RATKAISUT: Kertaustehtäviä

Koko: px
Aloita esitys sivulta:

Download "RATKAISUT: Kertaustehtäviä"

Transkriptio

1 hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin ,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita kasvaa 0,18 A:iin a) 0,06 A 4. Tekijät ja WSOY Oppimateiaalit Oy, 006

2 hysica 6 OETTAJAN OAS 1. painos (16) Luku 5. a) b) 0,7 A U 3,5 V c) ΔU 6 V R 5, 0 Ω Δ 1, A b) 3,5 V c) 5, 0 Ω 6. 0, 1 A U 4,1 V a) b) U 4,1 V R 19,54 Ω 0 Ω 0,1 A U 3, 0 V 0,15366 A 0,15 A R 19,54 Ω a) 0 Ω b) 0,15 A 7. a) R 1 11 Ω+ 15 Ω 6 Ω 5 Ω R 1,5 Ω 1,5 Ω R3 6, 5 Ω R R + R 3,5 Ω 3 Ω kok b) kok 1 3 U 4,5 V 0,1395 A 0,14 A R V kok 3,5 A Sähkövita jakautuu tasan pisteessä 0,1395 A 3 0,06977 A 0,070 A a) 3 Ω b) 0,14 A c) 0,070 A Tekijät ja WSOY Oppimateiaalit Oy, 006

3 hysica 6 OETTAJAN OAS 1. painos 3(16) 8. l,7 m A 1, 5 mm a) isteet asettuvat hyvin suoalle, joten esistanssi voidaan laskea suoan kulmaketoimen avulla. U 10 V R 5,6 Ω 5,3 Ω 1,9 A a) l R ρ A RA 5, 6 Ω 1,5 (10 ) m ρ l,7 m 3 Ω Ω 6 6,94 10 m,9 10 m a) 5,3 Ω b) 6,9 10 Ω m Luku 3 9. a) Kytkentäkaavio mittauksesta. Volttimittai kytketään vastuksen innalle. b) Jännitemittain sisäinen esistanssi on suui, joten sen kautta ei käytännössä kulje sähkövitaa. aiston lähdejännite on E 4,68 V. c) Vitapiiin sähkövita Ohmin lain mukaan on U 4, 43 V 0,1477 A 0,15 A. R 30 Ω u d) aiston sisäinen esistanssi saadaan kuomitetun paiston napajännitteen lausekkeesta U E Rs, josta E U Rs ( 4,68 4, 43 ) V 0,1477 A 1, 693 Ω 1, 7 Ω. b) aiston lähdejännite on 4,68 V. c) Sähkövita on 0,15 A. d) aiston sisäinen esistanssi on 1,7 Ω. Tekijät ja WSOY Oppimateiaalit Oy, 006

4 hysica 6 OETTAJAN OAS 1. painos 4(16) 10. a) Suljetussa vitapiiissä potentiaalimuutosten summa on nolla, joten E ( Rs + Ru) 0. Vitapiiin sähkövita on E Rs + Ru 9, 47 V 3,83 Ω+ 0, 45 Ω 0,3900 A 390 ma. b) Kuomitetun paiston napajännite on U E R s 9, 47 V 3,83 Ω 0,3900 A 7,9763 V 8,0 V. a) Vitapiiin sähkövita on 390 ma. b) aiston napajännite on 8,0 V. 11. a) Mittaukseen soveltuva kytkentä on b) aiston napajännite iippuu kuomitusviasta yhtälön U Rs + E mukaisesti. Sijoitetaan tehtävässä annetut mittapisteet U-koodinaatistoon ja sovitetaan suoa. Suoan fysikaalisen kulmaketoimen itseisavona saadaan akun sisäinen esistanssi ΔU Rs k 3, 4 Ω. Δ Lähdejännite luetaan kuvaajalta U-akselin leikkauspisteestä E 4,79 V 4,7 V. b) aiston sisäinen esistanssi on 3,4 Ω ja lähdejännite 4,7 V. 1. a) Tehtävässä annetut tiedot 1. vastus:. vastus: R 4 Ω, 35 ma 1 1 R 86 Ω, 105 ma Kichhoffin. lain mukaan potentiaalimuutosten summa suljetussa vitapiiissä on nolla Δ V 0. Tekijät ja WSOY Oppimateiaalit Oy, 006

5 hysica 6 OETTAJAN OAS 1. painos 5(16) Kijoitetaan yhtälö molemmissa tapauksissa 1. vastus: E ( R1+ Rs) 1 0. vastus: E ( R + R ) 0 s Ratkaistaan toisesta lähdejännite E ( R1 + Rs) 1 ja sijoitetaan toiseen, jolloin saadaan ( R + R ) ( R + R ) 1 s 1 s R 1 1+ R s 1 R + R s ja edelleen sisäinen esistanssi R s R ( ) R R s R Rs R Ω A 4 Ω A A A 6, 0769 Ω 6 Ω. b) Lähdejännite voidaan nyt atkaista E ( R + R ) Ω+ Ω 11, 7681 V 1 V. 1 s 1 3 (4 6, 0769 ) A a) Jännitelähteen sisäinen esistanssi on 6 Ω. b) Jännitelähteen lähdejännite on 1 V. 13. a) Akut pitää kytkeä niin, että akkujen samanmekkiset navat yhdistetään. b) Ladattava akku kytkettiin vääinpäin eli akkujen eimekkiset navat yhdistettiin. Tämä kytkentä vastaa lähes oikosulkua, koska vitapiiin esistanssi on hyvin pieni. Suljetussa vitapiiissä potentiaalimuutosten summa on nolla Δ V 0 eli E Rs Rs 0 E 1 V 107,149 A 110 A. 3 R Ω s Akuissa on suui sähkövita, joka aiheuttaa akkujen lämpenemistä. b) Akkuja yhdistävässä johtimessa sähkövita on 110 A. Tekijät ja WSOY Oppimateiaalit Oy, 006

6 hysica 6 OETTAJAN OAS 1. painos 6(16) Luku a) Teho on U. Hiustenkuivaimen vastuksen sähkövita on 850 W 3,6957 A 3,7 A. U 30 V E t b) Hyötysuhde η E t hyöty hyöty hyöty otto otto otto. hyöty 150 W Moottoin sähkövekosta ottama teho on otto 164,835 W 160 W. η 0,91 Moottoin sähkövita on tehon U mukaan 164,835 W 6,8681 A 6,9 A. U 4 V a) Sähkövita vastuksessa on 3,7 A. b) Sähkövita moottoissa on 6,9 A. 15. a) Silitysaudan sähkövekosta ottama enegia on 30 E t 1, 4 kw h 0, 7 kwh 60 Käyttökustannukset ovat 0,7 kwh 0,105 0,0735 7,4 snt. kwh b) Silitysauta toimii myös pienemmällä käyttöjännitteellä, mutta se lämpenee hitaammin kuin kytkettynä 30 V:n jännitteeseen. Lasketaan silitysaudan vastuslangan esistanssi yhtälöistä U ja U R U U U U, R R josta vastuslangan esistanssi U (30 V) R 37, 7857 Ω. 1400W Silitysauhan teho lomakohteessa on U (110 V) 30,68 W 30 W. R 37,7857 Ω a) Käyttökustannukset ovat 7,4 snt. b) Silitysaudan teho oli 30 W. Tekijät ja WSOY Oppimateiaalit Oy, 006

7 hysica 6 OETTAJAN OAS 1. painos 7(16) 16. Ratkaistaan vastuksessa tapahtuva jännitehäviö yhtälöistä U ja U R U R R, U josta U R ja U R 0,85 W 3500 Ω 54, 5436 V 55 V. Vastus voidaan kytkeä 55 V:n jännitteeseen. 17. a) Ratkaistaan vitapiiin sähkövita. Kichhoffin. lain mukaan U R 1 R R3 0, josta U R1+ R + R3,50 V 10, , , 10, A, 0 10 A 3 Ω+ 3 Ω+ 3 Ω 5 5 Ja vastuksen R 1 :n jännitehäviö U R ,8 10 Ω, A 0,37367 V 0, 37 V. b) Lisätään vitapiiiin jännitemittai. Vastus R 1 ja jännitemittain vastus R V on nyt kytketty innan, joten niiden yhteinen esistanssi on ' R 1 R + 1 RV ,8 10 Ω 10,0 10 Ω 3 5, Ω 5,19 kω Lasketaan sähkövita uudessa tilanteessa U ' ' R1+ R + R3,50 V , Ω+ 49,7 10 Ω+ 53, 10 Ω 5 5, A,31 10 A Tekijät ja WSOY Oppimateiaalit Oy, 006

8 hysica 6 OETTAJAN OAS 1. painos 8(16) Ja vastuksen R 1 :n jännitehäviö U R ' ' ' , Ω, A 0,101 V 0,10 V. a) Vastuksen päiden välinen jännitehäviö on 0,37 V. b) Mittai näyttää 0,10 V. 18. a) Kichhoffin. lain mukaan vitapiiin jokaisessa suljetussa silmukassa potentiaalimuutosten summa on nolla Δ V 0. Kichhoffin 1. lain mukaan vitapiiin haaautumiskohtaan tulevien sähkövitojen summa on sama kuin siitä lähtevien sähkövitojen summa. Valitaan sähkövitojen suunnat ja kijoitetaan Kichhoffin lakien mukaiset yhtälöt kuvan mekintöjen peusteella , missä 3 1, 33A 15 Ω 1+35 V 1 Ω 1,33 A 0 5, Ω + E 1 Ω 1, 33 A 0 1,33 A 1 Ensimmäisestä yhtälöstä atkaistaan sähkövita 35 V 1 Ω 1,33 A 1 0,4713 A 0,47 A 15 Ω ja Kichhoffin 1. lain yhtälöstä atkaistaan sähkövita 1,33 A 0,4713 A 0,8587 A 0,86 A ja toisesta yhtälöstä lähdejännite E 1 Ω 1,33 A + 5, Ω 0,8587 A 3, 395 V 3 V. b) Vitapiiin vastukset tuottavat lämpöä teholla, joka on yhtä suui kuin vitapiiissä olevien jännitelähteiden teho. Joulen lain 5, Ω 5, Ω (0,8587 A) 3,8343 W 3,8 W 15 Ω 15 Ω (0,4713 A) 3, 3319 W 3, 3 W 1 Ω 1 Ω (1,33 A) 37,1469 W 37 W ja jännitelähteiden tuottamat tehot E 35 V 35 V 0,4713 A 16,4955 W 16 W 3 V 3,395 V 0,8587 A 7,8178 W 8 W. Vitapiii tuottaa lämpöä teholla kok 3,8343 W + 3,3319 W + 37,1469 W 44,3131 W 44 W R mukaan komponenttien tehot ovat a) aiston lähdejännite on 3 V. b) Vitapiii tuottaa lämpöä 44 W:n teholla. Tekijät ja WSOY Oppimateiaalit Oy, 006

9 hysica 6 OETTAJAN OAS 1. painos 9(16) Luku Lasketaan vaausten A ja C kohdistamien voimien esultantti. Koska nämä vaaukset ovat yhtä etäällä vaauksesta B ja niiden vaaukset ovat yhtä suuet, niiden aiheuttamat voimat ovat suuuudeltaan yhtä suuet. Kuviosta nähdään, että Fs ( F + Fcos α) + ( Fsin α) + + F (1 cos α) sin α F 1 cosα cos α sin α F + cosα Sijoitetaan lukuavot. Tasasivuisen kolmion kulmat ovat 60. F s Nm 1,0 10 C 1,0 10 C 8, cosα C (1,0 m) 9 15,57 10 N N N QQ A B 0. Fv k i) B B ii) (b) iii) Q 4Q F 4F, (b) iv) (b) F F v 3, (a) 9 i) b ii) b iii) a iv) b 1. F 0,3 N 3 N E 18, Q 17, C C 3 N C 3 N C Tekijät ja WSOY Oppimateiaalit Oy, 006

10 hysica 6 OETTAJAN OAS 1. painos 10(16). Koska vaattu pinta hylkii positiivisesti vaattua palloa, pinnan vaauskate on positiivinen. innan läheisyydessä on siten homogeeninen sähkökenttä. alloon vaikuttaa painovoima G voima F s ja langan jännitysvoima T. Newtonin lain mukaan Σ F ma. Koska pallo on paikallaan, kiihtyvyys a 0. mg, sähkökentän palloon kohdistama Kijoitetaan voimalausekkeet komponenttimuodossa. x: QE T sinθ 0 y: Tcosθ mg 0 Ratkaistaan alemmasta jännitysvoima mg T. cosθ Sijoitetaan T:n lauseke ylempään yhtälöön mg QE sinθ 0. cosθ Koska sinθ tanθ, cosθ QE mg tanθ 0. Siten mg tanθ E. Q ε 0mg tanθ Vaauskate saadaan annetusta kaavasta σ ε0e. Sijoitetaan lukuavot Q 1 C 3 m 8, ,18 10 kg 9,81 tan33 σ Nm s 9 0,85 10 C 5 C μc 1, m m μc 1 m Tekijät ja WSOY Oppimateiaalit Oy, 006

11 hysica 6 OETTAJAN OAS 1. painos 11(16) Luku 6 3. Sähkövian määitelmä on ΔQ, josta voidaan atkaista vuookaudessa siityvä kokonaisvaaus Δ t Δ Q Δ t A h 9, C Tällöin elektoneja siityy elektoniin N e 9 ΔQ 9, C 19 Q 1,60 10 C e Elektoneja siityy 8 8 5, ,9 10 (kpl) 8 5,9 10 kappaletta 4. uhdas vesi on suhteellisen huono sähkönjohde. Kuitenkin jo pieni liuenneiden ionien konsentaatio lisää mekittävästi veden sähkönjohtavuutta. hmisen iholla on käytännöllisesti katsoen aina suoloja, jotka liukenevat veteen helposti. Niinpä kastuneissa käsissä oleva vesi on suolaliuos, joka johtaa sähköä hyvin. 5. Yhdensuuntaisten levyjen väliin syntyy homogeeninen sähkökenttä, jonka voimakkuus on vakio, U 9,0 V V E 50. Sähkökentän suunta on positiiviselta levyltä kohti d 3, 6 cm m negatiivista levyä. Kun positiivinen suunta on valittu vastakkaiseen suuntaan, V sähkökentän voimakkuus on negatiivinen, 50. m Sähkökentän potentiaali pienenee sähkökentän suuntaa. Negatiivinen levy on maadoitettu, joten potentiaali on negatiivisella levyllä nolla, ja nousee tasaisesti avoon 9,0 V positiivista levyä lähestyttäessä. Tekijät ja WSOY Oppimateiaalit Oy, 006

12 hysica 6 OETTAJAN OAS 1. painos 1(16) 6. a) Ukkospilven ja maanpinnan väliin syntyvää sähkökenttää voidaan pitää iittävällä takkuudella homogeenisena sähkökenttänä. ilven ja maan välisen jännitteen ja sähkökentän voimakkuuden välillä on siksi yhteys U Ed. Sähkökentän voimakkuus on siten U V V E 5. d 400 m m Sähkökentän voimakkuuden suunta on kohti alempaa potentiaalia, joten sen suunta on nyt ylöspäin. b) Sähköisen voiman tekemä työ on homogeenisessa sähkökentässä W QU, josta saadaan sijoittamalla annetut lukuavot W e , V 1,60 10 J 1,6 10 J. a) V 5 m ylöspäin b) 15 1, 6 10 J. 7. Akusta saatava kokonaisenegia on E Δ QU As 1 V J 3,46 MJ. Veden lämmittämiseen kuluva enegiamäää on E cmδ T, jossa c on veden ominaislämpökapasiteetti, m massa ja Δt veden lämpötilan muutos. Kun tästä atkaistaan kysytty veden määä eli massa, saadaan sijoittamalla tunnetut lukuavot 6 E 4, J m 11,389 kg 11 kg. c Δ T 3 J 4, C kg C Vettä voi lämmittää kiehumispisteeseen 11 kg. Luku 7 8. a) Q CU 9 Q C 8, C F 8,8 nf U 4 V b) Q CU F 7 V 4,48 10 C 4 10 C a) 8,8 nf b) C Tekijät ja WSOY Oppimateiaalit Oy, 006

13 hysica 6 OETTAJAN OAS 1. painos 13(16) 9. C ε C0, U Ed, Q CU a) Q vakio, C kasvaa. Koska Q CU, U pienenee. b) U vakio. Koska Q CU, Q kasvaa. ε ε 0 A c) C kasvaa koska C. d d) Eiste polaoituu ja vaikuttaa siten sähkökentän voimakkuuteen. 30. Levyjen välissä on homogeeninen sähkökenttä, jonka suunta on positiivisesta levystä negatiiviseen. Kenttä on siis kuvaan piietyn x-akselin suuntainen. a) Sähkökentän voimakkuus U 1, 4 V E 95 V d 0,04 m m. Koska E vakio, potentiaali laskee suoaviivaisesti 4 mm:n matkalla avosta +1,4 V avoon 0 V. Siten kysytyt kuvaajat ovat: b) Eiste polaoituu sähkökentässä ja pienentää sähkökentän voimakkuutta. Jos sähkökentän voimakkuus ilmavälissä ( ε 1) on E 0, sähkökentän voimakkuus eisteen E0 alueella on E. otentiaalieo levyjen välissä on summa ε ε E d d d 1+ ε U U + U + E E 0. ε Ratkaistaan kenttävoimakkuus ε U E0. d(1 + ε ) Sijoitetaan lukuavot 3,0 1,4 V E0 443 V 0,04 m(1+ 3,0) m. E E V m. ε Tekijät ja WSOY Oppimateiaalit Oy, 006

14 hysica 6 OETTAJAN OAS 1. painos 14(16) otentiaalieot ovat U E d U 0 1 3,1 V ja ε 0 Kysytyt kuvaajat ovat: d E 9,3 V. 31. C A 3 μf, C B 7,8 μf, Q A 8,0 mc, Q B 14 mc Loppujännite U Vaaus säilyy, Q + Q ( C + C ) U A B A B Q + Q A B 8,010 C 1410 C U C 6 6 A C + B 3 10 F + 7,8 10 F 3 0, V 710 V Vaaukset lopussa Q CU 6 3 Q A 3 10 F 0, V 6 3 Q B 7,8 10 F 0, V 3 16, C 16 mc 3 5, C 5,6 mc a) 710 V b) Kondensaattoin A vaaus on 16 mc ja kondensaattoin B 5,6 mc. Luku 8 3. a) uhtaassa puolijohteessa vaauksenkuljettajina toimivat kidehilaan syntyvät elektoniaukot ja vapaat elektonit. Osa puhtaan puolijohteen valenssielektoneista pääsee liikkumaan vapaasti kidehilassa, jolloin syntyy myös elektoniaukkoja. Vapaasti liikkuvien elektonien määä kasvaa lämpötilan kasvaessa. b) -tyypin puolijohde on seostettu puolijohde, jossa 14. yhmän alkuainetta olevaan puolijohteeseen on lisätty pieni määä jotain 13. yhmän alkuainetta. Tällöin osaan syntyvän kiteen sidoksista jää yhden elektonin vajaus eli elektoniaukko. Nämä elektoniaukot toimivat p-tyypin puolijohteen vaauksenkuljettajina. Tekijät ja WSOY Oppimateiaalit Oy, 006

15 hysica 6 OETTAJAN OAS 1. painos 15(16) 33. uolijohdediodi päästää lävitseen sähkövian päästösuunnassa vasta, kun päästösuuntainen jännite ylittää tietyn kynnysavon. Tämä kynnysjännite johtuu siitä, että diodin p- ja n-tyypin puolijohdeosien ajapintaan syntyy elektonien ja aukkojen ekombinoitumisesta johtuva sähkökenttä. Rekombinaatiossa p-tyypin puolijohteen puolelle syntyy negatiivinen vaaus ja n-tyypin puolelle positiivinen vaaus. Syntyneen sähkökentän suunta on siten kohti p-tyypin puolijohdetta. Diodi on kytketty päästösuuntaa, kun jännitelähteen positiivinen napa on kytketty p-tyypin puolijohteen puolelle ja negatiivinen napa n-puolelle. Tällöin jännitelähteen aiheuttaman sähkökentän suunta on vastakkainen ekombinaatiosta johtuvan sähkökentän suunnalle. Sähkövita syntyy vasta, kun diodin napojen välinen jännite on niin suui, että jännitelähteen aiheuttama sähkökenttä on voimakkaampi kuin ekombinaatiosta johtuva sähkökenttä. 34. uolijohdediodin läpi kulkee sähkövita vain, kun diodi on kytketty päästösuuntaa eli p-puoli kokeampaan potentiaaliin. Vita alkaa kulkea vasta, kun diodin napojen välinen jännite ylittää kynnysjännitteen, joka on yleensä 0, V 0,6 V. Kun diodi kytketään estosuuntaan, sen läpi kulkee puolijohteen itseisjohtavuuden vuoksi hyvin heikko vuotovita. 35. Tasasuuntauksessa vaihtojännitteellä synnytetään sähkövita, jonka suunta on koko ajan sama. Kokoaaltotasasuuntauksessa sinimuotoisen vaihtojännitteen kaikki puolijaksot saavat aikaan samansuuntaisen sähkövian. Kokoaaltotasasuuntaukseen käytetään kuvan mukaista tasasuuntaussiltaa, joka koostuu neljästä diodista. Tasasuunnattu sähkövian hetkellinen avo vaihtelee nollan ja jonkin huippuavon välillä. Tätä vaihtelua voidaan vaimentaa kytkemällä tasasuuntaussillan antopuolelle napojen innalle kuvan mukaisesti kondensaattoi. Tekijät ja WSOY Oppimateiaalit Oy, 006

16 hysica 6 OETTAJAN OAS 1. painos 16(16) 36. Takastellaan sellaista kytkentää, jossa tansistoia ohjataan säätämällä kantavitaa (kannan ja emittein välinen vita), minkä seuauksena kollektoivita (kollektoin ja emittein välinen vita) muuttuu. Tansistoeille käytetään myös muunlaisia kytkentöjä. a) Tansistoin kollektoin ja emittein välistä sähkövitaa voidaan säädellä muuttamalla kannan ja emittein välistä sähkövitaa. ienet muutokset kannan ja emittein välisen sähköviassa aiheuttavat kollektoin ja emittein välisessä sähköviassa paljon suuempia muutoksia. Tietyillä kanta-emittei -piiin sähkövian avoilla kollektoiemittei -piiin sähkövita muuttuu hyvin lineaaisesti. Tällä alueella tansistoia voidaan käyttää kytkimenä. b) Tansistoin käyttäminen kytkimenä peustuu siihen, että sähkövita alkaa kulkea kollektoipiiissä vasta, kun kannan ja emittein välinen jännite ylittää niiden ajapinnan kynnysjännitteen. Tämän jännitteen ylittäminen avaa kollektoipiiin. Tekijät ja WSOY Oppimateiaalit Oy, 006

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma.

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma. Ketaustehtäviä 1. b) Vastuksen esistanssi on U 4,5 V R 53,5714 Ω. I,84 A Vastuksen läpi kulkevan sähkövian suuuus uudessa tapauksessa on U 1 V I ma. R 53,5714 Ω. b) Koska vastukset on kytketty innan, kummankin

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

Sähkötekiikka muistiinpanot

Sähkötekiikka muistiinpanot Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Fysiikka 6. Sähkö. Kustannusosakeyhtiö Tammi Helsinki

Tehtävien ratkaisut. Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen. Fysiikka 6. Sähkö. Kustannusosakeyhtiö Tammi Helsinki Tehtävien atkaisut Heikki Lehto Raimo Havukainen Jukka Maalampi Janna Leskinen Fysiikka 6 Sähkö Kustannusosakeyhtiö Tammi Helsinki . painos Tekijät ja Kustannusosakeyhtiö Tammi, 0 ISBN: 978-95-3-5708-

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue

PUOLIJOHTEET + + - - - + + + - - tyhjennysalue PUOLIJOHTEET n-tyypin- ja p-tyypin puolijohteet - puolijohteet ovat aineita, jotka johtavat sähköä huonommin kuin johteet, mutta paremmin kuin eristeet (= eristeen ja johteen välimuotoja) - resistiivisyydet

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä

DEE Sähkötekniikan perusteet Tasasähköpiirien lisätehtäviä DEE-0 Sähkötekniikan peusteet Tasasähköpiiien lisätehtäviä Laske oheisen piiin vita E = V, R = 05, R =, R 3 = 05, R 4 = 05, R 5 = 05 Ykköstehtävän atkaisuehdotus: Kun kytkentä on oheisen kuvan mukainen,

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ

DIODIN OMINAISKÄYRÄ TRANSISTORIN OMINAISKÄYRÄSTÖ 1 IOIN OMINAISKÄYRÄ JA TRANSISTORIN OMINAISKÄYRÄSTÖ MOTIVOINTI Työ opettaa mittaamaan erityyppisten diodien ominaiskäyrät käyttämällä oskilloskooppia XYpiirturina Työssä opetellaan mittaamaan transistorin

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua:

Jännitteenjaolla, sekä sarjaan- ja rinnankytkennällä saadaan laskettua: DEE-11000 Piiianalyysi Hajoitus 6 (ketaus) / viikko 8 4 Laske oheisen piiin jännite v g ännitteenjaolla, sekä sajaan- ja innankytkennällä saadaan laskettua: 5 U5 0 U s U s 80 5 15 1 1 1 1 1 1 1 0 40 16

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava

FYSIIKKA. Pasi Ketolainen Mirjami Kiuru. Helsingissä Kustannusosakeyhtiö Otava FYSKK Pasi Ketolainen Mirjami Kiuru Helsingissä Kustannusosakeyhtiö Otava Sisällys Ylioppilastutkinnon fysiikan koe... 4 Kokeen rakenne... 4 Erilaisia tehtävätyyppejä... 5 Tehtävien pisteytys... 0 FY Fysiikka

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2007

MAOL-Pisteitysohjeet Fysiikka kevät 2007 MAOL-Pisteityshjeet Fysiikka kevät 007 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tuls, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

1. Tasavirtapiirit ja Kirchhoffin lait

1. Tasavirtapiirit ja Kirchhoffin lait Kimmo Silvonen, Sähkötekniikka ja elektroniikka, Otatieto 2003. Tasavirtapiirit ja Kirchhoffin lait Sähkötekniikka ja elektroniikka, sivut 5-62. Versio 3..2004. Kurssin Sähkötekniikka laskuharjoitus-,

Lisätiedot

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE

B sivu 1(6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE B sivu 1(6) TEHTÄVÄOSA 7.6.2004 AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE YLEISOHJEITA Tehtävien suoritusaika on 2 h 45 min. Osa 1 (Tekstin ymmärtäminen) Osassa on 12 valintatehtävää. Tämän

Lisätiedot

RATKAISUT: 17. Tasavirtapiirit

RATKAISUT: 17. Tasavirtapiirit Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

Diodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi

Diodit. I = Is * (e U/n*Ut - 1) Ihanteellinen diodi Diodit Puolijohdediodilla on tasasuuntaava ominaisuus, se päästää virran lävitseen vain yhdessä suunnassa. Puolijohdediodissa on samassa puolijohdepalassa sekä p-tyyppistä että n-tyyppistä puolijohdetta.

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu

TN T 3 / / SÄH Ä KÖAS A IOI O TA T Vi taniemen koulu TN 3 / SÄHKÖASIOITA Viitaniemen koulu SÄHKÖSTÄ YLEISESTI SÄHKÖ YMPÄRISTÖSSÄ = monen erilaisen ilmiön yhteinen nimi = nykyihminen tulee harvoin toimeen ilman sähköä SÄHKÖN MUODOT SÄHKÖN MUODOT pistorasioista

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

TDC-CD TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. TDC-CD_Fin.doc 2008-02-01 / BL 1(5)

TDC-CD TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA. TDC-CD_Fin.doc 2008-02-01 / BL 1(5) TDC-ANTURI RMS-CD MITTAUSJÄRJESTELMÄLLE KÄSIKIRJA _Fin.doc 2008-02-01 / BL 1(5) SISÄLTÖ 1. TEKNISET TIEDOT 2. MALLIN KUVAUS 3. TOIMINNON KUVAUS 4. UUDELLEENKÄYTTÖOHJEET 5. KÄÄMITYKSEN TARKASTUS 1. TEKNISET

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,

Lisätiedot

Aineopintojen laboratoriotyöt I. Ominaiskäyrät

Aineopintojen laboratoriotyöt I. Ominaiskäyrät Aineopintojen laboratoriotyöt I Ominaiskäyrät Aki Kutvonen Op.nmr 013185860 assistentti: Tommi Järvi työ tehty 31.10.2008 palautettu 28.11.2008 Tiivistelmä Tutkittiin elektroniikan peruskomponenttien jännite-virtaominaiskäyriä

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström

PIIRIANALYYSI. Harjoitustyö nro 7. Kipinänsammutuspiirien mitoitus. Mika Lemström PIIRIANAYYSI Harjoitustyö nro 7 Kipinänsammutuspiirien mitoitus Mika emström Sisältö 1 Johdanto 3 2 RC-suojauspiiri 4 3 Diodi suojauspiiri 5 4 Johtopäätos 6 sivu 2 [6] Piirianalyysi Kipinänsammutuspiirien

Lisätiedot

MAOL-Pisteityssuositus Fysiikka syksy 2013

MAOL-Pisteityssuositus Fysiikka syksy 2013 MAOL Ry Sivu / 3 MAOL-Pisteityssuositus Fysiikka syksy 03 Tyypillisten virheiden aiheuttamia pistemenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe - /3 p - laskuvirhe, epämielekäs tulos, vähintään

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

4B. Tasasuuntauksen tutkiminen oskilloskoopilla.

4B. Tasasuuntauksen tutkiminen oskilloskoopilla. TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 4B. Tasasuuntauksen tutkiminen oskilloskoopilla. Teoriaa oskilloskoopista Oskilloskooppi on laite, joka muuttaa sähköisen signaalin näkyvään muotoon. Useimmiten sillä

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot