Sähkökentät ja niiden laskeminen I

Koko: px
Aloita esitys sivulta:

Download "Sähkökentät ja niiden laskeminen I"

Transkriptio

1 ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä 1.. Gaussin lain diffeentiaalimuoto ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa keskitytään vaauksien aiheuttaman sähkökentän laskemiseen. Muuttuvan magneettikentän aiheuttaman sähkökentän laskemiseen peehdytään kappaleessa ähkömagneettinen induktio. sittelemme tässä kappaleessa seuaavat menetelmät: pistevaausten aiheuttaman sähkökentän laskeminen, jatkuvan vaauksen sähkökentän laskeminen paloittelumenetelmällä ja sähkökentän laskeminen Gaussin lain avulla. Gaussin laista voi valita integaalimuodon tai diffeentiaalimuodon. Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gadientti ja kuvalähdepeiaate Gaussin lain integaalimuoto Gaussin lakia voidaan käyttää sähkökentän laskemiseen tietyissä symmetisissä tapauksissa. Myöhemmin keotaan lisää siitä, milloin Gaussin lakia kannattaa käyttää ja milloin sitä ei voi käyttää. Gaussin lain integaalimuoto on d sis. Tämä on sähkömagnetiikan täkeimpiä yhtälöitä ja tätä kannattaa ehdottomasti opetella käyttämään. Mitä tämä Gaussin lain integaalimuoto sitten takoittaa? iinä on ilmaistu suljetun pinnan läpäisevä sähkökentän vuo kahdella tavalla. ähkökentän vuo ähkökentän vuon ymmätää ehkä havainnollisimmin kenttäviivojen avulla. Tuomo Nygénin laatimasta kussin 76619A ähkömagnetismi monisteesta löytyy seuaava kuvaus kenttäviivoista:

2

3 Voidaan ajatella, että sähkökentän vuo on kenttäviivojen lukumäää tai ainakin veannollinen siihen. iellä, missä kenttäviivoja on paljon, vuota on paljon ja päinvastoin. Jos kenttäviivoja on tiheässä, pienenkin pinta-alan läpi menee suui vuo, mutta havojen kenttäviivojen alueella isokaan pinta-ala ei keää suuta vuota. Jos sinulla on silmukka, jonka läpi haluat saada menemään mahdollisimman paljon vuota, sinun kannattaa asettaa silmukka kohtisuoaan kenttäviivoja vastaan. Tieteellisempi esitys sähkökentän vuolle on: d, missä d on pinta-alkiovektoi. Pinta-alkiovektoi on kohtisuoassa pintaa vastaan ja sen itseisavo on pinta-alkion d suuuinen (yksikkönä neliömeti. Kahden vektoin pistetulo voidaan tunnetusti saattaa muotoon d dcos, missä ψ on vektoin ja vektoin d välinen kulma. Katso kuva! ψ Jos sähkökenttä on vakio pinnalla, vuon lausekkeeksi tulee yksinketaisesti Nyt voidaan päätellä, että pistevaauksen lähettämä kokonaisvuo on: 1 ( Pistevaaushan lähettää joka suuntaan yhtä paljon vuota, eli sähkökenttä on vakio sen - säteisen pallon pinnalla, jonka keskipisteessä pistevaaus on. Kaikki pistevaauksen lähettämä vuo menee tietysti umpinaisen, pistevaausta ympäöivän pallon läpi. Pallon pinta-ala on π. Voidaan esittää yleisesti: Vaaus, jonka suuuus on, lähettää ympäilleen sähkökentän vuon /ε olipa vaauksen muoto millainen tahansa.

4 Tätäkin asiaa on helpompi käsitellä kenttäviivojen avulla. ähköinen vaaus aiheuttaa sähkökentän. ähkökenttää voidaan kuvata kenttäviivojen avulla. Tietystä määästä vaausta lähtee tietty määä kenttäviivoja. Jos vaauksen ympäille asetetaan suljettu pinta, nämä kenttäviivat lävistävät pinnan ainakin kean. d d d Jos suljetun pinnan muoto on sellainen, että kenttäviivat kulkevat sen lävitse useamman kean, esimekiksi n ketaa, sisällä olevalle vaaukselle n on paiton ja ulkopuolella oleville paillinen. Ulos meneville viivoille tulo ds on positiivinen (positiiviselle vaaukselle ja sisään meneville negatiivinen. Näin ulkopuolella oleville vaauksille tulojen ds summa tulee nollaksi ja sisäpuolella oleville kyseisten tulojen summa on ds. simekki 1: Ohuesta langasta tehdään suoakaiteen muotoinen silmukka, jonka pituus on a ja leveys b. ilmukka asetetaan sähkökenttään, jonka voimakkuus on, siten että sähkökentän voimaviivat ja silmukan taso muodostavat kulman θ. Mikä sähkökentän vuo menee silmukan läpi, kun a = 1 cm, b = 5, cm, θ = 7 o ja = V/m? θ atkaisu: ähkökentän vuo määitellään: d, missä d on pinta-alkiovektoi.

5 Pistetulo voidaan saattaa muotoon d dcos d välinen kulma, tässä tapauksessa 9 o θ = 5 o., missä ψ on vektoin ja vektoin ähkökentän vuo on nyt: d dcos Koska sähkökenttä ja kulma ψ ovat vakioita, ja cosψ voidaan ottaa integaalimekin eteen ja sähkökentän vuo saadaan laskettua: dcos cos d (cos ab V (cos5 m (.1m(.5m 1Vm 1Nm / C Integaali d takoitti tässä yksinketaisesti silmukan pinta-alaa = ab. ψ θ simekki : Minkä sähkökentän vuon pistevaaus = + 1, μc aiheuttaa 1, metin päässä olevan pinnan A läpi maksimissaan? Pinta A on euon kolikon suuuinen. atkaisu: Pistevaauksen ympäilleen lähettämän sähkökentän vuo on. Tämä vuo jakaantuu tasaisesti kaikkiin suuntiin. Mitä kauemmaksi siiytään, sitä pienemmäksi vuon tiheys menee. Kymmenen metin etäisyydellä kyseinen vuo on jakaantunut pinta-alalle.m (1m. uon kolikon halkaisija on noin mm ja pinta-ala ( ( Maksimivuo saadaan menemään pinnan läpi, kun kolikko asetetaan kohtisuoaan tulevaa vuota vastaan, sillä tällöin pistetulo d on suuin mahdollinen: d.

6 d Koska vuo osuus menee tasaisesti pinta-alaan (1m, pinta-alaan ( m vuosta menee..m ( ( 6 1, 1 C(,m Nm,7 1 C (1m 16 8,85 1 (1m C Nm,7Vm (Kun teet yksikkötakastelua, muista että J = Nm = VC. Tässä laskussa on ajateltu, että 1 metin etäisyydellä pistevaauksesta sähkökentän voimaviivat ovat lähes yhdensuuntaiset, jolloin d ds. simekki : inulla on epämäääisen muotoinen muovikappale, jonka kokonaisvaaus on. Laitat muovikappaleen jätesäkkiin ja suljet säkin suun tiukasti. Mikä sähkökentän (kokonaisvuo menee jätesäkistä läpi. atkaisu: ähköisesti vaattu muovikappale aiheuttaa ympäilleen vuon /ε. Koko tämä vuo tulee jätesäkin pinnan läpi. Jos jätesäkin pinta on utussa, vuo voi mennä jätesäkin läpi useita ketoja, mutta yhteenlaskettu kokonaisvuo on kuitenkin tuo /ε.

7 uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vaaus voi olla jakautunut tasaisesti aineeseen eli vaausjakauma on silloin vakio. Tällöin vaaustiheys aineessa (tilavuus V on V Vastaavasti jos pinnalle on jakautunut tasaisesti vaaus, on pinta-vaaustiheys eli vaauskate: ähköopissa käytetään myös käsitettä vaaus pituusyksikköä kohden. Tätä sanotaan joskus viivavaaukseksi: L Vaaustiheyksiä laskettaessa tavitaan pallon pinta-alan lauseketta ja pallon tilavuuden lauseketta. Tentissä oletetaan, että opiskelija joko osaa nämä ulkoa tai osaa johtaa nämä. Jos vaaustiheys aineessa ei ole vakio, vaan noudattaa jotain tunnettua yhtälöä, kokonaisvaaus saadaan integoimalla. simekiksi kokonaisvaaus tilavuudessa V, jossa on paikasta iippuva vaaustiheys ρ, lasketaan seuaavasti V ( dv Pinnalla, jossa on vaaustiheys σ(, lasketaan: ( d Pinta- ja tilavuusalkioita ei koodinaatistoissa on kappaleessa Laskemisen avuksi. Kyseinen kappale on linkissä: simekki : Pitkässä langassa on vaaustiheys pituusyksikköä kohden λ =,. 1-6 C/m. Kuinka suui vaaus on tämän langan osassa, joka on metin pituinen? atkaisu: = λl =,. 1-6 C/m. 1 m =,. 1-6 C

8 simekki 5: Vaaus on jakautunut tasaisesti -säteiseen umpinaiseen palloon. Mikä on pallon vaaustiheys? Kuinka paljon vaausta on tämän pallon pintakeoksessa, joka on D:n paksuinen? atkaisu: Vaaustiheys on vakio eli vaaus on jakaantunut tasaisesti pallon tilavuuteen, joka on V Vaaustiheys on silloin: V D:n paksuisen pallokuoen tilavuus on: ] ( [ ( ' D D V Kyseisessä pallokuoessa on vaaus: ] ( [ ] ( [ ' ' D D V simekki 6: Ympyänmuotoisessa -säteisessä levyssä vaaus pintayksikköä kohden (vaauskate iippuu säteestä seuaavan yhtälön mukaisesti: (1 ( Mikä on koko levyn vaaus? D

9 atkaisu: Käytetään yhtälöä: ( d s = kokonaispintavaaus ympyälevyllä d = pinta-alkio s Pinta-alkio sylinteikoodinaatistossa sylintein kannessa on kappaleen Laskemisen avuksi mukaan d dd. ijoitamme integaaliin vaauskatteen ja pinta-alkion: s ( d ( (1 d 6 d (1 d d ( d d /( Voidaan käyttää myös sellaista pinta-alkiota, jossa on vain yksi muuttuja. Otetaan pintaalkioksi ympyäengas, jonka säde on ja leveys (säteen suunnassa d. Tällaisen ympyäenkaan ala on kehän pituus ketaa leveys, koska engas on hyvin ohut. d iis pinta-alkio tässä tapauksessa on d = π d. Pinta-alkio on mekitty kuvaan mustalla. (Fyysikot käyttävät paljon tällaisia yhden muuttujan pinta-alkioita. Kun integoidaan yli koko ympyälevyn, saadaan kokonaisvaaus: s ( d ( (1 ( d 6 ( d /(

10 Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: d sis Gaussin laki peustuu siihen, että suljetun pinnan läpi kulkeva sähkökentän vuo on veannollinen tämän suljetun pinnan sisälle jäävän vaauksen määään. Näin on iippumatta pinnan muodosta ja vaausjakauman muodosta. Gaussin lakia ei kuitenkaan voi käyttää sähkökentän laskemiseen kuin tietyissä symmetisissä tapauksissa. Laskuvinkkejä: Mieti ensin, voiko kyseisessä tehtävässä käyttää Gaussin lakia vai pitääkö vaaus paloitella pieniksi vaausalkioiksi ja sen jälkeen integoida. (Katso kappale Menetelmän valinta sähkökenttiä laskettaessa. Piiä vaauksista lähtevät kenttäviivat. dellä keottiin kenttäviivojen ominaisuuksista. Lisää tietoa saat sähkökentän suunnista, kun laskemme sähkökenttiä paloittelumenetelmällä. Valitse sitten Gaussin suljettu pinta. e on yleensä näissä laskuissa joko pallo tai sylintei. Pistevaauksille, palloille ja pallokuoille valitaan pallon muotoinen Gaussin pinta. Pitkille langoille, sylinteeille, sylinteikuoille valitaan sylintein muotoinen Gaussin pinta, joka asetetaan langan tai sylintein suuntaisesti. Tasoille ja tasomaisille ajapinnoille voidaan käyttää myös sylinteiä, mutta nyt sylintei asetetaan kohtisuoaan tasoa vastaan siten, että se kulkee tason läpi. Katso jäljempänä oleva kuva! Pallon muotoinen Gaussin pinta piietään siten, että pinta on siinä kohdassa, missä sähkökenttä halutaan laskea. ylintein muotoinen Gaussin pinta piietään siten, että joko kansi tai vaippa (iippuu tapauksesta on siinä kohdassa, missä sähkökenttä pitää laskea. tsi ne kohdat, missä Gaussin pinta ja kenttäviivat ovat yhdensuuntaiset. iellä tulo on nolla. ds tsi seuaavaksi ne kohdat, joissa Gaussin pinta ja kenttäviivat ovat kotisuoassa toisiaan vastaan. iellä ds voidaan kijoittaa ds. Jos Gaussin pinta on oikein valittu, yleensä edellisen kohdan pinnalla sähkökenttä on vakio, jolloin voidaan ottaa integaalimekin eteen. Nyt d on pelkkä pinta-ala niille alueille, joilla Gaussin pinta ja kenttäviivat ovat kohtisuoassa. Huomaa, että nyt ei enää ole välttämättä kyseessä suljettu pinta, jolle mekittäisiin d Laske seuaavaksi Gaussin lain oikea puoli eli määitä suljetun pinnan sisään jäävät vaaukset I. Jos vaausjakauma ei ole vakio, integoidaan.

11 Mekitse yhtä suuiksi se, minkä sait Gaussin lain vasemmalta puolelta ja se, minkä sait Gaussin lain oikealta puolelta. atkaise yhtälöstä sähkökenttä. euaavassa on esitetty eilaisia tilanteita ja niihin sopivia Gaussin pintoja. Pallosymmetinen vaausjakauma: Gaussin pinta ylinteisymmetinen vaausjakauma: Gaussin pinta L

12 Tasomainen vaausjakauma tai ajapinta: Gaussin pinta Täällä sähkökenttä voi olla ylöstai alaspäin tai nolla. simekki 7: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. atkaisu: Valitaan Gaussin pinnaksi pallo, jonka säde on isompi kuin. Gaussin pinta

13 (Positiivisesta pistevaauksesta ja positiivisesti vaatusta pallosta lähtee säteettäin ulospäin sähkökentän kenttäviivoja, jotka ovat kohtisuoassa kyseisen vaatun pallon pintaa vastaan. ähkökenttävektoi on siis kohtisuoassa myös Gaussin pallon (joka on ulompana pintaa vastaan ja yhdensuuntainen pinta-alkiovektoin kanssa, josta syystä vektoeiden ja d pistetulosta tulee tavallinen skalaaitulo d. Lisäksi sähkökentän itseisavo on symmetian vuoksi vakio kyseisellä pinnalla, jolloin voidaan ottaa integaalimekin eteen. Näiden kahden ehdon peusteella saamme Gaussin lain vasemman puolen muotoon: d d d Oikea puoli saadaan helposti, sillä Gaussin pinnan sisäpuolelle jäävä vaaus on sis =. Nyt saamme lopulta: li tasaisesti vaatun pallon kenttä on sama kuin pistevaauksen kenttä. simekki 8: Ääettömän pitkässä suoassa langassa on vaaus pituusyksikköä kohden = λ. Laske sähkökenttä :n etäisyydellä langasta. (Langan poikkileikkaus on ympyä, jonka säde on. atkaisu: Käytetään Gaussin lakia. Gaussin laki: d sis Nyt valitaan Gaussin pinnaksi sylintei, jonka pituus on L ja pohjan säde (>. Lasketaan ensin yhtälön vasen puoli. d on pinta-alkiovektoi. en itseisavo eli suuuus on pinta-alkion d suuuinen ja sen suunta on kohtisuoaan pintaa vastaan. on sähkökenttä ja se on tällaisen ääettömän pitkän langan tapauksessa kohtisuoassa lankaa vastaan.

14 Kuvasta nähdään, että Gaussin pintana toimivan sylintein vaipalla ja d ovat yhdensuuntaisia. ylintein päissä sen sijaan ja d ovat kohtisuoassa. Miten käy pistetulon d? Kun vektoit ovat kohtisuoassa toisiaan vastaan, niiden välinen pistetulo tulee nollaksi. Näin käy sylintein päissä. Kun vektoit ovat yhdensuuntaisia, niiden välinen pistetulo tulee pelkäksi itseisavojen tuloksi eli tässä tapauksessa d:ksi. Näin käy vaipalla. L (dellä on sovellettu kaavaa: A B A B cos, missä α on vektoeiden A ja B välinen kulma. Paloitellaan Gaussin lain vasen puoli: d d d d d d vaippa päät vaippa vaippa vaippa L saatiin ottaa pois integaalimekin sisältä, sillä sähkökentän itseisavo on vakio vaipan alueella, koska vaippa on vakioetäisyydellä langasta. Tällöin integaali: d vaippa kuvaa pelkkää vaipan alaa, joka on πl. Gaussin lain vasen puoli saatiin kuntoon. Nyt oikea puoli: sis takoitti Gaussin pinnan sisään jäävää vaausta. Lasketaan siis sylintein sisään jäävä vaaus. ylintein pituus on L. Langassa on vaaus pituusyksikköä kohden λ, joten sylintein sisään jää sis = Lλ. L Nyt saadaan Gaussin laki muotoon: L (Kuvan olen piitänyt sillä oletuksella, että langan vaaus on positiivinen.

15 simekki 9: Tasaisesti vaatussa -säteisessä pallossa on vaaustiheys ρ. Laske sähkökenttä pallon sisäpuolella. atkaisu: Gaussin pinnaksi valitaan taas pallo. Gaussin lain vasemmasta puolesta tulee samanlainen kuin simekissä 7 (ja samoin peustein, nyt vain on pienempi kuin. Oikealla puolella pitää laskea sis eli -säteisen pallon sisäpuolelle jäävä vaaus. e on helppoa, koska vaaustiheys on vakio: sis = ρv sis = ρ(/π Nyt Gaussin laki on saatu muotoon:

16 simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun >. atkaisu:

17

18 simekki 11: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun >. atkaisu:

19

20 simekki 1: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy. y atkaisu: x

21 1.. Gaussin lain diffeentiaalimuoto Gaussin lain integaalimuodosta voidaan johtaa Gaussin lauseen avulla diffeentiaalimuoto: Diffeentiaalimuoto on kätevä silloin, kun on laskettava sähkökenttä systeemissä, jossa vaaustiheys ei ole vakio, kuten esimekeissä 1-1. Näissä laskuissa tavitset divegenssiopeaattoeita ei koodinaatistoissa. uoakulmaisessa koodinaatistossa: ylinteikoodinaatistossa: Pallokoodinaatistossa: Kun systeemissä on pistevaaus tai kappale, jossa on vakiovaaustiheys, tällä menetelmällä laskeminen voi olla paljon monimutkaisempaa kuin käyttäen Gaussin lain integaalimuotoa. Lasketaanpa simekki 7 tällä menetelmällä: simekki 1: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. Käytä Gaussin lain diffeentiaalimuotoa. atkaisu: Pallon ulkopuolella vaaustiheys on nolla. Käytetään pallokoodinaatistoa: 1 ( 1 sin ( sin 1 sin

22 Tiedämme, että sähkökentällä on ainoastaan adiaalinen komponentti eli komponentit θ ja φ ovat nollia. Yhtälö sievenee muotoon: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Nyt saamme: C C (* Joudumme laskemaan sähkökentän myös pallon sisäpuolella, jolloin saamme eunaehdosta atkaistua vakion C. Pallon sisällä on vaaustiheys ijoitetaan vaaustiheys Gaussin lain diffeentiaalimuotoon: sin 1 sin ( sin 1 ( 1 Poistetaan yhtälöstä kulmaiippuvat komponentit: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Integoidaan: d d ( (** ähkökentän täytyy olla jatkuva kohdassa =, jolloin (*:stä ja (**:stä saadaan: C C

23 li nyt vasta saimme sähkökentän pallon ulkopuolella: C Kokeillaan, miten esimekit 1 1 onnistuvat Gaussin lain diffeentiaalimuodolla. Huomataan, että menetelmä on veattain kätevä tällaisissa systeemeissä. simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

24

25 simekki 15: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

26 simekki 16: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy käyttäen Gaussin lain diffeentiaalimuotoa. y atkaisu: x

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

Sähköstaattisen potentiaalin laskeminen

Sähköstaattisen potentiaalin laskeminen Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

4. Käyrän lokaaleja ominaisuuksia

4. Käyrän lokaaleja ominaisuuksia 23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille! 5.4.013 Jussi Tyni 1. Selitä ja piirrä seuraavat lyhyesti: a) Kehäkulma ja keskikulma b) Todista, että kolmion kulmien summa on 180 astetta. Selitä päätelmiesi perustelut.. a) Suorakulmaisen kolmion kateetit

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Ympyrä sekä kehä-, keskus- ja tangenttikulmat

Ympyrä sekä kehä-, keskus- ja tangenttikulmat 31.1.017 Ympyä sekä kehä-, keskus- ja tangenttikulmat GEMETRI M3 Ympyä: Ympyä on niiden tason pisteiden joukko, jotka ovat säteen etäisyydellä keskipisteestä. Sanotaan, että ympyä on tällaisten pisteiden

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa:

Materiaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa: Kevään 06 Pitkän matematiikan YO-kokeen TI-Nspie CAS -atkaisut Nämä atkaisut tety alusta loppuun TI-Nspie CX CAS -ojelmistolla ja tallennettu lopuksi PDF -muotoon. Takoituksena on avainnollistaa, miten

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Harjoitus 5 / viikko 7

Harjoitus 5 / viikko 7 DEE-000 Piiianalyysi Hajoitus 5 / viikko 7 5. Laske solmupistemenetelmällä oheisen kuvan esittämän piiin jännite ja vita i. 0k ma k k k i ma Solmupistemenetelmää käytettäessä takasteltavan kytkennän jännitelähteet

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokussi Fys10 Kevät 010 Jukka Maalampi LUENTO 5 Copyight 008 Peason Education, Inc., publishing as Peason Addison-Wesley. Newtonin painovoimateoia Knight Ch. 13 Satunuksen enkaat koostuvat

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Avaruusgeometrian perusteita

Avaruusgeometrian perusteita Avaruusgeometrian perusteita Määritelmä: Kolmiulotteisen avaruuden taso on sellainen pinta, joka sisältää kokonaan jokaisen sellaisen suoran, jonka kanssa sillä on kaksi yhteistä pistettä. Ts. taso on

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot