S SÄHKÖTEKNIIKKA Kimmo Silvonen

Koko: px
Aloita esitys sivulta:

Download "S SÄHKÖTEKNIIKKA Kimmo Silvonen"

Transkriptio

1 S55.3 SÄHKÖTKNIIKKA Kimmo Silvonen Tentti: tehtävät,3,5,8,. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,,8,9, Oletko muistanut täyttää palautekyselyn Teesenytja hauku samalla kokeet.. aske jännite U. =4Ω, 2 =2Ω, =2Ω, J =2A, =8V, 2 =4V. + 2 U ß J 2 2. Sinimuotoinen jännitelähde e(t) = sin!t liitetään piiiin hetkellä t =. Kelan alkuvita on nolla, kuten kuvasta voi uumoilla. Vita tulee olemaan muotoa i(t) =Ae t=fi + B cos!t + C sin!t, jossa A, B, C ja fi ovat kaikki eaalilukuvakioita. atkaise näiden vakioiden lukuavot. Sen voin kyllä sanoa, että kaavakokoelman yitteistä ei tässä ole mitään hyötyä. =8Ω, =4H,! =:5 s. e(t) AU t = i(t) 3. aske vita I 2. = 6 o V, =2Ω, 2 =4Ω, =5Ω,! =2 s, =H. 4. aske jännitelähteen vita I, kun kuomana on neljä laitetta kuvan mukaisesti. P = W, p cos ffi =( 5 ) 5 ind, Z 2 = (4 + j2) Ω, Q 3 =VA, P 4 =W, =V. I 2 I2 P cos ffi Z 2 Q 3 P 4 H HH 5. Oheisessa muuntajassa muuntosuhde n = 24:96 sekä impedanssit Z k = ( + j) Ω ja Z = 624( + j) Ω, = 25 8 Ω. aske lähdejännite, kun kuoman jännite U 2 = 2 V. Käännä Z k Z U 2 n :

2 + 6. Diodin yhtälö voidaan esittää Tayloin sajana likimain muodossa i D = I S e T ß I S e T ( + ), jossa on diodin tasajännite ja siihen summautunut pieni signaali. aske ja, jos e A =5+:sin!t. =5mV, I S =68nA, = 3 Ω. e A i aske tansistoin emitteivita I. = V, U B = : V, fi =, = 2 = 6:6 kω, = 5 Ω, 4 = 4 Ω. I 6I B 4 ff I 2 8. Opeaatiovahvistimen käyttöjännitteet ajoittavat potentiaalin V (maahan nähden) välille [3 :::+ 3] V. Millä tasajännitteen avoilla V saavuttaa ääiavonsa S = kω, = 5:6 kω, 2 =4:8 kω, =kω. S + " "" V 2 9. Suunnittele pottipiieillä oheinen ohjauslogiikka. ähdön Q halutaan olevan silloin ja vain silloin, kun mikoposessoin osoiteväylässä on heksadesimaaliluku 4. Älä käytä Kanaugh n kattaa. ohjauslogiikka Q A 5 A osoiteväylä A 5 ;A 4 ;:::A. Suunnittele sellainen logiikkapiii, joka asettaa lähdön Q ykköseksi, kun tulojännite U > 5:5 VtaiU < :5 V. Voit halutessasi pyöistää edellä mainitut jännitetasot, mutta se ei ole lainkaan välttämätöntä. Piiä kytkentäkaavio. U FS =8V, n =4. U A=D ogiikka Q 2

3 S55.3 SÄHKÖTKNIIKKA Kimmo Silvonen Tentti: tehtävät,3,5,8,. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,,8,9, Oletko muistanut täyttää palautekyselyn Teesenytja hauku samalla kokeet.. aske jännite U. =4Ω, 2 =2Ω, =2Ω, J =2A, =8V, 2 =4V. I 2 2 U ß J + I + U = () 2 + I + 2 I + (J + I )= (2) I = 2 + J = 8 = 8 (3) U = I =4V (4) 2. Sinimuotoinen jännitelähde e(t) = sin!t liitetään piiiin hetkellä t =. Kelan alkuvita on nolla, kuten kuvasta voi uumoilla. Vita tulee olemaan muotoa i(t) =Ae t=fi + B cos!t + C sin!t, jossa A, B, C ja fi ovat kaikki eaalilukuvakioita. atkaise näiden vakioiden lukuavot. Sen voin kyllä sanoa, että kaavakokoelman yitteistä ei tässä ole mitään hyötyä. =8Ω, =4 H,! =:5 s. e(t) AU t = i(t) i = Ae t=fi + B cos!t + C sin!t (5) di dt = A fi et=fi!b sin!t +!C cos!t (6) e + i + di =) () dt e + (Ae t=fi + B cos!t + C sin!t) ( A fi et=fi +!B sin!t!c cos!t) =» A A fi e t=fi +[B +!C]cos!t +[C!B]sin!t (8) = e = e t=fi + cos!t + sin!t (9) A fi et=fi + Ae t=fi =) fi + =) fi = =:5 s () (B +!C)cos!t =) B +!C =) B =!C (C!B) sin!t = sin!t ) C!B = (2) ) C = () 2 +(!) =:8 A ) B=! = :6 A (3) (!) alkuavo :i() = Ae =fi + B cos + C sin = A + B (4) i() = ) A = B =:6 A (5) i(t) =:6e 2t :6 cos!t +:8 sin!t =:6e 2t +: sin(!t 36:8 ffi )A 3

4 3. aske vita I 2. = 6 o V, =2Ω, 2 =4Ω, =5Ω,! =2 s, =H. I 3 2 I 2 + (I 3 + I 2 )+ I 3 =) I 3 = I 2 + = 2I 2 (6) I I 2 + j!i 2 =) ( 2I 2 )+ 2 I 2 + j!i 2 = () I 2 = I 2 = j! (8) j2 = j4 = j =:236 2:2 ffi A (9) 4. aske jännitelähteen vita I, kun kuomana on neljä laitetta kuvan mukaisesti. P = W, p cos ffi =( 5 ) 5 ind, Z 2 = (4 + j2) Ω, Q 3 =VA, P 4 =W, = V. I P cos ffi Z 2 Q 3 P 4 H HH ffi =+63:43 ffi (ind) & Q P = tan ffi (2) S = P + jq = I Λ ) I Λ = P + jp tan ffi ) I = P j tan ffi Λ I 2 = Z 2 = 2(2 + j) = j2 = 5(2 j) 5 S 34 = P 4 + jq 3 = I Λ 34 ) I 34 = P 4 jq 3 (2) = j2 (22) =2 j (23) Λ = j = j (24) I = I + I 2 + I 34 = j2 +2 j + j =4 j4 =5: ffi A (25) (Z = I & Z 3 = jj2 (jq 3 ) Λ & Z 4 = jj2 P 4 (26) (Z =(2+j4)jj(4 + j2)jj(j)jj() = 2:5( + j) Ω; I = Z ) (2) Taajuutta ei annettu, mutta se ei ole nolla, mikä voidaan päätellä annetuista tiedoista (ffi ;Z 2 ;Q 3 ). 5. Oheisessa muuntajassa muuntosuhde n = 24:96 sekä impedanssit Z k = ( + j) Ω ja Z = 624( + j) Ω, = 25 8 Ω. aske lähdejännite, kun kuoman jännite U 2 =2V. = 2 Zk Z + Z k Z U 2 n : Z ψ k ( + j) n 2 + =24: ( + j) + ( + j) 24: ! (28) = 55 + j5 = 55:2 6 :5 ffi V (29) 4

5 + 6. Diodin yhtälö voidaan esittää Tayloin sajana likimain muodossa i D = I S e T ß I S e T ( + ), jossa on diodin tasajännite ja siihen summautunut pieni signaali. aske ja, jos e A =5+: sin!t. =5mV, I S =68nA, = 3 Ω. e A id u e A + i D + u D = (3) e A + (I S e T ( + I S e T ( + I S e )) + ( + )= (3) )+ + =5+: sin!t (32) + UD =5 (33) I S e + =: sin!t (34) ) = e 2 ) ß :5 (35) : sin!t ) = I S e + =:99 sin!t mv (36). aske tansistoin emitteivita I. = V, U B = : V, fi =, = 2 = 6:6 kω, =5Ω, 4 =4Ω. I 6I B 4 ff I 2 2 (I I B ) I + =) I = + 2I B + 2 (3) I =(fi +)I B (38) 4 I U B + 2 (I I B )= (39) 4 (fi +)I B U B + 2 ( + 2I B + 2 I B )= (4) U B I B = 4 (fi +)+ 2 =85:5 μa (4) I =(fi +)I B =8:6 ma (42) 5

6 8. Opeaatiovahvistimen käyttöjännitteet ajoittavat potentiaalin V (maahan nähden) välille [3 :::+ 3] V. Millä tasajännitteen avoilla V saavuttaa ääiavonsa S = kω, = 5:6 kω, 2 =4:8 kω, =kω. S + " "" I V 2 I I S =) U + = (43) U = U + = ) I = (44) V = I + 2 I =( + 2 ) =(+ 2 ) (45) = 56 V = ± V (46) 4 Nomaali eiinvetoiva vahvistin. Opan suuen tuloimpedanssin takia jännitelähteen sisäinen vastus S ei pienennä jännitettä. Koska lähtöimpedanssi (takaisinkytkettynä) on hyvin matala, ei kuoma myöskään pienennä lähtöjännitettä. 9. Suunnittele pottipiieillä oheinen ohjauslogiikka. ähdön Q halutaan olevan silloin ja vain silloin, kun mikoposessoin osoiteväylässä on heksadesimaaliluku 4. Älä käytä Kanaugh n kattaa. Vt. laskuhajoitus: 4 6 = 2 ohjauslogiikka Q A 5 A osoiteväylä A 5 ;A 4 ;:::A 6

7 . Suunnittele sellainen logiikkapiii, joka asettaa lähdön Q ykköseksi, kun tulojännite U > 5:5 VtaiU < :5 V. Voit halutessasi pyöistää edellä mainitut jännitetasot, mutta se ei ole lainkaan välttämätöntä. Piiä kytkentäkaavio. U FS =8V, n =4. U A=D ogiikka Q U = U FS 2 n =:5 (4) Jos ensimmäinen poas on puolen U:n kohdalla, kuten pujuissa: U A B C D Q A B A B Q = A B + AB (48) & Q &

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.03 SÄHKÖTKNIIKKA 20.5.999 Kimmo Silvonen Tentti: tehtävät,3,5,8,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät,7,8,9,0 Oletko muitanut täyttää palautekyelyn Teeenytja hauku amalla kokeet.. ake jännite

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK..999 Kimmo Silvonen Tentti: tehtävät,3,4,8,. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta I. =Ω,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA LKTONIIKKA Tentti 15.5.2006: tehtävät 1,3,5,7,10 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita!

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNIIKK.5. Kimmo Silvonen Tentti: tehtävät,3,5,7,8. välikoe: tehtävät,,3,4,5. välikoe: tehtävät,7,8,9, Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske jännite U. =Ω,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.103 SÄHKÖTKNIIKKA 19.12.2002 Kimmo Silvonen Tentti: tehtävät 1,3,4,7,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA A KTONKKA Kimmo Silvonen Tentti 20.5.200: tehtävät,3,5,6,8.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.)

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖKNKKA JA KONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen entti 0..0: tehtävät,3,5,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.11 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti.1.11: tehtävät 1,3,5,6,1. 1. välikoe: tehtävät 1,,3,4,5.. välikoe: tehtävät 6,7,8,9,1. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,

Lisätiedot

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen, Aalto ELEC 2. välikoe 12.12.2016. Saat vastata vain neljään tehtävään! 1. Tasajännitelähde liitetään parijohtoon hetkellä t 0. Lakse kuormavastuksen jännite u 2 (t) hetkellä t 3,1 t ottamalla

Lisätiedot

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen LC C21 SÄHKÖTKNKKA JA LKTONKKA Kimmo Silvonen 2. välikoe 8.12.21. Tehtävät 1 5. Saat vastata vain neljään tehtävään! Sallitut: Kako, [gr.] laskin, [MAOL], [sanakirjan käytöstä on sovittava valvojan kanssa!]

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA JA KTONKKA Tentti 5.5.008: tehtävät,3,4,6,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55. SÄHKÖTKNKK 9.5.998 Kimmo Silvonen Tentti: tehtävät,,5,7,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muitnut täyttää plutekyelyn Teeenytj huku mll välikokeet.. Lke virt. =4Ω, =2Ω,

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.3 SÄHKÖTKNKKA.5.22 Kimmo Silvonen Tentti: tehtävät,3,4,6,9. välikoe: tehtävät,2,3,4,5 2. välikoe: tehtävät 6,7,8,9, Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.. Laske virta.

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S55.3 SÄHKÖTKNKKA.. Kimmo Silvonn Tntti: thtävät,3,5,7,9. väliko: thtävät,,3,4,5. väliko: thtävät 6,7,8,9, Oltko muistanut vastata palautkyslyyn Voit täyttää lomakkn nyt.. Lask virta. = = 3 =Ω, J =3A,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKKA JA LKTONKKA. välikoe 3.0.2006. Saat vastata vain neljään tehtävään!. Laske jännite U. = =4Ω, 3 =2Ω, = =2V, J =2A, J 2 =3A + J 2 + J 3 2. Kondensaattori on aluksi varautunut jännitteeseen

Lisätiedot

S SÄHKÖTEKNIIKKA

S SÄHKÖTEKNIIKKA S55.103 SÄHKÖTEKNIIKK. välikoe 7.4.1998 Kimmo Silvonen 1. Kva esittää yhdellä diodilla hätäratkaisna tehtyä kokoaaltotasasntaajaa. Sen toiminta ei tietenkään ole kovin ideaalista. Laske diodin ominaiskäyrän

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKK J KTONIIKK Kimmo Silvonen alto-yliopisto, sähkötekniikan korkeakoulu C Välikoe on kääntöpuolella! Tentti 7.4.04. Tehtävät,, 4, 6, 7. Saat vastata vain neljään tehtävään! Sallitut:

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Kimmo Silvonen Tentti 2.2.200: tehtävät,3,4,7,0.. välikoe: tehtävät,2,3,4,5. 2. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään tehtävään/koe. Sallitut: Kako,

Lisätiedot

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen

ELEC C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen 2. välikoe.2.207. Saat vastata vain neljään tehtävään!. aske jännite u 2 (t) ajan t 4 t kuluttua kytkimen sulkemisesta. 9 V S 50 Ω, 00 Ω, 50 Ω. t 0 {}}{{}}{ S t 0 u u 2 (t) 2. aske jännite U yhden millivoltin

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Tentti 6.5.007: tehtävät,3,4,6,0. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe 14.12.2010. Saat vastata vain neljään tehtävään! Sallitut: Kako, (gr.) laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!] 1. Missä rajoissa

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat

C 2. + U in C 1. (3 pistettä) ja jännite U C (t), kun kytkin suljetaan ajanhetkellä t = 0 (4 pistettä). Komponenttiarvot ovat S-87.2 Tentti 6..2007 ratkaisut Vastaa kaikkiin neljään tehtävään! C 2 I J 2 C C U C Tehtävä atkaise virta I ( pistettä), siirtofunktio F(s) = Uout ( pistettä) ja jännite U C (t), kun kytkin suljetaan

Lisätiedot

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä

Taitaja2005/Elektroniikka. 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 1) Resistanssien sarjakytkentä kuormittaa a) enemmän b) vähemmän c) yhtä paljon sähkölähdettä kuin niiden rinnankytkentä 2) Kahdesta rinnankytketystä sähkölähteestä a) kuormittuu enemmän se, kummalla on

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden

Lisätiedot

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua: DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

MICRO-CAP: in lisäominaisuuksia

MICRO-CAP: in lisäominaisuuksia MICRO-CAP: in lisäominaisuuksia Jännitteellä ohjattava kytkin Pulssigeneraattori AC/DC jännitelähde ja vakiovirtageneraattori Muuntaja Tuloimpedanssin mittaus Makrot mm. VCO, Potentiometri, PWM ohjain,

Lisätiedot

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008

Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Taitaja2008, Elektroniikkalajin semifinaali 24.1.2008 Kilpailijan nimi: 1) Oheisen kytkennän kokonaisresistanssi on n. 33 Ohm 150 Ohm a) 70 Ohmia b) 100 Ohmia c) 120 Ohmia 120 Ohm 2) Oheisen kytkennän

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-00: PIIIANAYYSI I Passiiviset piirikomponentit vastus kondensaattori käämi Kirja: luku. (vastus), luku 6. (käämi), luku 6. (kondensaattori) uentomoniste: luvut 3., 3. ja 3.3 VASTUS ja ESISTANSSI (Ohm,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55. SÄHKÖTKNIIKKA JA LKTONIIKKA 2. välikoe.2.22. Saat vastata vain neljään tehtävään! Sallitut: Kako, [r.] laskin, [MAOL], [sanakirjan käytöstä sovittava valvojan kanssa!]. Laske jännite. = V, = 2 Ω,

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?

d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä? -08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin

Lisätiedot

Automaation elektroniikka T103403, 3 op AUT2sn. Pekka Rantala syksy Opinto-opas 2012

Automaation elektroniikka T103403, 3 op AUT2sn. Pekka Rantala syksy Opinto-opas 2012 Automaation elektroniikka T103403, 3 op AUT2sn Pekka Rantala syksy 2013 Opinto-opas 2012 Osaamistavoitteet: Opintojakso perehdyttää opiskelijat automaatiotekniikan sovelluksissa käytettäviin elektroniikan

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

DEE Sähkötekniikan perusteet

DEE Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä

Lisätiedot

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät

Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

RCL-vihtovirtapiiri: resonanssi

RCL-vihtovirtapiiri: resonanssi CL-vihtovirtapiiri: resonanssi Olkoon tarkastelun kohteena tavallinen LC-vaihtovirtapiiri. Piirissä on kolme komponenttia, ohmin vastus, L henryn induktanssi ja C faradin kapasitanssi. Piiriin syötettyyn

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.11 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. väliko 14.12.26. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Millä välillä vaihtl opraatiovahvistimn lähtöjännit, jos =1 +û sin ωt. =2, û =5. 2 Thtävä 2.

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä

Lineaarialgebra MATH.1040 / Piirianalyysiä Lineaarialgebra MATH.1040 / Piirianalyysiä 1 Kirchoffin ensimmäinen laki: Missä tahansa virtapiirin liitoskohdassa pisteeseen saapuvien sähkövirtojen summa on yhtä suuri kuin siitä poistuvien sähkövirtojen

Lisätiedot

ELEC-C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen

ELEC-C4210 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Kimmo Silvonen -4210 SÄHKÖTKNKKA JA KTONKKA Kimmo Silvonen askuharjoitukset, versio 14.9.2015. atkaisut ovat PDF-muodossa Myo:ssa (Myourses). Suositus, joka pätee myös kokeissa: kirjoita yhtälöt ensin kirjainlausekkeina,

Lisätiedot

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

S Piirianalyysi 1 2. välikoe

S Piirianalyysi 1 2. välikoe S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

ELEC-C3230 Elektroniikka 1. Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit)

ELEC-C3230 Elektroniikka 1. Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit) 1 ELEC-C3230 Elektroniikka 1 Luento 1: Piirianalyysin kertaus (Lineaariset vahvistinmallit) 1 luennon pääaiheet Motivointi Piirianalyysin kertaus Vahvistinmallinnus (liuku 2. luentoon) 2 https://www.statista.com/outlook/251/100/consumer-electronics/worldwide

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.1100 SÄHKÖTKNIIKKA JA LKTRONIIKKA 2. väliko 15.12.2008. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Lask jännit. = 10 Ω, = 40 Ω, = 3 kω, = 9 kω, = 1 kω, = 1 V. Puskurivahvistin rottaa kuorman

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

Luento 2. DEE Piirianalyysi Risto Mikkonen

Luento 2. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit

Lisätiedot

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t. DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä

Lisätiedot

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet

Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNKK LKTRONKK. välikoe 0.3.006. Saat vastata vain neljään tehtävään!. Laske jännite U. R = =Ω, R 3 =3Ω, = =4V, 3 =6V, = + R + R 3 + U 3. Konkka on varautunut jännitteeseen u C (0) =. Kytkin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D Demonstraatio 7, 6.7... Ratkaise dierentiaalihtälöpari = = Vastaus: DY-pari voidaan esittää muodossa ( = Matriisin ominaisarvot ovat i ja i ja näihin kuuluvat ominaisvektorit (

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,

Lisätiedot

Luento 6. DEE Piirianalyysi Risto Mikkonen

Luento 6. DEE Piirianalyysi Risto Mikkonen DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

Lineaarialgebra MATH.1040 / Piirianalyysiä 2 Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα

Lisätiedot

Taitaja2007/Elektroniikka

Taitaja2007/Elektroniikka 1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset

( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin

Lisätiedot

S SÄHKÖTEKNIIKKA Kimmo Silvonen

S SÄHKÖTEKNIIKKA Kimmo Silvonen S-55.13 SÄHKÖTKNKK 1.1.5 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,1 Tässä kokeessa on myös välikoeuusinta, koska joulukuussa ei ollut tilaa tentille.

Lisätiedot

VASTUSMITTAUKSIA. 1 Työn tavoitteet

VASTUSMITTAUKSIA. 1 Työn tavoitteet Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?

2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on? SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee

Lisätiedot

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY K001/M12/2015 Liite 1 / Appendix 1 Sivu / Page 1(17) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address Puh./fax/e-mail/www

Lisätiedot

DT-105 KÄYTTÖOHJE Sivu 1/5 DT-105 KÄYTTÖOHJE LUE KÄYTTÖOHJE HUOLELLISESTI ENNEN MITTARIN KÄYTTÖÖNOTTOA TULOSIGNAALIEN SUURIMMAT SALLITUT ARVOT

DT-105 KÄYTTÖOHJE Sivu 1/5 DT-105 KÄYTTÖOHJE LUE KÄYTTÖOHJE HUOLELLISESTI ENNEN MITTARIN KÄYTTÖÖNOTTOA TULOSIGNAALIEN SUURIMMAT SALLITUT ARVOT DT-105 KÄYTTÖOHJE Sivu 1/5 DT-105 KÄYTTÖOHJE LUE KÄYTTÖOHJE HUOLELLISESTI ENNEN MITTARIN KÄYTTÖÖNOTTOA 1. TURVAOHJEET Toiminto V AC V DC ma DC Resistanssi Ω TULOSIGNAALIEN SUURIMMAT SALLITUT ARVOT Maksimi

Lisätiedot

EMC Mittajohtimien maadoitus

EMC Mittajohtimien maadoitus EMC Mittajohtimien maadoitus Anssi Ikonen EMC - Mittajohtimien maadoitus Mittajohtimet ja maadoitus maapotentiaalit harvoin samassa jännitteessä => maadoitus molemmissa päissä => maavirta => häiriöjännite

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY

AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY K001/M16/2019 Liite 1 / Appendix 1 Sivu / Page 1(19) AKKREDITOITU KALIBROINTILABORATORIO ACCREDITED CALIBRATION LABORATORY SGS FIMKO OY Tunnus Code Laboratorio Laboratory Osoite Address www www K001 SGS

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015

Kolmivaihejärjestelmän perusteet. Pekka Rantala 29.8.2015 Kolmivaihejärjestelmän perusteet Pekka Rantala 29.8.2015 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä

Lisätiedot

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7

Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7 MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet

Lisätiedot

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit

Lisätiedot

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset

SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Rautaisannos. Simo K. Kivelä 30.8.2011

Rautaisannos. Simo K. Kivelä 30.8.2011 Yhteenlasku Rautaisannos 30.8.011 Yhteenlasku sin x + cos x Yhteenlasku sin x + cos x = 1 sin x + cos x = 1 x R Yhteenlasku sin x + cos x = 1 x C Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku Yhteenlasku

Lisätiedot

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko

MS-A Differentiaali- ja integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko MS-A0107 - Differentiaali- integraalilaskenta 1 (CHEM) Harjoitus 6 loppuviikko 1 Tehtävä Etsi seuraavien yhtälöiden yleiset ratkaisut: Ratkaisu: a) y y 2y = 4x, b) y + 4y = sin 3x, c) y + 2y + 5y = e x

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ

TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ TYÖ 2: OPERAATIOVAHVISTIMEN PERUSKYTKENTÖJÄ Työselostus xxx yyy, ZZZZZsn 25.11.20nn Automaation elektroniikka OAMK Tekniikan yksikkö SISÄLLYS SISÄLLYS 2 1 JOHDANTO 3 2 LABORATORIOTYÖN TAUSTA JA VÄLINEET

Lisätiedot