vodaa muodostaa Jacob matrs J, joa determatta utsutaa jaobaas: J M M O M Futot,,..., ovat futoaalsest tosstaa rppuva, jos jaobaa hävää (el saa arvo olla) alla muuttuje,,..., arvolla. Rppuvuus e ole välttämättä leaare. Kahde muuttuja futo optmot Masm Mm. astee välttämätö ehto f f 0 f f 0. astee rttävä ehto (alstesea. astee ehdolle) f < 0, f < 0 ja ff > f f > 0, f > 0 ja ff > f Mahdollse äärarvo laatu o rppuvae ss sese elömuodo merstä. Dsrmatt o t tose ertaluvu osttasdervaatosta muodostuva Hessaa: f f H f f f. Masm ja mm hteseä ehtoa o Hessaa e f f eatvsuus. Masm edellttää tose ertaluvu puhtade osttasdervaattoje eatvsuutta, mm postvsuutta.

3 Useamma muuttuja futode äärarvosta Tarastellaa olme muuttuja futota f (,, 3 ), mssä f o aalla ahdest dervotuva. Nelömuodo dsrmatt o t futo f Hessaa H f f f 3 f f f 3 f f f Esmmäse astee osttasdervaattoje htee ollaohta o loaal masm (mm), jos tose astee dfferetaala vastaava elömuoto o eatvsest (postvsest) deftt. Jos tose astee dfferetaala vastaava elömuoto o aalla eatvsest (postvsest) deftt, o esmmäse astee osttasdervaattoje htee ollaohta lobaal masm (mm). Implsttfutolause Ysertasmmassa tapausessa F(, ) 0 saadaa: d d Vastaavast tarasteltaessa htälörhmää F F. F (,,..., ;,,..., m) 0 F (,,..., ;,,..., m) 0 M F (,,..., ;,,..., ) 0 muodostuvasta matrshtälöstä F F F F F F M M O M F F F m M F F M F vodaa ratasta osttasdervaatat Cramer sääöllä. Koaavsuus/ovessuus Yhde muuttuja futolle f ( ) o oaav uv, : f( v) f( u) + f ( u)( v u) f ( ) o oves uv, : f( v) f( u) + f ( u)( v u) 3

4 Useamma muuttuja futode ohdalla ätetää tose astee osttasdervaattoje muodostamaa matrsa H: H eatvsest deftt f adost oaav eatvsest semdeftt oaav postvsest semdeftt oves postvsest deftt adost oves Jos z f ( ) o ahdest jatuvast dervotuva, vodaa vasovessuude ja vasoaavsuude tutmsee ättää reuustettua Hessaaa B 0 f f f f f f f f f f f M M M O M f f f f Postvste muuttuje arvoje muodostamassa jouossa välttämätö ehto vasovessuudelle o B 0, B 0,..., B B 0. Kvasoaavsuude välttämätö 0 f f f ehto o, että vastaavat päämort ovat vuoroperää e postvsa ja e eatvsa. Välttämättömät ehdot muuttuvat rttävs, u epähtälöt muutetaa puhtas. Sdotut äärarvot Kahde muuttuja ja hde sdosehdo tapausessa sdottuje äärarvoje lötämses muodostetaa arae futo (,, λ ) f(, ) λ (, ), jolle haetaa äärarvoohdat 0, 0, 0. Välttämättömä ehdo toteutuessa päästää tose astee (rttä λ vä) ehtoja tarastelemaa : reuustetu hessaa H avulla: H 0. Jos 0 ja H > 0, smsessä o masm. λ Jos 0 ja H < 0, smsessä o mm. λ Huomaa ajatusero vapaasee optmot! Useamma muuttuja ja sdosehdo m tapaus Tarastelemaa ( m) päämor etjua H, H,..., H ( H ). Jos etju terme m+ m+ m + etumer vuorottelee alae ( ) : merllä, seessä o masm. Jos a termt ovat samamersä u ( ) m, seessä o mm. Kahde muuttuja ja hde sdosehdo tapausessa tarasteltavaa etjuu jää aoastaa H. 4

5 Kuh Tucer ehdot Mäl seessä o masmotoelma ma f () s.e. ( ) r, 0,,, m, välttämättömät Kuh Tucer ehdot optmratasulle ovat 0, 0, 0,,,, 0, λ 0, λ 0, λ λ,, m. Mmotoelmassa m f () s.e. ( ) r, 0,,, m tavotefutota välttämättömät Kuh Tucer ehdot optmratasulle ovat 0, 0, 0,,,, 0, λ 0, λ 0,,, m. λ λ Vaoertome leaare esmmäse ertaluvu dfferetaalhtälö + a (t) Tädellse htälö lee ratasu (t) saadaa lsäämällä sttäsratasuu 0 homoeese verso + a 0 lee ratasu, joa o H Ce. Tädellse htälö at sttäsratasu muotolu rppuu lauseeesta (t). Jos se o vao, aattaa sttäsratasus oella vaota. Jos (t) o polom, aattaa sttäsratasus oella samaastesta poloma. Vahedarammtarastelu. Muoataa dfferetaalhtälöstä autoome dfferetaalhtälö d & f ( ) el dervaatta o esplsttsest aoastaa : (e t:!) futo. & : rppuvuus :stä prretää oordaatstoo, jossa o vaaa asellla ja pstasellla &. dt Tasapao E stablsuusehto htälölle & f ( ) o f ( ) < 0 (äärelle). E. ertaluvu vaoertome leaarsta homoeee dfferetaalhtälö + a + b 0 Karaterstse htälö r + ar + b 0 r ( a ± a 4b) ratasuja saotaa araterstss juurs. Nelöjuurlauseee mer perusteella saadaa olme vahtoehtoa: () Jos a 4b> 0, htälöllä o as ersuurta reaaljuurta. Homoeese htälö r t r t ratasu o muotoa H () t Ce + C e () Mäl a 4b 0, htälöllä o tostuva reaaljuur. Homoeese htälö ratasu o tällö H () t ( C rt + C t) e () Tapaus a 4b< 0 mertsee, että araterstsella htälöllä o omplesjuuret ht ( r, h± v ). Homo. ht. lee ratasu o H () t e [ C cos( vt) + C s( vt) ]. Ratasu uvaa muuttuja slstä ättätmstä. 5

6 Tasapao o stabl va, jos a araterstset juuret (omplesste juurte tapausessa reaalosat) ovat eatvsa. Tällöhä t: asvaessa ()lähest t ollaa. Musta: E homoeese htälö tädelle ratasu ssältää mös sttäsratasu 0! H Dfferetaalhtälörhmät Esmmäse ertaluvu dfferetaalhtälöstä muodostuva rhmä vodaa esttää matrshtälöä J u + M v. Yhtälörhmä ratastaessa tarastellaa araterststa htälöä rj+ M 0. Tasapao: reaalluuje tapausessa tarastellaa suurta r ompoetta, omplesluuje tapausessa reaalosaltaa suurta. Jos tämä suur r o eatve, a muuttujat overotuvat. Jos s r o postve, a muuttujat räjähtävät. f (, ) Tarastellaa autoomsta dfferetaalhtälörhmää. Mertää osttasdervaatosta tasapaoohdassa muodostuvaa Jacob matrsa J (, ) f f E [ Tr J E ] ( ) > 4 J Ersuuret reaaljuuret, e slsttä E () r < 0, r < 0 JE > 0, Tr( JE) < 0. Karaterstset juuret ovat eatvsa, jote le tapahtuu oht tasapaoa. Tasapao o stabl solmu. () r > 0, r > 0 JE > 0, Tr( JE) > 0. Karaterstset juuret ovat postvsa, jote le tapahtuu pos tasapaosta. Tasapao o epästabl solmu. () r > 0, r < 0 J E < 0. Tasapao o satulapste. Se tustaa eatvsesta jaobaasta el ermersstä araterstssta juursta. [ Tr J E ] ( ) 4 J Tostuva reaaljuur, e slsttä E (v) r r < 0 JE > 0, Tr( JE) < 0. Karaterstset juuret ovat eatvsa, jote le oht tasapaoa, joa o stabl solmu. (v) r r > 0 JE > 0, Tr( JE) > 0. Karaterstset juuret ovat postvsa, jote le pos tasapaosta, joa o epästabl solmu. [ Tr J E ] ( ) < 4 J Komplesjuuret, slss E Mertää r, h± v. (v) h < 0 JE > 0, Tr( JE) < 0. Reaalosa o eatve, jote värähtel vameee oht tasapaoa, joa o stabl polttopste. (v) h > 0 JE > 0, Tr( JE) > 0. Reaalosa o postve, jote värähtel laajeee pos tasapaosta, joa o epästabl polttopste. (v) h 0 JE > 0, Tr( JE) 0. Nt smsessä o vaoe värähtel tasapao mpärllä el pörre. (, ) 6

7 eaare vaoertome. ertaluvu dfferesshtälö (autoome) t + + at t + t Yhtälö o autoome, sllä oea puol e rpu esplsttsest ajasta. Tällö homoeese verso + a 0 ratasu o C( a) ja tädellse autoomse htälö t sttäsratasu t o + a. + a t Yhdstämällä sttäsratasu homoeese muodo lesee ratasuu saadaa t t C( a) +. + a Asettamalla aluarvoehto Y vodaa määrttää vao C Y0 C( a) + C Y0 + a + a Tapausessa a, 0 htälöllä e ss ole tasapaoa ja tapausessa a, 0 säl vaoa aluarvossaa l aja. Kassa mussa tapausssa vaoratasu er + a too ssteem tasapaoohda ja C( a) t el aluehdo 0 Y0 ollessa vomassa ( Y )( a) t 0 uvaa lee tasapaoo ähde. + a Yhtälö o stabl el aaura lähest tasapaoa (overotuu), jos a < ja vastaavast etäät tasapaosta (dverotuu), jos a >. Tapausessa a aaura helahtelee vuoroperodella tasapao er puollla, mutta aa vaoetäsdellä. Muuto jos a o postve, aaura helahtelee tasapao er puollla. Vahedarammtarastelu ähtöohtaa tarastelussa o autoome dfferesshtälö t+ f ( t). Esmmäse ertaluvu dfferesshtälöde tapausessa vaheärä prretää ss oordaatstoo, jossa vaaa asellla o t ja pstasellla t +. Tasapaot sjatsevat tällö 45 astee ulmaa prretllä suoralla t+ t. Aaura overotuu tasapaoo, jos f ( t ) <. 7

8 Todeäösslaseasta Dsreet satuasmuuttuja thesfuto määrtellää todeäössjaaumaa f ( ) P( X ), mssä 0 P ( X ), P ( X ). Jatuva satuasmuuttuja todeäösdet määrtellää thesfuto f () avulla b Pr( a X b) f ( ) d, mssä f ( ) 0 ja f ( ) d. a Satuasmuuttuja ertmäfuto määrtellää thesfuto avulla seuraavast: F( ) P( X ) f ( t) dt, X f(), jos o jatuva jos o dsreett. ( 0 F ( ) ) Satuasmuuttuja odotusarvo E (X ) E( X ) f()d, f(), jos o jatuva jos o dsreett. Satuasmuuttuja varass σ var(x ) var( X ) E[( X µ ) ] E( X ) µ ( µ ) ( µ ) f()d, f(), jos jos o jatuva o dsreett. Muuttuje välstä suhdetta htesvahtelua mtataa ovarasslla asusäätöjä: cov( X, Y ) E [( X E( X ))( Y E( Y ))] E( XY ) E( X ) E( Y ) E [ c] c E [ cx ] ce[ X ] E [ c( X )] ce[ ( X )] E c ( X ) + c ( X )] c E[ ( X )] + c E[ ( [ X E[ ( X )] ( ) f()d, jos o jatuva ( ) f(), jos o dsreett )] var( a ) 0 var( ax ) a var( X ) var( ax + by ) a var( X ) + b var( Y ) + ab cov( X, Y ) säs o huomattava, että leesä ( X ) [ E( X ) ] E! 8

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tlastollse aals perusteet, evät 7 8. lueto: Usea selttää leaare regressomall Usea selttää leaare regressomall Seltettävä muuttua havattue arvoe vahtelu halutaa selttää selttäve muuttue havattue

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2

VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2 / ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,

Lisätiedot

. C. C Kirjoitetaan sitten auki lineaarisuuden määritelmän oikea puoli: αt{i c1 } + βt{i c2 } = α

. C. C Kirjoitetaan sitten auki lineaarisuuden määritelmän oikea puoli: αt{i c1 } + βt{i c2 } = α SMG-00 Pranals II Ehdotuset harjotusen s ratasus Jotta järjestelmän lneaarsuutta psttään tarastelemaan, on ensn muodostettava htes järjestelmän ssäänmenon ja ulostulon vällle Tällä ertaa tuo htes saadaan

Lisätiedot

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2 TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?

Lisätiedot

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit

13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit 68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on

1. (Monisteen teht. 5.16) Eräiden kuulalaakereiden kestoa (miljoonaa kierrosta) on totuttu kuvaamaan Weibull-jakaumalla, jonka tiheysfunktio on HY MTO / Matemaattste tetede kadohjelma Tlastolle päättely II kevät 019 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I 1 Mostee teht 516 Eräde kuulalaakerede kestoa mljooaa kerrosta o totuttu kuvaamaa Webull-jakaumalla

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

7. Menetysjärjestelmät

7. Menetysjärjestelmät lueto7.ppt S-38.45 Leeteora perusteet Kevät 25 Ssältö Kertausta: ysertae leeteoreette mall Posso-mall asaata, palvelota Sovellus vrtaava dataletee malltamsee vuotasolla Erlag-mall asaata, palvelota < Sovellus

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1 / VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 7B Ratkaisuehdotuksia. HY, MTO / Matemaattste tetede kadohjelma Tlastolle päättely II, kevät 208 Harjotus 7B Ratkasuehdotuksa Tehtäväsarja I Olkoo Y, Y rppumato otos Pareto jakaumasta, fy; θ θc θ y θ+ { y > c } tuetulla vakolla

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Suoran sovittaminen pistejoukkoon

Suoran sovittaminen pistejoukkoon Suora sovttame pstejoukkoo Ku halutaa tutka kahde tlastollse muuttuja rppuvuutta tosstaa, käytetää use leaarsta regressota el suora sovttamsta havatojoukkoo. Sä o aettu joukko havatopareja (x, y ), ja

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

2 VÄRÄHTELEVÄN SYSTEEMIN OSAT

2 VÄRÄHTELEVÄN SYSTEEMIN OSAT Värähtelyeaa. VÄRÄHTELEVÄN SYSTEEMIN OSAT. Johdato Kuvassa. o yhde vapausastee värähtelyde tarastelussa äytettävä perusall el jous-assa-vae all, joa ssältää a värähtelevä systee peruseleett. Oasvärähtely

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemaalyys laboratoro Mat-.9 Sovellettu todeäkösyyslasku A Nordlud Harjotus 8 (vko 45/3) (Ahe: Raja-arvolauseta, otostuuslukuja, johdatusta estmot, Lae luvut 9.5,.-.6). Olkoo X ~ p(λ), mssä λ

Lisätiedot

Frégier'n lause. Simo K. Kivelä, P B Q A

Frégier'n lause. Simo K. Kivelä, P B Q A Smo K. Kvelä, 13.7.004 Fréger'n lause Tosen asteen ärllä ellpsellä, paraaelella, hperelellä ja nden erostapauslla on melonen määrä snertasa säännöllssomnasuusa. Eräs tällanen on Fréger'n lause: Oloon P

Lisätiedot

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2

= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2 HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä

( ) ( ) Tällöin. = 1 ja voimme laskea energiatason i. = P n missä S-445 FYSIIKKA III (Sf) Sysy 4, LH Ratasut LHSf-* ohesen uvan esttämää systeemä Systeemssä on 5 huasta joden yhtenen energa on U = 6ε Kunn energatason degeneraatotejä on Olettaen, että systeem noudattaa

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2. / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat:

Mat Koesuunnittelu ja tilastolliset mallit. Yhden selittäjän lineaarinen regressiomalli. Avainsanat: Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset Mat-.3 Koesuuttelu ja tlastollset mallt 4. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Artmeette keskarvo, Estmaatt,

Lisätiedot

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset:

on tavanomainen yhden selittäjän lineaarinen regressiomalli, jossa jäännöstermit ε i toteuttavat seuraavat oletukset: Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset Mat-.03 Koesuuttelu ja tlastollset mallt 5. harjotukset / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Ylee leaare mall Artmeette keskarvo,

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto

Varianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde

Lisätiedot

Ortogonaalisuus ja projektiot

Ortogonaalisuus ja projektiot MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

11. Vektorifunktion derivaatta. Ketjusääntö

11. Vektorifunktion derivaatta. Ketjusääntö 7 Vektorfunkton dervaatta Ketjusääntö Täydennämme ja kertaamme seuraavassa dfferentaallaskennan teoraa kursslta Laaja matematkka Palautetaan meln dervaatan määrtelmä reaalfunktolle: Funkton f : R R dervaatta

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Testaa onko lämpökäsittelyllä vaikutusta tankojen keskimääräiseen vetolujuuteen.

Testaa onko lämpökäsittelyllä vaikutusta tankojen keskimääräiseen vetolujuuteen. Mat-.03 Koesuuttelu ja tlastollset mallt 6. harjotuset Mat-.03 Koesuuttelu ja tlastollset mallt 6. harjotuset / Ratasut Aheet: Avasaat: Yssuutae varassaals Artmeette esarvo, Bartlett test, Box ja Whser

Lisätiedot

Kuorielementti hum

Kuorielementti hum Kuorelementt hum.. ämä estys e kuulu kurssvaatmuksn, vaan se on tarkottu asasta knnostunelle. arkastellaan tässä yhteydessä eaarsta -solmusta AIZ (Ahmad, Irons ja Zenkewcz, 970) kuorelementtä, jonka knematkka

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

ABTEKNILLINEN KORKEAKOULU

ABTEKNILLINEN KORKEAKOULU ABTEKNILLINEN KORKEAKOULU Tetoverkkolaboratoro 6. Stokastset prosesst () Luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 5 6. Stokastset prosesst () Ssältö Markov-prosesst Syntymä-kuolema-prosesst

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Baltian Tie 2001 ratkaisuja

Baltian Tie 2001 ratkaisuja Balta Te 001 ratkasuja 1. Olkoot tehtävät T, = 1,,..., 8. Eräs mahdollsuus jakaa tehtävät kahdeksalle opskeljalle O j, j =1,,..., 8 o ohesessa taulukossa T 1 T T T 4 T T 6 T 7 T 8 O 1 O O O 4 O O 6 O 7

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Disreettiaiaiset järjestelmät aiatason analsi DEE- Lineaariset järjestelmät Risto Mionen Disreettiaiaiset järjestelmät 7 3 5 Lineaaristen, vaioertoimisten differenssihtälöiden

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

tehtävän n yleinen muoto

tehtävän n yleinen muoto t-.474 tettste lgorte ohelot Sple-eetel eetelä lsellset tet. lueto: P-tehtävä ylee uoto S ysteelyys bortoro Telle oreoulu tettste lgorte ohelot Kevät 008 / P-teht tehtävä ylee uoto Stdrduoto selle uoto

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

( )

(   ) ( www.padasalai.net ) TET TET TET ReExam Paper I Paper II. 8015118094 sivatvmalai@yahoo.co.in Questions TRB - Page 1 II ( 7, 21 ) ( 3, 15 ) ( 3, 5) ( 6,2) (3,5) 1 ( 3, 5 ) (2 + ) ( - 2 ) (2 + ) ( - 2 )

Lisätiedot

Gibbsin vapaaenergia aineelle i voidaan esittää summana

Gibbsin vapaaenergia aineelle i voidaan esittää summana Lueto 8: Epädeaalsuus ja aktvsuuskerro Torsta 1.11. klo 14-16 477401A - Terodyaaset tasapaot (Syksy 2012) http://www.oulu.f/pyoet/477401a/ eetu.hekke@oulu.f Kertausta: Gbbs eerga ja tasapaovako Gbbs vapaaeerga

Lisätiedot

Bernoullijakauma. Binomijakauma

Bernoullijakauma. Binomijakauma Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

POIKKILEIKKAUKSEN GEOMETRISET SUUREET

POIKKILEIKKAUKSEN GEOMETRISET SUUREET KLEKKUKEN GEMETRET UUREET d Pleause gemetrset suureet määrtellää melvaltase pstee (, hdalla leva ptaelemet d avulla. Tässä ästeltävä ptasuureta lasettaessa vdaa ättää hteelasuperaatetta (mös väheslasuperaate

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä

Lisätiedot

8. Ortogonaaliprojektiot

8. Ortogonaaliprojektiot 44 8 Ortogoaaliprojetiot Avaruus R o eemmäi ui pelä vetoriavaruus, osa siiä o mahdollisuus määritellä vetoreide pituus, välie ulma ja erityisesti ohtisuoruus ähä päästää ottamalla äyttöö vetoreide välie

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Luu 2 Disreettiaiaiset järjestelmät - aiataso DEE- Lineaariset järjestelmät Risto Mionen 6.9.26 Diseettiaiainen vs jatuva-aiainen Jatuvan signaalin u(t) nätteistäminen disreetisi

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017 KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81 Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematkkaan Informaatoteknologan tedekunta Jyväskylän ylopsto 4. luento 24.11.2017 Neuroverkon opettamnen - gradenttmenetelmä Neuroverkkoa opetetaan syöte-tavote-parella

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x

1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön

4. Differentiaaliyhtälöryhmät 4.1. Ryhmän palauttaminen yhteen yhtälöön 4 Differentiaaliyhtälöryhmät 41 Ryhmän palauttaminen yhteen yhtälöön 176 Ratkaise differentiaaliyhtälöryhmät a) dt = y +t, b) = y z + sinx x 2 dt = x +t, c) + z = x2 = y + z + cosx + 2y = x a)x = C 1 e

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe

MALLIVASTAUKSET S Fysiikka III (EST) (6 op) 1. välikoe MALLIVASTAUKSET S-4.7 Fysa III (EST) (6 op). väloe 7..7. Astassa on, µmol vetyä ( ) ja, µg typpeä ( ). Seosen lämpötla on K ja pane, Pa. Lase a) astan tlavuus, b) vedyn ja typen osapaneet ja c) moleyylen

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tlastollsen analyysn perusteet, kevät 2007 5. luento: Tlastollnen rppuvuus ja korrelaato Ka Vrtanen Muuttujen välsten rppuvuuksen analysont Tlastollsssa analyysessä tutktaan usen muuttujen välsä

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäkösyyslasketa. harjotukset Mat-.6 Sovellettu todeäkösyyslasketa B. harjotukset / Ratkasut Aheet: Tlastollset testt Avasaat: Artmeette keskarvo, Beroull-jakauma, F-jakauma, F-test,

Lisätiedot

Monimuuttujamenetelmät: Multinormaalijakauma. Ilkka Mellin. 1. Multinormaalijakauma ja sen ominaisuudet

Monimuuttujamenetelmät: Multinormaalijakauma. Ilkka Mellin. 1. Multinormaalijakauma ja sen ominaisuudet Momuuttumeetelmät Multormaalkauma Momuuttumeetelmät: Multormaalkauma Ilkka Mell. Multormaalkauma se omasuudet.. Multormaalkauma.. Multormaalkauma omasuudet.3. Multormaalkauma ehdollset kaumat.4. -ulottee

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot