Sähkökentät ja niiden laskeminen I

Koko: px
Aloita esitys sivulta:

Download "Sähkökentät ja niiden laskeminen I"

Transkriptio

1 ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä 1.. Gaussin lain diffeentiaalimuoto ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa keskitytään vaauksien aiheuttaman sähkökentän laskemiseen. Muuttuvan magneettikentän aiheuttaman sähkökentän laskemiseen peehdytään kappaleessa ähkömagneettinen induktio. sittelemme tässä kappaleessa seuaavat menetelmät: pistevaausten aiheuttaman sähkökentän laskeminen, jatkuvan vaauksen sähkökentän laskeminen paloittelumenetelmällä ja sähkökentän laskeminen Gaussin lain avulla. Gaussin laista voi valita integaalimuodon tai diffeentiaalimuodon. Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gadientti ja kuvalähdepeiaate Gaussin lain integaalimuoto Gaussin lakia voidaan käyttää sähkökentän laskemiseen tietyissä symmetisissä tapauksissa. Myöhemmin keotaan lisää siitä, milloin Gaussin lakia kannattaa käyttää ja milloin sitä ei voi käyttää. Gaussin lain integaalimuoto on d sis. Tämä on sähkömagnetiikan täkeimpiä yhtälöitä ja tätä kannattaa ehdottomasti opetella käyttämään. Mitä tämä Gaussin lain integaalimuoto sitten takoittaa? iinä on ilmaistu suljetun pinnan läpäisevä sähkökentän vuo kahdella tavalla. ähkökentän vuo ähkökentän vuon ymmätää ehkä havainnollisimmin kenttäviivojen avulla. Tuomo Nygénin laatimasta kussin 76619A ähkömagnetismi monisteesta löytyy seuaava kuvaus kenttäviivoista:

2

3 Voidaan ajatella, että sähkökentän vuo on kenttäviivojen lukumäää tai ainakin veannollinen siihen. iellä, missä kenttäviivoja on paljon, vuota on paljon ja päinvastoin. Jos kenttäviivoja on tiheässä, pienenkin pinta-alan läpi menee suui vuo, mutta havojen kenttäviivojen alueella isokaan pinta-ala ei keää suuta vuota. Jos sinulla on silmukka, jonka läpi haluat saada menemään mahdollisimman paljon vuota, sinun kannattaa asettaa silmukka kohtisuoaan kenttäviivoja vastaan. Tieteellisempi esitys sähkökentän vuolle on: d, missä d on pinta-alkiovektoi. Pinta-alkiovektoi on kohtisuoassa pintaa vastaan ja sen itseisavo on pinta-alkion d suuuinen (yksikkönä neliömeti. Kahden vektoin pistetulo voidaan tunnetusti saattaa muotoon d dcos, missä ψ on vektoin ja vektoin d välinen kulma. Katso kuva! ψ Jos sähkökenttä on vakio pinnalla, vuon lausekkeeksi tulee yksinketaisesti Nyt voidaan päätellä, että pistevaauksen lähettämä kokonaisvuo on: 1 ( Pistevaaushan lähettää joka suuntaan yhtä paljon vuota, eli sähkökenttä on vakio sen - säteisen pallon pinnalla, jonka keskipisteessä pistevaaus on. Kaikki pistevaauksen lähettämä vuo menee tietysti umpinaisen, pistevaausta ympäöivän pallon läpi. Pallon pinta-ala on π. Voidaan esittää yleisesti: Vaaus, jonka suuuus on, lähettää ympäilleen sähkökentän vuon /ε olipa vaauksen muoto millainen tahansa.

4 Tätäkin asiaa on helpompi käsitellä kenttäviivojen avulla. ähköinen vaaus aiheuttaa sähkökentän. ähkökenttää voidaan kuvata kenttäviivojen avulla. Tietystä määästä vaausta lähtee tietty määä kenttäviivoja. Jos vaauksen ympäille asetetaan suljettu pinta, nämä kenttäviivat lävistävät pinnan ainakin kean. d d d Jos suljetun pinnan muoto on sellainen, että kenttäviivat kulkevat sen lävitse useamman kean, esimekiksi n ketaa, sisällä olevalle vaaukselle n on paiton ja ulkopuolella oleville paillinen. Ulos meneville viivoille tulo ds on positiivinen (positiiviselle vaaukselle ja sisään meneville negatiivinen. Näin ulkopuolella oleville vaauksille tulojen ds summa tulee nollaksi ja sisäpuolella oleville kyseisten tulojen summa on ds. simekki 1: Ohuesta langasta tehdään suoakaiteen muotoinen silmukka, jonka pituus on a ja leveys b. ilmukka asetetaan sähkökenttään, jonka voimakkuus on, siten että sähkökentän voimaviivat ja silmukan taso muodostavat kulman θ. Mikä sähkökentän vuo menee silmukan läpi, kun a = 1 cm, b = 5, cm, θ = 7 o ja = V/m? θ atkaisu: ähkökentän vuo määitellään: d, missä d on pinta-alkiovektoi.

5 Pistetulo voidaan saattaa muotoon d dcos d välinen kulma, tässä tapauksessa 9 o θ = 5 o., missä ψ on vektoin ja vektoin ähkökentän vuo on nyt: d dcos Koska sähkökenttä ja kulma ψ ovat vakioita, ja cosψ voidaan ottaa integaalimekin eteen ja sähkökentän vuo saadaan laskettua: dcos cos d (cos ab V (cos5 m (.1m(.5m 1Vm 1Nm / C Integaali d takoitti tässä yksinketaisesti silmukan pinta-alaa = ab. ψ θ simekki : Minkä sähkökentän vuon pistevaaus = + 1, μc aiheuttaa 1, metin päässä olevan pinnan A läpi maksimissaan? Pinta A on euon kolikon suuuinen. atkaisu: Pistevaauksen ympäilleen lähettämän sähkökentän vuo on. Tämä vuo jakaantuu tasaisesti kaikkiin suuntiin. Mitä kauemmaksi siiytään, sitä pienemmäksi vuon tiheys menee. Kymmenen metin etäisyydellä kyseinen vuo on jakaantunut pinta-alalle.m (1m. uon kolikon halkaisija on noin mm ja pinta-ala ( ( Maksimivuo saadaan menemään pinnan läpi, kun kolikko asetetaan kohtisuoaan tulevaa vuota vastaan, sillä tällöin pistetulo d on suuin mahdollinen: d.

6 d Koska vuo osuus menee tasaisesti pinta-alaan (1m, pinta-alaan ( m vuosta menee..m ( ( 6 1, 1 C(,m Nm,7 1 C (1m 16 8,85 1 (1m C Nm,7Vm (Kun teet yksikkötakastelua, muista että J = Nm = VC. Tässä laskussa on ajateltu, että 1 metin etäisyydellä pistevaauksesta sähkökentän voimaviivat ovat lähes yhdensuuntaiset, jolloin d ds. simekki : inulla on epämäääisen muotoinen muovikappale, jonka kokonaisvaaus on. Laitat muovikappaleen jätesäkkiin ja suljet säkin suun tiukasti. Mikä sähkökentän (kokonaisvuo menee jätesäkistä läpi. atkaisu: ähköisesti vaattu muovikappale aiheuttaa ympäilleen vuon /ε. Koko tämä vuo tulee jätesäkin pinnan läpi. Jos jätesäkin pinta on utussa, vuo voi mennä jätesäkin läpi useita ketoja, mutta yhteenlaskettu kokonaisvuo on kuitenkin tuo /ε.

7 uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vaaus voi olla jakautunut tasaisesti aineeseen eli vaausjakauma on silloin vakio. Tällöin vaaustiheys aineessa (tilavuus V on V Vastaavasti jos pinnalle on jakautunut tasaisesti vaaus, on pinta-vaaustiheys eli vaauskate: ähköopissa käytetään myös käsitettä vaaus pituusyksikköä kohden. Tätä sanotaan joskus viivavaaukseksi: L Vaaustiheyksiä laskettaessa tavitaan pallon pinta-alan lauseketta ja pallon tilavuuden lauseketta. Tentissä oletetaan, että opiskelija joko osaa nämä ulkoa tai osaa johtaa nämä. Jos vaaustiheys aineessa ei ole vakio, vaan noudattaa jotain tunnettua yhtälöä, kokonaisvaaus saadaan integoimalla. simekiksi kokonaisvaaus tilavuudessa V, jossa on paikasta iippuva vaaustiheys ρ, lasketaan seuaavasti V ( dv Pinnalla, jossa on vaaustiheys σ(, lasketaan: ( d Pinta- ja tilavuusalkioita ei koodinaatistoissa on kappaleessa Laskemisen avuksi. Kyseinen kappale on linkissä: simekki : Pitkässä langassa on vaaustiheys pituusyksikköä kohden λ =,. 1-6 C/m. Kuinka suui vaaus on tämän langan osassa, joka on metin pituinen? atkaisu: = λl =,. 1-6 C/m. 1 m =,. 1-6 C

8 simekki 5: Vaaus on jakautunut tasaisesti -säteiseen umpinaiseen palloon. Mikä on pallon vaaustiheys? Kuinka paljon vaausta on tämän pallon pintakeoksessa, joka on D:n paksuinen? atkaisu: Vaaustiheys on vakio eli vaaus on jakaantunut tasaisesti pallon tilavuuteen, joka on V Vaaustiheys on silloin: V D:n paksuisen pallokuoen tilavuus on: ] ( [ ( ' D D V Kyseisessä pallokuoessa on vaaus: ] ( [ ] ( [ ' ' D D V simekki 6: Ympyänmuotoisessa -säteisessä levyssä vaaus pintayksikköä kohden (vaauskate iippuu säteestä seuaavan yhtälön mukaisesti: (1 ( Mikä on koko levyn vaaus? D

9 atkaisu: Käytetään yhtälöä: ( d s = kokonaispintavaaus ympyälevyllä d = pinta-alkio s Pinta-alkio sylinteikoodinaatistossa sylintein kannessa on kappaleen Laskemisen avuksi mukaan d dd. ijoitamme integaaliin vaauskatteen ja pinta-alkion: s ( d ( (1 d 6 d (1 d d ( d d /( Voidaan käyttää myös sellaista pinta-alkiota, jossa on vain yksi muuttuja. Otetaan pintaalkioksi ympyäengas, jonka säde on ja leveys (säteen suunnassa d. Tällaisen ympyäenkaan ala on kehän pituus ketaa leveys, koska engas on hyvin ohut. d iis pinta-alkio tässä tapauksessa on d = π d. Pinta-alkio on mekitty kuvaan mustalla. (Fyysikot käyttävät paljon tällaisia yhden muuttujan pinta-alkioita. Kun integoidaan yli koko ympyälevyn, saadaan kokonaisvaaus: s ( d ( (1 ( d 6 ( d /(

10 Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: d sis Gaussin laki peustuu siihen, että suljetun pinnan läpi kulkeva sähkökentän vuo on veannollinen tämän suljetun pinnan sisälle jäävän vaauksen määään. Näin on iippumatta pinnan muodosta ja vaausjakauman muodosta. Gaussin lakia ei kuitenkaan voi käyttää sähkökentän laskemiseen kuin tietyissä symmetisissä tapauksissa. Laskuvinkkejä: Mieti ensin, voiko kyseisessä tehtävässä käyttää Gaussin lakia vai pitääkö vaaus paloitella pieniksi vaausalkioiksi ja sen jälkeen integoida. (Katso kappale Menetelmän valinta sähkökenttiä laskettaessa. Piiä vaauksista lähtevät kenttäviivat. dellä keottiin kenttäviivojen ominaisuuksista. Lisää tietoa saat sähkökentän suunnista, kun laskemme sähkökenttiä paloittelumenetelmällä. Valitse sitten Gaussin suljettu pinta. e on yleensä näissä laskuissa joko pallo tai sylintei. Pistevaauksille, palloille ja pallokuoille valitaan pallon muotoinen Gaussin pinta. Pitkille langoille, sylinteeille, sylinteikuoille valitaan sylintein muotoinen Gaussin pinta, joka asetetaan langan tai sylintein suuntaisesti. Tasoille ja tasomaisille ajapinnoille voidaan käyttää myös sylinteiä, mutta nyt sylintei asetetaan kohtisuoaan tasoa vastaan siten, että se kulkee tason läpi. Katso jäljempänä oleva kuva! Pallon muotoinen Gaussin pinta piietään siten, että pinta on siinä kohdassa, missä sähkökenttä halutaan laskea. ylintein muotoinen Gaussin pinta piietään siten, että joko kansi tai vaippa (iippuu tapauksesta on siinä kohdassa, missä sähkökenttä pitää laskea. tsi ne kohdat, missä Gaussin pinta ja kenttäviivat ovat yhdensuuntaiset. iellä tulo on nolla. ds tsi seuaavaksi ne kohdat, joissa Gaussin pinta ja kenttäviivat ovat kotisuoassa toisiaan vastaan. iellä ds voidaan kijoittaa ds. Jos Gaussin pinta on oikein valittu, yleensä edellisen kohdan pinnalla sähkökenttä on vakio, jolloin voidaan ottaa integaalimekin eteen. Nyt d on pelkkä pinta-ala niille alueille, joilla Gaussin pinta ja kenttäviivat ovat kohtisuoassa. Huomaa, että nyt ei enää ole välttämättä kyseessä suljettu pinta, jolle mekittäisiin d Laske seuaavaksi Gaussin lain oikea puoli eli määitä suljetun pinnan sisään jäävät vaaukset I. Jos vaausjakauma ei ole vakio, integoidaan.

11 Mekitse yhtä suuiksi se, minkä sait Gaussin lain vasemmalta puolelta ja se, minkä sait Gaussin lain oikealta puolelta. atkaise yhtälöstä sähkökenttä. euaavassa on esitetty eilaisia tilanteita ja niihin sopivia Gaussin pintoja. Pallosymmetinen vaausjakauma: Gaussin pinta ylinteisymmetinen vaausjakauma: Gaussin pinta L

12 Tasomainen vaausjakauma tai ajapinta: Gaussin pinta Täällä sähkökenttä voi olla ylöstai alaspäin tai nolla. simekki 7: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. atkaisu: Valitaan Gaussin pinnaksi pallo, jonka säde on isompi kuin. Gaussin pinta

13 (Positiivisesta pistevaauksesta ja positiivisesti vaatusta pallosta lähtee säteettäin ulospäin sähkökentän kenttäviivoja, jotka ovat kohtisuoassa kyseisen vaatun pallon pintaa vastaan. ähkökenttävektoi on siis kohtisuoassa myös Gaussin pallon (joka on ulompana pintaa vastaan ja yhdensuuntainen pinta-alkiovektoin kanssa, josta syystä vektoeiden ja d pistetulosta tulee tavallinen skalaaitulo d. Lisäksi sähkökentän itseisavo on symmetian vuoksi vakio kyseisellä pinnalla, jolloin voidaan ottaa integaalimekin eteen. Näiden kahden ehdon peusteella saamme Gaussin lain vasemman puolen muotoon: d d d Oikea puoli saadaan helposti, sillä Gaussin pinnan sisäpuolelle jäävä vaaus on sis =. Nyt saamme lopulta: li tasaisesti vaatun pallon kenttä on sama kuin pistevaauksen kenttä. simekki 8: Ääettömän pitkässä suoassa langassa on vaaus pituusyksikköä kohden = λ. Laske sähkökenttä :n etäisyydellä langasta. (Langan poikkileikkaus on ympyä, jonka säde on. atkaisu: Käytetään Gaussin lakia. Gaussin laki: d sis Nyt valitaan Gaussin pinnaksi sylintei, jonka pituus on L ja pohjan säde (>. Lasketaan ensin yhtälön vasen puoli. d on pinta-alkiovektoi. en itseisavo eli suuuus on pinta-alkion d suuuinen ja sen suunta on kohtisuoaan pintaa vastaan. on sähkökenttä ja se on tällaisen ääettömän pitkän langan tapauksessa kohtisuoassa lankaa vastaan.

14 Kuvasta nähdään, että Gaussin pintana toimivan sylintein vaipalla ja d ovat yhdensuuntaisia. ylintein päissä sen sijaan ja d ovat kohtisuoassa. Miten käy pistetulon d? Kun vektoit ovat kohtisuoassa toisiaan vastaan, niiden välinen pistetulo tulee nollaksi. Näin käy sylintein päissä. Kun vektoit ovat yhdensuuntaisia, niiden välinen pistetulo tulee pelkäksi itseisavojen tuloksi eli tässä tapauksessa d:ksi. Näin käy vaipalla. L (dellä on sovellettu kaavaa: A B A B cos, missä α on vektoeiden A ja B välinen kulma. Paloitellaan Gaussin lain vasen puoli: d d d d d d vaippa päät vaippa vaippa vaippa L saatiin ottaa pois integaalimekin sisältä, sillä sähkökentän itseisavo on vakio vaipan alueella, koska vaippa on vakioetäisyydellä langasta. Tällöin integaali: d vaippa kuvaa pelkkää vaipan alaa, joka on πl. Gaussin lain vasen puoli saatiin kuntoon. Nyt oikea puoli: sis takoitti Gaussin pinnan sisään jäävää vaausta. Lasketaan siis sylintein sisään jäävä vaaus. ylintein pituus on L. Langassa on vaaus pituusyksikköä kohden λ, joten sylintein sisään jää sis = Lλ. L Nyt saadaan Gaussin laki muotoon: L (Kuvan olen piitänyt sillä oletuksella, että langan vaaus on positiivinen.

15 simekki 9: Tasaisesti vaatussa -säteisessä pallossa on vaaustiheys ρ. Laske sähkökenttä pallon sisäpuolella. atkaisu: Gaussin pinnaksi valitaan taas pallo. Gaussin lain vasemmasta puolesta tulee samanlainen kuin simekissä 7 (ja samoin peustein, nyt vain on pienempi kuin. Oikealla puolella pitää laskea sis eli -säteisen pallon sisäpuolelle jäävä vaaus. e on helppoa, koska vaaustiheys on vakio: sis = ρv sis = ρ(/π Nyt Gaussin laki on saatu muotoon:

16 simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun >. atkaisu:

17

18 simekki 11: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun >. atkaisu:

19

20 simekki 1: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy. y atkaisu: x

21 1.. Gaussin lain diffeentiaalimuoto Gaussin lain integaalimuodosta voidaan johtaa Gaussin lauseen avulla diffeentiaalimuoto: Diffeentiaalimuoto on kätevä silloin, kun on laskettava sähkökenttä systeemissä, jossa vaaustiheys ei ole vakio, kuten esimekeissä 1-1. Näissä laskuissa tavitset divegenssiopeaattoeita ei koodinaatistoissa. uoakulmaisessa koodinaatistossa: ylinteikoodinaatistossa: Pallokoodinaatistossa: Kun systeemissä on pistevaaus tai kappale, jossa on vakiovaaustiheys, tällä menetelmällä laskeminen voi olla paljon monimutkaisempaa kuin käyttäen Gaussin lain integaalimuotoa. Lasketaanpa simekki 7 tällä menetelmällä: simekki 1: -säteisessä pallossa on tasaisesti jakautuneena positiivinen vaaus. Laske sähkökenttä pallon ulkopuolella. Käytä Gaussin lain diffeentiaalimuotoa. atkaisu: Pallon ulkopuolella vaaustiheys on nolla. Käytetään pallokoodinaatistoa: 1 ( 1 sin ( sin 1 sin

22 Tiedämme, että sähkökentällä on ainoastaan adiaalinen komponentti eli komponentit θ ja φ ovat nollia. Yhtälö sievenee muotoon: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Nyt saamme: C C (* Joudumme laskemaan sähkökentän myös pallon sisäpuolella, jolloin saamme eunaehdosta atkaistua vakion C. Pallon sisällä on vaaustiheys ijoitetaan vaaustiheys Gaussin lain diffeentiaalimuotoon: sin 1 sin ( sin 1 ( 1 Poistetaan yhtälöstä kulmaiippuvat komponentit: ( 1 Keotaan yhtälön molemmat puolet :lla: ( Integoidaan: d d ( (** ähkökentän täytyy olla jatkuva kohdassa =, jolloin (*:stä ja (**:stä saadaan: C C

23 li nyt vasta saimme sähkökentän pallon ulkopuolella: C Kokeillaan, miten esimekit 1 1 onnistuvat Gaussin lain diffeentiaalimuodolla. Huomataan, että menetelmä on veattain kätevä tällaisissa systeemeissä. simekki 1: Pallossa, jonka säde on, on vaaustiheys (1 / Laske vaaustiheyden aiheuttama sähkökenttä kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

24

25 simekki 15: ylinteisymmetinen vaaustiheys alueessa < on muotoa (1 /, missä ρ ja ovat vakioita ja on etäisyys symmetia-akselista. Tämän alueen ulkopuolella vaaustiheys on nolla. Laske vaaustiheyden aiheuttama sähkökenttä, kun < ja kun > käyttäen Gaussin lain diffeentiaalimuotoa. atkaisu:

26 simekki 16: Laaja levy, jonka paksuus on d, on asetettu xz-tason suuntaisesti symmetisesti xz-tasoon nähden. (Katso kuva!. Levyn ulkopuolella ei ole vaausta. Laske sähkökenttä y:n funktiona, kun levyn vaaustiheys on Cy käyttäen Gaussin lain diffeentiaalimuotoa. y atkaisu: x

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä Kun yhdistetään kahdella tavalla esitetty sähkökentän vuo, saadaan Gaussin laki: S d S Q sis Gaussin laki peustuu siihen, että suljetun pinnan läpi

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin.

Muita sähkökentän laskemismenetelmiä ovat muun muassa potentiaalin gradientti ja kuvalähdeperiaate. Niistä puhutaan myöhemmin. GAUIN LAKI IÄLTÖ: Gaussin lain integaalimuoto Gaussin lain diffeentiaalimuoto Menetelmän valinta sähkökentän laskemisessa ähkökentän voivat aiheuttaa vaaukset tai muuttuva magneettikenttä. Tässä kappaleessa

Lisätiedot

a) Lasketaan sähkökenttä pallon ulkopuolella

a) Lasketaan sähkökenttä pallon ulkopuolella Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

40 LUKU 3. GAUSSIN LAKI

40 LUKU 3. GAUSSIN LAKI Luku 3 Gaussin laki 3.1 Coulombin laista Gaussin lakiin Takastellaan pistemäisen vaauksen q aiheuttamaa sähkökenttää, joka noudattaa yhtälöä (1.1). Tämän sähkökentän vuo etäisyydellä olevan pienen pintaelementin

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN

766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN 766320A SOVELTAVA SÄHKÖMAGNETIIKKA PERUSTEHTÄVIÄ RATKAISUINEEN Laske nämä tehtävät, jos koet, että sinulla on aukkoja Soveltavan sähkömagnetiikan perusasioiden hallinnassa. Älä välitä tehtävien numeroinnista.

Lisätiedot

Sähköstaattisen potentiaalin laskeminen

Sähköstaattisen potentiaalin laskeminen Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 / M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain

Lisätiedot

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4

Aluksi. Ympyrästä. Ympyrän osat. MAB2: Ympyrä 4 MAB: Ympyä 4 Aluksi Tämän luvun aihe on ympyä. Ympyä on yksi geometisista peusmuodoista ja on sinulle ennestään hyvinkin tuttu. Mutta oletko tullut ajatelleeksi, että ympyää voidaan pitää säännöllisen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio

Lisätiedot

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: Tasoalueen pinta-ala Jos funktio f saa välillä [a, b] vain ei-negatiivisia arvoja, so. f() 0, kun [a, b], voidaan kuvaajan y = f(), -akselin

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Gaussin lause eli divergenssilause 1

Gaussin lause eli divergenssilause 1 80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä

Eristeet. - q. Johdannoksi vähän sähköisestä dipolista. Eristeistä risteet Johdannoksi vähän sähköisestä diolista Diolin muodostaa kaksi itseisarvoltaan yhtä suurta vastakkaismerkkistä varausta, jotka ovat lähellä toisiaan. +q - q a Jos diolin varauksien itseisarvo on

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Jussi Sievänen, n86640 Tuomas Yli-Rahnasto, n85769 Markku Taikina-aho, n85766 SATE.2010 Dynaaminen Kenttäteoria ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3

Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Sähköpotentiaali. Haarto & Karhunen.

Sähköpotentiaali. Haarto & Karhunen. Sähköpotentiaali Haato & Kahunen www.tukuamk.fi Johantoa Kun vaaus q on sähkökentässä siihen vaikuttaa voima Saman suuuinen voima tavitaan siitämään vaausta matkan sähkökentän aiheuttamaa voimaa vastaan

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora

Tapa II: Piirretään voiman F vaikutussuora ja lasketaan momentti sen avulla. Kuva 3. d r. voiman F vaikutussuora VOIMAN MOMENTTI Takastellaan jäykkää kappaletta, joka pääsee kietymään akselin O ympäi. VOIMAN MOMENTTI on voiman kietovaikutusta kuvaava suue. Voiman momentti määitellään voiman F ja voiman vaen tulona:

Lisätiedot

Kartio ja pyramidi

Kartio ja pyramidi Kartio ja pyramidi Kun avaruuden suora s liikkuu pitkin itseään leikkaamatonta tason T suljettua käyrää ja lisäksi kulkee tason T ulkopuolisen pisteen P kautta, suora s piirtää avaruuteen pinnan, jota

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen.

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 2. SISÄLTÖ. 1.Pinta-alojen laskeminen 2.Tilavuuksien laskeminen. MATEMATIIKKA Matematiikkaa pintakäsittelijöille PAOJ. Isto Jokinen 013 SISÄLTÖ 1.Pinta-alojen laskeminen.tilavuuksien laskeminen PINTA-ALOJEN LASKEMINEN Pintakäsittelyalan työtehtävissä on pinta-alojen

Lisätiedot

PYÖRÄHDYSKAPPALEEN PINTA-ALA

PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia

Lisätiedot

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus

SATE1120 Staattinen kenttäteoria kevät / 5 Laskuharjoitus 2 / Coulombin laki ja sähkökentänvoimakkuus AT taattinen kenttäteoria kevät 6 / 5 Laskuharjoitus / Coulombin laki ja sähkökentänvoimakkuus Tehtävä Kaksi pistevarausta ja sijaitsevat x-tason pisteissä r x e x e ja r x e x e. Mikä ehto varauksien

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2 Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Jakso 5. Johteet ja eristeet Johteista

Jakso 5. Johteet ja eristeet Johteista Jakso 5. Johteet ja eristeet Johteista Johteet ja eristeet käyttäytyvät sähkökentässä eri tavalla. Koska johteessa on vaaasti liikkuvia varauksia, ne siirtyvät joko sähkökentän suuntaan (ositiiviset varaukset)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Yksinkertainen korkolasku

Yksinkertainen korkolasku Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua

Lisätiedot

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332.

Laudatur 2 MAA2 ratkaisut kertausharjoituksiin. 1. Polynomit 332. Laudatur MAA ratkaisut kertausharjoituksiin. Polynomit. Vakiotermi 8 Kolmannen asteen termin kerroin, 5 8 = 9, Neljännen asteen termi n kerroin, 8 9, = 7,6 Kysytty polynomi P(a) = 7,6a + 9,a +a + ya +

Lisätiedot

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa säilyttäen pitkin tason T suljettua käyrää (käyrä ei leikkaa itseään). Tällöin suora s piirtää avaruuteen

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2. 13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot