Sähkökentät ja niiden laskeminen I

Koko: px
Aloita esitys sivulta:

Download "Sähkökentät ja niiden laskeminen I"

Transkriptio

1 ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä 1.. Gaussin lain diffeentiaalimuoto ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa keskitytään vaauksien aiheuttaman sähkökentän laskemiseen. Muuttuvan magneettikentän aiheuttaman sähkökentän laskemiseen peehdytään kappaleessa ähkömagneettinen induktio. sittelemme tässä kappaleessa seuaavat menetelmät: pistevaausten aiheuttaman sähkökentän laskeminen, jatkuvan vaauksen sähkökentän laskeminen paloittelumenetelmällä ja sähkökentän laskeminen Gaussin lain avulla. Gaussin laista voi valita integaalimuodon tai diffeentiaalimuodon. Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gadientti ja kuvalähdepeiaate Gaussin lain integaalimuoto Gaussin lakia voidaan käyttää sähkökentän laskemiseen tietyissä symmetisissä tapauksissa. Myöhemmin keotaan lisää siitä, milloin Gaussin lakia kannattaa käyttää ja milloin sitä ei voi käyttää. Gaussin lain integaalimuoto on d sis. Tämä on sähkömagnetiikan täkeimpiä yhtälöitä ja tätä kannattaa ehdottomasti opetella käyttämään. Mitä tämä Gaussin lain integaalimuoto sitten takoittaa? iinä on ilmaistu suljetun pinnan läpäisevä sähkökentän vuo kahdella tavalla. ähkökentän vuo ähkökentän vuon ymmätää ehkä havainnollisimmin kenttäviivojen avulla. Tuomo Nygénin laatimasta kussin 76619A ähkömagnetismi monisteesta löytyy seuaava kuvaus kenttäviivoista:

2

3 Voidaan ajatella, että sähkökentän vuo on kenttäviivojen lukumäää tai ainakin veannollinen siihen. iellä, missä kenttäviivoja on paljon, vuota on paljon ja päinvastoin. Jos kenttäviivoja on tiheässä, pienenkin pinta-alan läpi menee suui vuo, mutta havojen kenttäviivojen alueella isokaan pinta-ala ei keää suuta vuota. Jos sinulla on silmukka, jonka läpi haluat saada menemään mahdollisimman paljon vuota, sinun kannattaa asettaa silmukka kohtisuoaan kenttäviivoja vastaan. Tieteellisempi esitys sähkökentän vuolle on: d, missä d on pinta-alkiovektoi. Pinta-alkiovektoi on kohtisuoassa pintaa vastaan ja sen itseisavo on pinta-alkion d suuuinen (yksikkönä neliömeti. Kahden vektoin pistetulo voidaan tunnetusti saattaa muotoon d dcos, missä ψ on vektoin ja vektoin d välinen kulma. Katso kuva! ψ Jos sähkökenttä on vakio pinnalla, vuon lausekkeeksi tulee yksinketaisesti Nyt voidaan päätellä, että pistevaauksen lähettämä kokonaisvuo on: 1 ( Pistevaaushan lähettää joka suuntaan yhtä paljon vuota, eli sähkökenttä on vakio sen - säteisen pallon pinnalla, jonka keskipisteessä pistevaaus on. Kaikki pistevaauksen lähettämä vuo menee tietysti umpinaisen, pistevaausta ympäöivän pallon läpi. Pallon pinta-ala on π. Voidaan esittää yleisesti: Vaaus, jonka suuuus on, lähettää ympäilleen sähkökentän vuon /ε olipa vaauksen muoto millainen tahansa.

4 Tätäkin asiaa on helpompi käsitellä kenttäviivojen avulla. ähköinen vaaus aiheuttaa sähkökentän. ähkökenttää voidaan kuvata kenttäviivojen avulla. Tietystä määästä vaausta lähtee tietty määä kenttäviivoja. Jos vaauksen ympäille asetetaan suljettu pinta, nämä kenttäviivat lävistävät pinnan ainakin kean. d d d Jos suljetun pinnan muoto on sellainen, että kenttäviivat kulkevat sen lävitse useamman kean, esimekiksi n ketaa, sisällä olevalle vaaukselle n on paiton ja ulkopuolella oleville paillinen. Ulos meneville viivoille tulo ds on positiivinen (positiiviselle vaaukselle ja sisään meneville negatiivinen. Näin ulkopuolella oleville vaauksille tulojen ds summa tulee nollaksi ja sisäpuolella oleville kyseisten tulojen summa on ds. simekki 1: Ohuesta langasta tehdään suoakaiteen muotoinen silmukka, jonka pituus on a ja leveys b. ilmukka asetetaan sähkökenttään, jonka voimakkuus on, siten että sähkökentän voimaviivat ja silmukan taso muodostavat kulman θ. Mikä sähkökentän vuo menee silmukan läpi, kun a = 1 cm, b = 5, cm, θ = 7 o ja = V/m? θ atkaisu: ähkökentän vuo määitellään: d, missä d on pinta-alkiovektoi.

5 Pistetulo voidaan saattaa muotoon d dcos d välinen kulma, tässä tapauksessa 9 o θ = 5 o., missä ψ on vektoin ja vektoin ähkökentän vuo on nyt: d dcos Koska sähkökenttä ja kulma ψ ovat vakioita, ja cosψ voidaan ottaa integaalimekin eteen ja sähkökentän vuo saadaan laskettua: dcos cos d (cos ab V (cos5 m (.1m(.5m 1Vm 1Nm / C Integaali d takoitti tässä yksinketaisesti silmukan pinta-alaa = ab. ψ θ simekki : Minkä sähkökentän vuon pistevaaus = + 1, μc aiheuttaa 1, metin päässä olevan pinnan A läpi maksimissaan? Pinta A on euon kolikon suuuinen. atkaisu: Pistevaauksen ympäilleen lähettämän sähkökentän vuo on. Tämä vuo jakaantuu tasaisesti kaikkiin suuntiin. Mitä kauemmaksi siiytään, sitä pienemmäksi vuon tiheys menee. Kymmenen metin etäisyydellä kyseinen vuo on jakaantunut pinta-alalle.m (1m. uon kolikon halkaisija on noin mm ja pinta-ala ( ( Maksimivuo saadaan menemään pinnan läpi, kun kolikko asetetaan kohtisuoaan tulevaa vuota vastaan, sillä tällöin pistetulo d on suuin mahdollinen: d.

6 d Koska vuo osuus menee tasaisesti pinta-alaan (1m, pinta-alaan ( m vuosta menee..m ( ( 6 1, 1 C(,m Nm,7 1 C (1m 16 8,85 1 (1m C Nm,7Vm (Kun teet yksikkötakastelua, muista että J = Nm = VC. Tässä laskussa on ajateltu, että 1 metin etäisyydellä pistevaauksesta sähkökentän voimaviivat ovat lähes yhdensuuntaiset, jolloin d ds. simekki : inulla on epämäääisen muotoinen muovikappale, jonka kokonaisvaaus on. Laitat muovikappaleen jätesäkkiin ja suljet säkin suun tiukasti. Mikä sähkökentän (kokonaisvuo menee jätesäkistä läpi. atkaisu: ähköisesti vaattu muovikappale aiheuttaa ympäilleen vuon /ε. Koko tämä vuo tulee jätesäkin pinnan läpi. Jos jätesäkin pinta on utussa, vuo voi mennä jätesäkin läpi useita ketoja, mutta yhteenlaskettu kokonaisvuo on kuitenkin tuo /ε.

7 uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vaaus voi olla jakautunut tasaisesti aineeseen eli vaausjakauma on silloin vakio. Tällöin vaaustiheys aineessa (tilavuus V on V Vastaavasti jos pinnalle on jakautunut tasaisesti vaaus, on pinta-vaaustiheys eli vaauskate: ähköopissa käytetään myös käsitettä vaaus pituusyksikköä kohden. Tätä sanotaan joskus viivavaaukseksi: L Vaaustiheyksiä laskettaessa tavitaan pallon pinta-alan lauseketta ja pallon tilavuuden lauseketta. Tentissä oletetaan, että opiskelija joko osaa nämä ulkoa tai osaa johtaa nämä. Jos vaaustiheys aineessa ei ole vakio, vaan noudattaa jotain tunnettua yhtälöä, kokonaisvaaus saadaan integoimalla. simekiksi kokonaisvaaus tilavuudessa V, jossa on paikasta iippuva vaaustiheys ρ, lasketaan seuaavasti V ( dv Pinnalla, jossa on vaaustiheys σ(, lasketaan: ( d Pinta- ja tilavuusalkioita ei koodinaatistoissa on kappaleessa Laskemisen avuksi. Kyseinen kappale on linkissä: simekki : Pitkässä langassa on vaaustiheys pituusyksikköä kohden λ =,. 1-6 C/m. Kuinka suui vaaus on tämän langan osassa, joka on metin pituinen? atkaisu: = λl =,. 1-6 C/m. 1 m =,. 1-6 C

8 simekki 5: Vaaus on jakautunut tasaisesti -säteiseen umpinaiseen palloon. Mikä on pallon vaaustiheys? Kuinka paljon vaausta on tämän pallon pintakeoksessa, joka on D:n paksuinen? atkaisu: Vaaustiheys on vakio eli vaaus on jakaantunut tasaisesti pallon tilavuuteen, joka on V Vaaustiheys on silloin: V D:n paksuisen pallokuoen tilavuus on: ] ( [ ( ' D D V Kyseisessä pallokuoessa on vaaus: ] ( [ ] ( [ ' ' D D V simekki 6: Ympyänmuotoisessa -säteisessä levyssä vaaus pintayksikköä kohden (vaauskate iippuu säteestä seuaavan yhtälön mukaisesti: (1 ( Mikä on koko levyn vaaus? D

9 atkaisu: Käytetään yhtälöä: ( d s = kokonaispintavaaus ympyälevyllä d = pinta-alkio s Pinta-alkio sylinteikoodinaatistossa sylintein kannessa on kappaleen Laskemisen avuksi mukaan d dd. ijoitamme integaaliin vaauskatteen ja pinta-alkion: s ( d ( (1 d 6 d (1 d d ( d d /( Voidaan käyttää myös sellaista pinta-alkiota, jossa on vain yksi muuttuja. Otetaan pintaalkioksi ympyäengas, jonka säde on ja leveys (säteen suunnassa d. Tällaisen ympyäenkaan ala on kehän pituus ketaa leveys, koska engas on hyvin ohut. d iis pinta-alkio tässä tapauksessa on d = π d. Pinta-alkio on mekitty kuvaan mustalla. (Fyysikot käyttävät paljon tällaisia yhden muuttujan pinta-alkioita. Kun integoidaan yli koko ympyälevyn, saadaan kokonaisvaaus: s ( d ( (1 ( d 6 ( d /(

10 Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: d sis Gaussin laki peustuu siihen, että suljetun pinnan läpi kulkeva sähkökentän vuo on veannollinen tämän suljetun pinnan sisälle jäävän vaauksen määään. Näin on iippumatta pinnan muodosta ja vaausjakauman muodosta. Gaussin lakia ei kuitenkaan voi käyttää sähkökentän laskemiseen kuin tietyissä symmetisissä tapauksissa. Laskuvinkkejä: Mieti ensin, voiko kyseisessä tehtävässä käyttää Gaussin lakia vai pitääkö vaaus paloitella pieniksi vaausalkioiksi ja sen jälkeen integoida. (Katso kappale Menetelmän valinta sähkökenttiä laskettaessa. Piiä vaauksista lähtevät kenttäviivat. dellä keottiin kenttäviivojen ominaisuuksista. Lisää tietoa saat sähkökentän suunnista, kun laskemme sähkökenttiä paloittelumenetelmällä. Valitse sitten Gaussin suljettu pinta. e on yleensä näissä laskuissa joko pallo tai sylintei. Pistevaauksille, palloille ja pallokuoille valitaan pallon muotoinen Gaussin pinta. Pitkille langoille, sylinteeille, sylinteikuoille valitaan sylintein muotoinen Gaussin pinta, joka asetetaan langan tai sylintein suuntaisesti. Tasoille ja tasomaisille ajapinnoille voidaan käyttää myös sylinteiä, mutta nyt sylintei asetetaan kohtisuoaan tasoa vastaan siten, että se kulkee tason läpi. Katso jäljempänä oleva kuva! Pallon muotoinen Gaussin pinta piietään siten, että pinta on siinä kohdassa, missä sähkökenttä halutaan laskea. ylintein muotoinen Gaussin pinta piietään siten, että joko kansi tai vaippa (iippuu tapauksesta on siinä kohdassa, missä sähkökenttä pitää laskea. tsi ne kohdat, missä Gaussin pinta ja kenttäviivat ovat yhdensuuntaiset. iellä tulo on nolla. ds tsi seuaavaksi ne kohdat, joissa Gaussin pinta ja kenttäviivat ovat kotisuoassa toisiaan vastaan. iellä ds voidaan kijoittaa ds. Jos Gaussin pinta on oikein valittu, yleensä edellisen kohdan pinnalla sähkökenttä on vakio, jolloin voidaan ottaa integaalimekin eteen. Nyt d on pelkkä pinta-ala niille alueille, joilla Gaussin pinta ja kenttäviivat ovat kohtisuoassa. Huomaa, että nyt ei enää ole välttämättä kyseessä suljettu pinta, jolle mekittäisiin d Laske seuaavaksi Gaussin lain oikea puoli eli määitä suljetun pinnan sisään jäävät vaaukset I. Jos vaausjakauma ei ole vakio, integoidaan.

11 Mekitse yhtä suuiksi se, minkä sait Gaussin lain vasemmalta puolelta ja se, minkä sait Gaussin lain oikealta puolelta. atkaise yhtälöstä sähkökenttä. euaavassa on esitetty eilaisia tilanteita ja niihin sopivia Gaussin pintoja. Pallosymmetinen vaausjakauma: Gaussin pinta ylinteisymmetinen vaausjakauma: Gaussin pinta L

12 Tasomainen vaausjakauma tai ajapinta: Gaussin pinta Täällä sähkökenttä voi olla ylöstai alaspäin tai nolla. simekki 7: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. atkaisu: Valitaan Gaussin pinnaksi pallo, jonka säde on isompi kuin. Gaussin pinta

13 (Positiivisesta pistevaauksesta ja positiivisesti vaatusta pallosta lähtee säteettäin ulospäin sähkökentän kenttäviivoja, jotka ovat kohtisuoassa kyseisen vaatun pallon pintaa vastaan. ähkökenttävektoi on siis kohtisuoassa myös Gaussin pallon (joka on ulompana pintaa vastaan ja yhdensuuntainen pinta-alkiovektoin kanssa, josta syystä vektoeiden ja d pistetulosta tulee tavallinen skalaaitulo d. Lisäksi sähkökentän itseisavo on symmetian vuoksi vakio kyseisellä pinnalla, jolloin voidaan ottaa integaalimekin eteen. Näiden kahden ehdon peusteella saamme Gaussin lain vasemman puolen muotoon: d d d Oikea puoli saadaan helposti, sillä Gaussin pinnan sisäpuolelle jäävä vaaus on sis =. Nyt saamme lopulta: li tasaisesti vaatun pallon kenttä on sama kuin pistevaauksen kenttä. simekki 8: Ääettömän pitkässä suoassa langassa on vaaus pituusyksikköä kohden = λ. Laske sähkökenttä :n etäisyydellä langasta. (Langan poikkileikkaus on ympyä, jonka säde on. atkaisu: Käytetään Gaussin lakia. Gaussin laki: d sis Nyt valitaan Gaussin pinnaksi sylintei, jonka pituus on L ja pohjan säde (>. Lasketaan ensin yhtälön vasen puoli. d on pinta-alkiovektoi. en itseisavo eli suuuus on pinta-alkion d suuuinen ja sen suunta on kohtisuoaan pintaa vastaan. on sähkökenttä ja se on tällaisen ääettömän pitkän langan tapauksessa kohtisuoassa lankaa vastaan.

14 Kuvasta nähdään, että Gaussin pintana toimivan sylintein vaipalla ja d ovat yhdensuuntaisia. ylintein päissä sen sijaan ja d ovat kohtisuoassa. Miten käy pistetulon d? Kun vektoit ovat kohtisuoassa toisiaan vastaan, niiden välinen pistetulo tulee nollaksi. Näin käy sylintein päissä. Kun vektoit ovat yhdensuuntaisia, niiden välinen pistetulo tulee pelkäksi itseisavojen tuloksi eli tässä tapauksessa d:ksi. Näin käy vaipalla. L (dellä on sovellettu kaavaa: A B A B cos, missä α on vektoeiden A ja B välinen kulma. Paloitellaan Gaussin lain vasen puoli: d d d d d d vaippa päät vaippa vaippa vaippa L saatiin ottaa pois integaalimekin sisältä, sillä sähkökentän itseisavo on vakio vaipan alueella, koska vaippa on vakioetäisyydellä langasta. Tällöin integaali: d vaippa kuvaa pelkkää vaipan alaa, joka on πl. Gaussin lain vasen puoli saatiin kuntoon. Nyt oikea puoli: sis takoitti Gaussin pinnan sisään jäävää vaausta. Lasketaan siis sylintein sisään jäävä vaaus. ylintein pituus on L. Langassa on vaaus pituusyksikköä kohden λ, joten sylintein sisään jää sis = Lλ. L Nyt saadaan Gaussin laki muotoon: L (Kuvan olen piitänyt sillä oletuksella, että langan vaaus on positiivinen.

15 simekki 9: Tasaisesti vaatussa -säteisessä pallossa on vaaustiheys ρ. Laske sähkökenttä pallon sisäpuolella. atkaisu: Gaussin pinnaksi valitaan taas pallo. Gaussin lain vasemmasta puolesta tulee samanlainen kuin simekissä 7 (ja samoin peustein, nyt vain on pienempi kuin. Oikealla puolella pitää laskea sis eli -säteisen pallon sisäpuolelle jäävä vaaus. e on helppoa, koska vaaustiheys on vakio: sis = ρv sis = ρ(/π Nyt Gaussin laki on saatu muotoon:

16 simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun >. atkaisu:

17

18 simekki 11: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun >. atkaisu:

19

20 simekki 1: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy. y atkaisu: x

21 1.. Gaussin lain diffeentiaalimuoto Gaussin lain integaalimuodosta voidaan johtaa Gaussin lauseen avulla diffeentiaalimuoto: Diffeentiaalimuoto on kätevä silloin, kun on laskettava sähkökenttä systeemissä, jossa vaaustiheys ei ole vakio, kuten esimekeissä 1-1. Näissä laskuissa tavitset divegenssiopeaattoeita ei koodinaatistoissa. uoakulmaisessa koodinaatistossa: ylinteikoodinaatistossa: Pallokoodinaatistossa: Kun systeemissä on pistevaaus tai kappale, jossa on vakiovaaustiheys, tällä menetelmällä laskeminen voi olla paljon monimutkaisempaa kuin käyttäen Gaussin lain integaalimuotoa. Lasketaanpa simekki 7 tällä menetelmällä: simekki 1: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. Käytä Gaussin lain diffeentiaalimuotoa. atkaisu: Pallon ulkopuolella vaaustiheys on nolla. Käytetään pallokoodinaatistoa: 1 ( 1 sin ( sin 1 sin

22 Tiedämme, että sähkökentällä on ainoastaan adiaalinen komponentti eli komponentit θ ja φ ovat nollia. Yhtälö sievenee muotoon: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Nyt saamme: C C (* Joudumme laskemaan sähkökentän myös pallon sisäpuolella, jolloin saamme eunaehdosta atkaistua vakion C. Pallon sisällä on vaaustiheys ijoitetaan vaaustiheys Gaussin lain diffeentiaalimuotoon: sin 1 sin ( sin 1 ( 1 Poistetaan yhtälöstä kulmaiippuvat komponentit: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Integoidaan: d d ( (** ähkökentän täytyy olla jatkuva kohdassa =, jolloin (*:stä ja (**:stä saadaan: C C

23 li nyt vasta saimme sähkökentän pallon ulkopuolella: C Kokeillaan, miten esimekit 1 1 onnistuvat Gaussin lain diffeentiaalimuodolla. Huomataan, että menetelmä on veattain kätevä tällaisissa systeemeissä. simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

24

25 simekki 15: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

26 simekki 16: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy käyttäen Gaussin lain diffeentiaalimuotoa. y atkaisu: x

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Sähköstaattisen potentiaalin laskeminen

Sähköstaattisen potentiaalin laskeminen Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4 MAB: Ympyä 4 Aluksi Tämän luvun aihe on ympyä. Ympyä on yksi geometisista peusmuodoista ja on sinulle ennestään hyvinkin tuttu. Mutta oletko tullut ajatelleeksi, että ympyää voidaan pitää säännöllisen

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

Yksinkertainen korkolasku

Yksinkertainen korkolasku Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

9 Klassinen ideaalikaasu

9 Klassinen ideaalikaasu 111 9 Klassinen ideaalikaasu 9-1 Klassisen ideaalikaasun patitiofunktio Ideaalikaasu on eaalikaasun idealisaatio, jossa molekyylien väliset keskimäääiset etäisyydet oletetaan hyvin suuiksi molekyylien

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n86633. Dynaaminen Kenttäteoria GENERAATTORI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jouko Esko n85748 Juho Jaakkola n86633 Dynaaminen Kenttäteoria GENERAATTORI Sivumäärä: 10 Jätetty tarkastettavaksi: 06.03.2008 Työn tarkastaja Maarit

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2008

Preliminäärikoe Pitkä Matematiikka 5.2.2008 Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise

Lisätiedot

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen

Kryogeniikka ja lämmönsiirto. DEE-54030 Kryogeniikka Risto Mikkonen DEE-54030 Kyogeniikka Kyogeniikka ja lämmönsiito 1 DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015 Lämmönsiion mekanismit '' q x ( ) x q '' h( s ) q '' 4 4 ( s su ) DEE-54030 Kyogeniikka Risto Mikkonen 5.5.015

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

HYDRODYNAMIIKKA 763654S. Erkki Thuneberg

HYDRODYNAMIIKKA 763654S. Erkki Thuneberg HYDRODYNAMIIKKA 763654S Ekki Thunebeg Fysiikan laitos Oulun yliopisto 2011 Jäjestelyjä Kussin vekkosivu on https://wiki.oulu.fi/display/763654s/etusivu Vekkosivulta löytyy luentomateiaali (tämä moniste),

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa 8. NESTEEN VIRTAUS 8.1 Bernoullin laki Tässä laboratoriotyössä tutkitaan nesteen virtausta ja virtauksiin liittyviä energiahäviöitä. Yleisessä tapauksessa nesteiden virtauksen käsittely on matemaattisesti

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

Kenguru 2013 Cadet (8. ja 9. luokka)

Kenguru 2013 Cadet (8. ja 9. luokka) sivu 1 / 12 3 pistettä 1. Annalla on neliöistä koostuva ruutupaperiarkki. Hän leikkaa paperista ruutujen viivoja pitkin mahdollisimman monta oikeanpuoleisessa kuvassa näkyvää kuviota. Kuinka monta ruutua

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen MTAJAT H. Honkann Muuntaja on lait, jossa nsiön vaihtovita saa aikaan muuttuvan magnttikntän muuntajasydämn. Tämä muuttuva magnttiknttä saa aikaan vian toisiokäämiin. Tasasähköllä muuntaja i toimi, tasavita

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä?

4. Varastossa on 24, 23, 17 ja 16 kg:n säkkejä. Miten voidaan toimittaa täsmälleen 100 kg:n tilaus avaamatta yhtään säkkiä? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 3.2.2012 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

PULLEAT VAAHTOKARKIT

PULLEAT VAAHTOKARKIT PULLEAT VAAHTOKARKIT KOHDERYHMÄ: Työ soveltuu alakouluun kurssille aineet ympärillämme ja yläkouluun kurssille ilma ja vesi. KESTO: Työ kestää n.30-60min MOTIVAATIO: Työssä on tarkoitus saada positiivista

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Teknis-luonnontieteellinen koulutusohjelma PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Kandidaatintyö Takastaja: lehtoi Risto Silvennoinen Palautuspäivä: 16.9.2008 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma.

Kertaustehtäviä. 1. b) Vastuksen resistanssi on U 4,5 V I 0,084 A Vastuksen läpi kulkevan sähkövirran suuruus uudessa tapauksessa on. I 220 ma. Ketaustehtäviä 1. b) Vastuksen esistanssi on U 4,5 V R 53,5714 Ω. I,84 A Vastuksen läpi kulkevan sähkövian suuuus uudessa tapauksessa on U 1 V I ma. R 53,5714 Ω. b) Koska vastukset on kytketty innan, kummankin

Lisätiedot