TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri Antti Vainionpää, S, 3. vsk.

Koko: px
Aloita esitys sivulta:

Download "TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri Antti Vainionpää, S, 3. vsk."

Transkriptio

1 TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. MA 2.2 Kääntöheiluri Antti Vainionpää, S, 3. vsk.

2 Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria Fysikaalinen heiluri Kääntöheiluri Työn suoritus 5 4 Mittaustulokset ja havainnot 6 5 Tulosten laskenta 7 6 Virhearvio 9 7 Yhteenveto 10 Viitteet 12 Liitteet 13 i

3 1 Johdanto Työn tavoitteena oli tutustua kääntöheilurin käyttöön ja määrittää sen avulla maan vetovoiman aiheuttaman putoamiskiihtyvyyden g arvo. Mittaukset suoritettiin fysiikan oppilaslaboratoriossa. Putoamiskiihtyvyyden määrittämisen lisäksi tässä raportissa käy ilmi miten todellinen fysikaalinen heiluri ja abstrakti matemaattinen heiluri liittyvät toisiinsa. Tämän raportin tarkoituksena on myös, että jokainen raportin lukija kykenee suorittamaan samat mittaukset. 2 Työn taustalla oleva teoria Heilahdusliikkettä kuvaavat yhtälöt johdetaan usein matemaattisen heilurin avulla. Matemaattinen heiluri on abstraktio ja niitä ei ole siis fyysisesti olemassa. Matemaattinen heiluri kuvaa heiluria, joka muodostuu massattoman varren päässä olevasta pistemäisen massasta. Tässä työssä on keskitytty fysikaaliseen heiluriin, koska sen liikettä voimme mitata ja havainnoida. Mittausten perusteella pystymme määrittämään putoamiskiihtyvyyden mittauspaikassa. Lisäksi huomaamme, miten fysikaalisen ja matemaattisen heilurin mallit liittyvät toisiinsa. 2.1 Fysikaalinen heiluri Fysikaalinen heiluri on mikä tahansa jäykkä kappale, joka heiluu vapaasti pystytasossa vaakasuoran akselin ympäri. Poikkeuttamalla heilurin massakeskipistettä C tasapainoasemastaan ja Kuva 1: Esimerkki fysikaalisesta heilurista relevantteine suureineen. [1] 1

4 irrottamalla heilurista se aloittaa heilahdusliikkeen. Tällöin heiluriin vaikuttaa momentti τ = mgbsinθ, (1) missä θ on heilahduskulma. m on kappaleen massa, g on putoamiskiihtyvyys, b on massakeskipisteen etäisyys heilahdusakselista ja θ on heilahduskulma. Keskeisliikkeen tapauksessa, jota myös heilahdusliike on, kirjoitetaan dynamiikan perusyhtälö muotoon missä I on hitausmomentti ja α on kulmakiihtyvyys. [1] τ = Iα, (2) Kiihtyvyys voidaan määrittää paikan funktion toisena derivaattana ajan suhteen. Kulmakiihtyvyys on analoginen kiihtyvyyden kanssa, joten voidaan kirjoittaa Sijoittamalla tämä ja kaava 1 kaavaan 2 saadaan α = d2 θ dt 2. (3) mgbsinθ = I d2 θ dt 2 (4) Olettaen, että kulma θ < 0,1rad 6, niin korkeintaan 0,1%:n epävarmuudella voidaan kirjoittaa jolloin yhtälö 4 sievenee muotoon joka edelleen voidaan antaa muodossa missä ω on kulmasta θ riippumaton vakio, kulmataajuus. [1] sinθ = θ, (5) d 2 θ dt 2 + mgb θ = 0, (6) I d 2 θ dt 2 + ω2 θ = 0, (7) Yhtälö 7 tunnetaan yleisesti harmonisen liikkeen differentiaaliyhtälön nimellä. Tämä tarkoittaa, että kun heilahduskulma θ on pieni, kuten oletimme, heilurin jokainen piste suorittaa harmonista värähtelyliikettä vaakasuunnassa. Harmonisen liikkeen yhtälön yleinen ratkaisu on melko monimutkainen, eikä meidän ole tarpeen edes yhtälöä ratkaista, sillä haluamamme putoamiskiihtyvyyden pystymme määrittämään suoraan differentiaaliyhtälöstä. Yhtälöstä nähdään, että värähtelyliikkeen kulmataajuus on mgb ω =. (8) I 2

5 Koska ω = 2π f, missä f on värähtelytaajuus, heilahdusjakson aika on T = 2π ω = 2π I mgb = 2π l r g, (9) missä on otettu käyttöön uusi suure l r = I mb, (10) joka on nimeltään redusoitu heilahduspituus ja sillä tarkoitetaan sellaisen matemaattisen heilurin varren pituutta, jonka jaksonaika vastaa jaksonajaltaan fysikaalista heiluriamme. [1] Hitausmomentti I on laskettu kiertoakselin, toisin sanoen kuvan 1 z-akselin, suhteen. Jos tunnemme hitausmomentin I C, eli hitausmomentti massakeskipisteen läpi kulkevalle z-akselin suuntaiselle akselille, niin hitausmomentti I voidaan määrittää Steinerin säännöllä: I = I C + mb 2. (11) Toisaalta hitausmomentti I C voidaan kirjoittaa kappaleen muodosta riippumatta I C = mk 2, (12) missä k on hitaussäde, joka on pituus, joka valitaan sopivasti vastaamaan todellisuutta. [1] Sijoittamalla I C :n lausekkeen 12 Steinerin sääntöön (11) ja tämä edelleen redusoidun heilahduspituuden kaavaan 10, saadaan mikä voidaan kirjoittaa toisen asteen yhtälön muodossa l r = I mb = mk2 + mb 2 = k2 + b, (13) mb b b 2 l r b + k 2 = 0. (14) Koska toisen asteen yhtälön juurten summa on ensimmäisen asteen tuntemattoman kertoimen vastaluku, voimme päätellä, että jos toinen juuri on b, niin toinen on l r b. Tämä tulkitaan siten, että redusoitua heilahduuspituutta kuvaavan janan toisessa päässä on piste, jonka suhteen heilahduksen jaksonaika on sama kuin janan toisessa päässä olevan pisteen suhteen. [1] 2.2 Kääntöheiluri Käätöheilurin avulla voimme kokeellisesti havannoida edellä johdetun tuloksen. Kun kääntöheilurin siirrettävät massat ovat oikeissa kohdissa, on heilurin heilahduksen jaksonaika täsmälleen sama kummankin terän suhteen. Tällöin jaksonaika on s T = T = 2π g. (15) 3

6 Kuva 2: Kääntöheilurissa on jäykkä tanko, jossa on kaksi siirrettävää massaa M ja M, kaksi terää O ja O, joiden varaan heiluri voidaan asettaa heilumaan. [1] Käytännössä aikoja on lähes mahdotonta saada täsmäämään. Siksi kirjoitamme tämän kaavojen 9 ja 13 perusteella T = 2π T = 2π ja edelleen eliminoimalla hitaussäde k, saadaan k 2 +b 2 bg k 2 +b 2 b g (16) g 4π 2 = b2 b 2 T 2 b T 2 b, (17) mistä edelleen saadaan 4π 2 g = 1 ( T 2 + T 2 2 b + b + T 2 T 2 ) b b. (18) Tätä voidaan käyttää käytännössä tarkempaan analysointiin. Huomataan myös, että koska hitaussäde eliminoituu, hitausmomentilla ei ole vaikutusta putoamiskiihtyvyyden g määritykseen. Ratkaisemalla kaavasta 18 g saadaan g = 8π 2 T 2 +T 2 b+b + T (19) 2 T 2 b b Huomataan myös, että optimi tilanteessa heilahdusajat saataisiin täysin samoiksi, T = T, jolloin b + b = s = l r ja kaava 18 saa muodon 4π 2 g = T 2 l r (20) 4

7 eli l r T = 2π g, (21) joka on matemaattisen heilurin jaksonajan yhtälö. [2, s ] 3 Työn suoritus Käytimme mittauksiin fysiikan oppilaslaboratoriosta löytyvää laitteistoa. Laitteistoon kuului kuvan 2 mukainen kääntöheiluri telineineen, nauhamitta, sekuntikello ja tasapainotusterä. Samantapaisella laitteistolla tulisi kyetä toistamaan oheiset mittaukset. Asetimme ensimmäisenä massan M (1400g) 6-12 cm etäisyydelle terästä O, jonka jälkeen massaan M ei mittausten aikana koskettu. Sitten otimme terän pois tangon urasta ja aloimme määrittittämään satunnaisvirhettä asettamalla massan M sen omasta keskipisteestä 50 cm etäisyydelle terän O alapinnasta. Ensin mittasimme viidesti 20 heilahdukseen kuluvan ajan terän O suhteen, jonka jälkeen laskimme yhteen heilahdukseen kuluvan ajan jakamalla kokonaisaika jaksojen lukumäärällä. Yksi heilahdus vastaa jaksonaikaa eli aikaa, joka kääntöheilurilta kuluu palata lähtöpisteeseen. Heilahduksen lähtökulma tulee olla korkeintaan 6 ja heilurin tulee heilahdella tasomaisesti, jotta suuremmilta virheiltä vältyttäisiin. Selkeän virheen sattuessa mittaus on uusittava. Tämän jälkeen lähdimme määrittämään tasapainoasemaa ja mittasimme 20 heilahdukseen kuluvan ajan massan M eri etäisyyksillä terästä O. Etäisyyttä muutimme 10 cm välein 50 cm:stä 90 cm:iin. Mittaukset teimme kummankin terän suhteen. Ajat saatuamme laskimme yhteen heilahduksiin kuluneet ajat sekä aikojen erotukset T T (s). T kuvaa terän O suhteen tehtyjä mittauksia ja T terän O suhteen tehtyjä mittauksia. Näiden tulosten avulla määritimme kuvaajan, jossa x-akseli kuvaa M :n etäisyyttä O:sta ja y-akseli heilahdusaikojen erotusta. Piirsimme kuvaajaan sovitesuoran, jonka avulla saimme määritettyä M sijainnin, jossa heilahdusajat molempien terien suhteen ovat lähes samat. Seuraavaksi aloimme haarukoida massan M tarkempaa sijaintia tasapainokohtaan. Mittasimme määrittämästämme nollakohdasta ±4 cm, ±2 cm ja nollakohdan etäisyyksiltä 50 heilahdukseen kuluvaa aikaa ja laskimme terien O ja O suhteen samalta etäisyydeltä mitattujen yhteen heilahdukseen kuluneiden aikojen erotuksen. Jonka jälkeen määritimme jälleen kuvaajan vastaavasti kuten edellisessä kohdassa, ja määritimme näin tarkemman tasapainokohdan. Kun olimme määrittäneet nollakohdan mittasimme kyseisellä etäisyydellä 100 heilahdukseen kuluvan ajan, kummankin terän suhteen, jonka jälkeen laskimme niiden yhteen heilahdukseen kuluvan ajan. Lopuksi irrotimme heilurin telineestä ja etsimme heilurin massakeskipisteen ta- 5

8 sapainotusterän avulla, jonka jälkeen mittasimme tasapainostuskohdan etäisyyden molempien massojen keskikohtaan b ja b. 4 Mittaustulokset ja havainnot Taulukossa 1 on esitetty ajanmittauksen satunnaisvirheen määritystä varten tehdyistä mittauksista saadut tulokset. Hajonta oli melko pientä eli mittaajan reaktioaika oli melko nopea. Hei- Taulukko 1: Satunnaisvirheen määrittämistä varten tehdyt mittaukset. i 20T(s) T(s) 1 37,82 1, ,69 1, ,72 1, ,82 1, ,91 1,8955 lukematarkkuus 0,1 0,005 lurin toiminta oli melko stabiilia ja ilmeisesti onnistuimme asettamaan sen liikkeelle melko samasta paikasta, mistä päätellen myös tämän jälkeen mitatut tulokset ovat melko tarkkoja. Taulukko 2: Tasapainoaseman määrittämistä varten tehdyt mittaukset. d(cm) 20T(s) 20T (s) T-T (s) 50 37,69 39,1-0, ,22 39,32-0, ,88 39,34-0, ,69 39,9-0, ,75 40,38 0,0185 Taulukkoon 2 on koottu 20 heilahdusjakson ajat, kun heiluri käännettiin eri terien O ja O varaan ja massaa M siirrettiin. Heilahdusaikojen erotukset on myös laskettu ja esitetty taulukossa 2. Erotuksista päätellen tulokset ovat järkeviä, sillä 50 cm:llä erotuksen piti olla negatiivinen ja 90 cm:llä positiivinen. 6

9 Taulukko 3: Tasapainoaseman tarkempaa määrittämistä varten tehdyt mittaukset. d(cm) 50T(s) 50T (s) T-T (s) 79 99,62 99,93-0, ,12 100,35-0, ,6 100,59 0, ,16 100,85 0, ,62 101,03 0,0118 Tasapainoaseman läheisyydessä haarukoidut heilahdusajat on esitetty taulukossa heilahduksen käyttäminen selvästi paransi tarkkuutta. Tulokset vaikuttavat johdonmukaisilta, koska erotukset ovat negatiivisia, kun etäisyys on pienempi kuin tasapainoasema ja positiivisia, kun etäisyys on tasapainoasemaa suurempi. Taulukko 4: Lopulliset mittaukset putoamiskiihtyvyyden määritystä varten. d(cm) 100T(s) 100T (s) 82,7 201,25 201,25 T(s) T (s) T-T (s) 2,0125 2, Suure Tulos Tarkkuus b(mm) mm b (mm) mm Taulukossa 4 on sadan heilahduksen ajat ja heilahdusajat eri terien varassa sekä painopisteen määrityksen tulos. Yllättävää kyllä, saimme kummankin terän varassa täsmälleen saman ajan. Tämä lienee suuremmilta osin sattumaa ja eroa varmasti oli, mutta kellon tarkkuus ei riittänyt sitä näyttämään. 5 Tulosten laskenta Kuvissa 3 ja 4 nähdään kuvaajat, joiden perusteella tasapainoasema arvioitiin. Ensin mittasimme tasapainoasemaksi d 83cm ja tarkemmalla mittauksella saimme d 82,7cm Käytimme 7

10 Kuva 3: Tasapainopisteen määritys taulukon 2 arvoista interpoloimalla. Kuva 4: Tasapainopisteen tarkempi määritys taulukon 3 perusteella. lopullisissa mittauksissa käsin määritettyä arvoa tasapainopisteelle, d = 82,7 cm, mutta tietokoneella tehdyn perusteella d 82,4cm. Laskimme kaavasta 19 ja taulukon 4 arvoista putoamiskiihtyvyydelle arvon g = 9, m. Arvo on hieman pienempi kuin vertailuarvot. Tutkimme tätä tarkemmin yhteenvedossa. s 2 8

11 6 Virhearvio Keskiarvon keskivirhe lasketaan kaavalla m x = n i=1 (x i x) 2 n(n 1) Laskimme taulukon 1 arvoille keskiarvon keskivirheen Excel -ohjelman STDEV() funktion avulla, STDEV(arvot)/SQRT(N), missä STDEV laskee yksittäisen tuloksen keskivirheen ja SQRT(N) tarkoittaa otoksen neliöjuurta, jolloin tulokseksi saadaan keskiarvon keskivirhe. Lisäksi otimme huomioon mittavälineen virheen kaavan x mx m x mukaisesti. [3] Näin saimme virheen T ±0, s heilahdusajoille T ja T. Mittanauhan virheeksi arvioimme suoraan sen mittatarkkuuden, b 1 mm. Virheet on koottu taulukkoon 5. Taulukko 5: Arvioidut virheet muuttujille. (22) (23) Muuttuja T b Arvioitu virhe ±0, s ±1 mm Laskimme putoamiskiihtyvyydelle virheen todennäköisen maksimivirheen kaavalla [3] ( ) f 2 ( ) f 2 u x x + y y +. (24) Sijoittamalla siihen kaava 19 saadaan ( ) g 2 ( ) g 2 ( ) g 2 ( ) g 2 g T T + T T + b b + b b (25) ( 64 b 2 π 4 T 2 T 2 g ) 2 T 2 +T 2 (b b ) 2 (b +b) 2 ( T 2 +T 2 b +b + T 2 T 2 b b ) b 2 π 4 ( T 2 +T T 2 π ( ( 4 2T b +b + b b 2T ) 2 64 T 2 π 4 2T ( b ) T 2 +T 2 b +b + T 2 T b 2T ( ) T 2 +T 2 b b b +b + T 2 T 2 4 b b ) 2 T 2 T 2 (b +b) 2 (b b ) 2 ( T 2 +T 2 b +b + T 2 T 2 b b ) 4 (26) b b ) 2 Kun sijoitetaan kaavaan 26 virheet taulukosta 5, saadaan virheeksi putoamiskiihtyvyydelle lopulta g ±0, m s 2 9

12 7 Yhteenveto Putoamiskiihtyvyydeksi saimme siis g = 9,71 ± 0,14 m s 2 Taulukkoon 6 on koottu kirjallisuus ja internet lähteistä löytyneitä arvoja putoamiskiihtyvyydelle. Kuvasta 5 nähdään miten putoamiskiihtyvyys muuttuu Suomen eri leveysasteilla. Tästä voidaan myös päätellä, että putoamiskiihtyvyys pienenee päiväntasaajaa kohti mentäessä ja Taulukko 6: Kirjallisuudesta ja internetistä löytyneitä arvoja putoamiskiihtyvyydelle. g ( m ) s 2 leveyspiiri tai sijainti lähde 9,81 45 [2, s. 118] 9, [4] 9,819 Helsinki [5, s. 14] 9,80665 ei ilmoitettu [6] 9,8 ei ilmoitettu [7] Kuva 5: Putoamiskiihtyvyys Suomessa, yksikkönä m s 2 [8]. kasvaa päiväntasaajalta pois päin mennessä. Päiväntasaajalla se on kaikkein pienin. Kartasta 10

13 myös havaitaan, että fysiikan oppilaslaboratorion leveysasteella g 9,820 m. s 2 Leveyspiirien, eli maapallon muodon, lisäksi putoamiskiihtyvyys riippuu ajasta. Riippuvuus ajasta johtuu auringon ja kuun vuoksivoimista, pohjaveden ja ilmakehän massan vaihteluista. [8] Vuoksivoimasta johtuu maan tehollisen vetovoiman vaihtelut ovat jaksottaisia ja suurimmillaan mgal [9], mikä on SI-yksiköissä 0,002 m - 0,003 m [10]. s 2 s 2 Työ onnistui melko hyvin. Kirjallisuudesta löytynyt arvo putoamiskiihtyvyydelle oppilaslaboratorion leveyspiirillä osuu virherajojen sisälle. Mittaustilanteessa emme aivan onnistuneet saamaan heiluria heilumaan pelkästään tasossa, vaan se heilahteli hyvin ohutta ellipsimäistä rataa. Viimeisissä mittauksissa keksimme paremman tavan irrottaa heilurista, jolla saimme heilahtelun enemmän tasomaiseksi ja vakaammaksi. Lisäksi poikkeutuskulmaa ei silmämääräisesti pystytty kovin tarkkaan arvioimaan. Heilahdusajan mittauksessa ihmisen reaktioaika sekä kellon tarkkuus vaikuttivat mittaustarkkuuteen. Painopisteen mittauksessa käytetty tasapainotusterä oli hieman tylsistynyt ja siten ehkä antoi hieman väärän tuloksen. Tarkempia tuloksia olisi voinut saada esimerkiksi automatisoimalla mittaukset optisella laskurilla ja koneellisella heilurin irroittajalla. Näin olisi voitu poistaa paljolti reaktioajasta ja poikkeutuskulman vaihtelusta johtuvaa virhettä. Heilurin teline olisi myös voinut olla vakaampi. Painopisteen etsinnässä voitaisiin käyttää antureita mittaamaan, että tasapainotusterän kummallekin puolelle jäänyt osa painaa täsmälleen saman verran. 11

14 Viitteet [1] Fysiikan työt I -opintomoniste: 2.2 Kääntöheiluri, [Online]. Available: [2] S. R. K, Practical Physics. New Age International, [3] J. Laaksonen and M. Hirsimäki, Fysiikan oppilaslaboratorio, Virheiden ja tulosten analysoiminen. [Online]. Available: https://moodle.tut.fi/mod/resource/view.php?id=24141 [4] Wikipedia: putoamiskiihtyvyys. [Online]. Available: [5] SI-Opas: Suureet ja mittayksiköt, SI-mittayksikköjärjestelmä, [Online]. Available: [6] R. Seppänen, M. kervinen, I. Parkkila, L. Karkela, and P. meriläinen, maol taulukot, 3rd ed. Otava, [7] Bueche and F. J., College Physics. McGraw-Hill Professional Book Group, [8] Mittatekniikan keskus: Putoamiskiihtyvyys, [Online]. Available: [9] S. Elo, Hajapistepainovoimamittausten tulostenkäsittely, osa I, [Online]. Available: [10] Wikipedia: Gal (yksikkö), [Online]. Available: 12

15 Liitteet 1. Mittauspöytäkirja 13

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I LP 2.1 Vauhtipyörä Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 24.3.2016 LP 2.1 Vauhtipyörä 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Hitausmomentin

Lisätiedot

FYSA210/K2 KÄÄNTÖHEILURI

FYSA210/K2 KÄÄNTÖHEILURI FYSA10/K KÄÄNTÖHEILURI Työn tarkoituksena on määrittää putoamiskiihtyvyyden arvo reversio- eli kääntöheilurin avulla. Ennen laboratoriovuoroa on syytä kerrata matemaattisiin ja fysikaalisiin heilureihin

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Työ 5: Putoamiskiihtyvyys

Työ 5: Putoamiskiihtyvyys Työ 5: Putoamiskiihtyvyys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä määritetään putoamiskiihtyvyys kolmella eri tavalla. Ennakko-oletuksena mietitään, pitäisikö jollain tavoista

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Heilurin heilahdusaikaan vaikuttavat tekijät

Heilurin heilahdusaikaan vaikuttavat tekijät Heilurin heilahdusaikaan vaikuttavat tekijät Jarmo Vestola Koulun nimi Fysiikka luonnontieteenä FY-Projektityö 20.9.2000 Arvosana: K (9) 2. Tutkittava ilmiö Tehtävänä oli tutkia mitkä tekijät vaikuttavat

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.

nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista

tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 5 Paraabeli Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 13..017 ENNAKKOTEHTÄVÄT 1. a) Jos a > 0, paraabeli aukeaa oikealle. Jos a < 0, paraabeli aukeaa vasemmalle. Jos a = 0, paraabeli

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

KIERTOHEILURI JA HITAUSMOMENTTI

KIERTOHEILURI JA HITAUSMOMENTTI 1 KIERTOHEILURI JA HITAUSMOMENTTI MOTIVOINTI Tutustutaan kiertoheiluriin käytännössä. Mitataan hitausmomentin vaikutus värähtelyyn. Tutkitaan mitkä tekijät vaikuttavat järjestelmän hitausmomenttiin. Vahvistetaan

Lisätiedot

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

tutustua kiertoheilurin teoriaan ja toimintaan

tutustua kiertoheilurin teoriaan ja toimintaan FYSP102 / 2 KIERTOHEILURI Työn tavoitteita tutustua kiertoheilurin teoriaan ja toimintaan harjoitella mittauspöytäkirjan itsenäistä tekemistä sekä työselostuksen laatimista Kiertoheiluri on aihe, joka

Lisätiedot

Theory Finnish (Finland)

Theory Finnish (Finland) Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

BM30A0240, Fysiikka L osa 4

BM30A0240, Fysiikka L osa 4 BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Jousen jaksonaikaan vaikuttavat tekijät

Jousen jaksonaikaan vaikuttavat tekijät 1 Jousen jaksonaikaan vaikuttavat tekijät Jarmo Vestola Koulun nimi Fysiikka luonnontieteenä FY5-Työseloste 6.2.2002 Arvosana: K (9) 2 1. Tutkittava ilmiö Tehtävänä oli tutkia mitkä tekijät vaikuttavat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

MATP153 Approbatur 1B Harjoitus 6 Maanantai

MATP153 Approbatur 1B Harjoitus 6 Maanantai . (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

= vaimenevan värähdysliikkeen taajuus)

= vaimenevan värähdysliikkeen taajuus) Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.

Lisätiedot

Työn tavoitteita. Yleistä. opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti

Työn tavoitteita. Yleistä. opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti FYSP101/K2 HEITTOLIIKE Työn tavoitteita opetella johtamaan yleisestä teoriasta tai mallista mitattavissa olevia ennusteita ja testaamaan niitä kokeellisesti oppia tekemään toistomittaukseen liittyviä laskuja

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

FYSA210/2 PYÖRIVÄ KOORDINAATISTO

FYSA210/2 PYÖRIVÄ KOORDINAATISTO FYSA210/2 PYÖRIVÄ KOORDINAATISTO Johdanto Inertiaalikoordinaatisto on koordinaatisto, jossa Newtonin mekaniikan lait pätevät. Tällaista koordinaatistoa ei reaalimaailmassa kuitenkaan ole. Epäinertiaalikoordinaatisto

Lisätiedot

FYS101 / 2. HEITTOLIIKE

FYS101 / 2. HEITTOLIIKE FYS101 / 2. HEITTOLIIKE Työssä tutkitaan yksinkertaista heittoliikettä. Työn tarkoituksena on harjoitella johtamaan yleisestä teoriasta tai mallista kyseessä olevaan tapaukseen liittyviä mitattavissa olevia

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

TTY FYS-1010 Fysiikan työt I JL 4.1 Valon nopeuden mittaus Ilari Leinonen, TuTa, 2. vsk Markus Parviainen, TuTa, 2. vsk.

TTY FYS-1010 Fysiikan työt I JL 4.1 Valon nopeuden mittaus Ilari Leinonen, TuTa, 2. vsk Markus Parviainen, TuTa, 2. vsk. TTY FYS-1010 Fysiikan työt I 14.11.2016 JL 4.1 Valon nopeuden mittaus 253342 Ilari Leinonen, TuTa, 2. vsk. 246198 Markus Parviainen, TuTa, 2. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Nimi: Muiden ryhmäläisten nimet:

Nimi: Muiden ryhmäläisten nimet: Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot