Digitaalinen signaalinkäsittely Kuvankäsittely

Koko: px
Aloita esitys sivulta:

Download "Digitaalinen signaalinkäsittely Kuvankäsittely"

Transkriptio

1 Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät, Opintomoniste, TTKK

2 Sisältö Digitaalisen kuvankäsittelyn perusteet Periaatteet ja sovelluksia Kaksiulotteiset järjestelmät ja DFT Dekonvoluutio Piste-ehostus

3 Digitaalinen kuvankäsittely? Perusajatus: laajennetaan signaalinkäsittelyn perusmenetelmät kahteen ulottuvuuteen Voidaan käyttää samantyyppisiä suotimia Kuvien havaitseminen poikkeaa esim. äänisignaalien havaitsemisesta, joten menetelmissäkin on eroavaisuuksia Termiä ei pidä sekoittaa tavalliseen kuvankäsittelyyn

4 Digitaalisen kuvankäsittelyn alueita ja sovelluksia Kuvien ehostus Joitakin kuvan ominaisuuksia ja piirteitä voidaan parantaa Ei yleensä ideaalista eli yhtä ainoaa oikeaa ratkaisua Tarkoituksen mukaan (esim. ihminen / konenäköalgoritmi) Kuvan restaurointi Kuvassa olevien häiriöiden poisto Pyritään jonkin mallin mukaan ideaaliseen ratkaisuun Esim. liikkeen aiheuttaman vääristymän korjaus Kuva-analyysi Erilaiset tunnistusalgoritmit Tärkeä teollisessa valmistamisessa ja laaduntarkkailussa sekä valvontasovelluksissa

5 2-ulotteiset järjestelmät Yksiulotteisessa tapauksessa signaalia merkittiin x(n):llä 2-ulotteista signaalia merkitään x(m,n):llä Esim. 2-ulotteinen impulssi: ( n, m) 1, 0 kun n 0 ja muulloin. m 0

6 2-ulotteiset järjestelmät ( n, m) 1, 0 kun n 0 ja muulloin. m 0

7 2-ulotteiset järjestelmät Konvoluutio 2-ulotteisella järjestelmällä: y( m, n) j k h( m, n)* h( x( m, n) j, k) x( m j, n k) 2-ulotteisille järjestelmille voidaan vastaavasti määritellä myös DFT ja Z-muunnokset Fourier- ja Z-tasossa voidaan suotimen konvoluutio tehdä pelkällä kertolaskulla eli Y(m,n)=H(m,n)X(m,n) (kts. moniste s )

8 Esimerkki: kuvan Fourier-muunnos

9 Kuvan Fourier-muunnos taajuudet?? Kuvan Fourier-muunnoksessa (DFT) näkyvät samalla tapaa eri taajuuksien voimakkuudet Yleensä kuvan DFT:tä vielä käsitellään Matalimmat taajuudet ovat keskellä Korkeiden taajuuksien osuudet ovat reunoilla Suodatus voidaan tehdä myös taajuustasossa (kuten seuraavassa esimerkissä)

10 Esimerkki: Suodatus taajuustason kautta Lena:n taajuusesitys Suodin taajuustasossa

11 Esimerkki: Suodatus taajuustason kautta Suodatetun Lena:n taajuusesitys Suodatetun Lena:n käänteismuunnos

12 Esimerkki: Suodatus taajuustason kautta

13

14 Dekonvoluutio ja kuvan ehostus Kuvassa olevien häiriöiden syntyä mallinnetaan usein jollakin järjestelmällä tai suotimella Alkuperäisen kuvan x(m,n) ajatellaan menevän jonkin LTIjärjestelmän läpi: y(m,n) = h(m,n)*x(m,n) Eli häiriötä sisältävä, havaitsemamme kuva on y(m,n) Otetaan DFT molemmista puolista: Y(m,n)=H(m,n)X(m,n) Jos halutaan arvioida alkuperäistä kuvaa, saadaan X ( m, n) Y( m, n) H( m, n) (Ks. moniste s )

15 Pisteoperaatiot (piste-ehostus) Kaksiulotteiset muistittomat järjestelmät ovat ns. pisteoperaatioita (point operation) Vaste riippuu ainoastaan yhdestä herätteen (eli sisäänmenosignaalin) arvosta Tarkoituksena on ehostaa kuvaa eli parantaa sen ominaisuuksia (luettavuutta) Tavallisimpia pisteoperaatioita ovat mm. gammakorjaus ja histogrammin ekvalisointi

16 Gammakorjaus Kuvia toistavilla laitteilla (näyttö, videoprojektori, tulostin jne.) on jonkinlainen vääristävä vaikutus kirkkauteen Tätä voidaan kompensoida gammakorjauksella Esimerkiksi monitorin ruudulla näkyvä kuvan intensiteetti I riippuu videosignaalin jännitteestä u siten, että I = u γ (Eksponenttia merkitään siis kreikkalaisella gammalla gammakorjaus) Eri järjestelmissä gamma vaihtelee ja sovittamalla se oikein, saadaan kirkkauden vääristymät korjattua Kuvankäsittelyssä gammakorjausta voidaan käyttää alkuperäisestä tarkoituksesta poiketen kuvan ehostamiseen Kaikista kuvankäsittelyohjelmistakin löytyy gammakorjaus Korjauskäyrä voi olla myös monimutkaisempikin lauseke

17 Histogrammin ekvalisointi Tärkeä menetelmä, jolla saadaan intensiteettijakauma tasoitettua Intensiteettijakaumaa esittää histogrammi Histogrammissa on laskettu jokaisen harmaasävyn (0-255) esiintymien määrä Tuloksena on harmaasävykuvalle 256-alkioinen kokonaislukutaulukko Yleensä kuvankäsittelyohjelmat eivät näytä tarkkaa histogrammia, vaan jonkinlaisen tasoitetun käyrän

18 Histogrammin ekvalisointi Esimerkki: Lena-kuvan histogrammi

19 Histogrammin ekvalisointi Kuva: histogrammin ekvalisointi, moniste s. 104

20 Histogrammin ekvalisointi Kun histogrammi ekvalisoidaan eli tasoitetaan, lasketaan uusi harmaasävy n kaavalla n k 0 n' ( L 1) L 1 k 0 H( k), H( k) missä n on vanha harmaasävyarvo ja H(k) on kuvan histogrammi (L on harmaasävyjen määrä, yleensä L=256) Menetelmä tasoittaa histogrammin, sillä uusi harmaasävyarvo riippuu nykyisen ja sitä tummempien pisteiden määrästä Uusi arvo on kaikkien vanhaa harmaasävyarvoa tummempien summa jaettuna kuvan koolla ja kerrottuna L:llä

21 Histogrammin paikallinen ekvalisointi Histogrammia voidaan tasoittaa myös paikallisesti Tämä tehdään yleensä silloin, kun valotus kuvan eri osissa vaihtelee Erona edelliseen, paikallisessa ekvalisoinnissa käytettävä histogrammi lasketaan jokaiselle kuvan pisteelle erikseen Käytetään tietyn kokoista ikkunaa pisteen ympäriltä Teoreettisesti paras tulos saataisiin ympyrän muotoisella ikkunalla Käytännössä kuitenkin helpointa on käyttää neliön muotoista ikkunaa

22 Histogrammin paikallinen ekvalisointi Kuva: histogrammin paikallinen ekvalisointi, moniste s.106

23 Muita kuvankäsittelyoperaatiota Usein kuvankäsittelyssä käytetään epälineaarisia operaatioita (epälineaarinen suodatus) Epälineaarisuus tekee menetelmien analysoinnista matemaattisesti vaikeaa (ellei jopa mahdotonta) Epälineaarisella suodatuksella saadaan kuitenkin hyviä tuloksia aikaan esim. tietyissä erikoistapauksissa Hyvä esimerkki epälineaarisesta suodatuksesta kuvankäsittelyssä on mediaanisuodatin Voidaan käyttää tietynlaisen kohinan poistossa (salt & pepper noise) Mediaanisuodatus saattaa kuitenkin tehdä kuvaan joitakin eitoivottuja piirteitä

24 Muita kuvankäsittelyoperaatiota Esimerkki: Mediaanisuodatus

25 Muita kuvankäsittelyoperaatioita Lisäksi voidaan tehdä reunanetsintää kynnystystä yhtenäisten alueiden tunnistusta piirteen irrotusta tunnistusta jne. jne.

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Digitaalinen signaalinkäsittely Johdanto, näytteistys

Digitaalinen signaalinkäsittely Johdanto, näytteistys Digitaalinen signaalinkäsittely Johdanto, näytteistys Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Mitä on konvoluutio? Tutustu kuvankäsittelyyn

Mitä on konvoluutio? Tutustu kuvankäsittelyyn Mitä on konvoluutio? Tutustu kuvankäsittelyyn Tieteenpäivät 2015, Työohje Sami Varjo Johdanto Digitaalinen signaalienkäsittely on tullut osaksi arkipäiväämme niin, ettemme yleensä edes huomaa sen olemassa

Lisätiedot

Digitaalinen signaalinkäsittely Signaalit, jonot

Digitaalinen signaalinkäsittely Signaalit, jonot Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,

Lisätiedot

Radioamatöörikurssi 2015

Radioamatöörikurssi 2015 Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet

Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen

Lisätiedot

Tämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011

Tämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011 Tämän luennon sisältö Luku 3. T-6.2 Datasta tietoon, syksy 2 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto Datamatriisi Piirreirrotus: ääni- ja kuvasignaalit Dimensionaalisuuden

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)

Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Pekka Pussinen OH8HBG - pekka.pussinen @! oulu.fi

Pekka Pussinen OH8HBG - pekka.pussinen @! oulu.fi VAIHEKOHINA RADIOJÄRJESTELMISSÄ Pekka Pussinen OH8HBG - pekka.pussinen @! oulu.fi Radiotiedonsiirtojärjestelmissä ilmenevät tekniset ongelmat ovat mitä moninaisimpia. Varsinkin vastaanottimen käyttäytymisessä

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa

Lisätiedot

Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Alipäästösuotimen muuntaminen muiksi perussuotimiksi Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö-

Lisätiedot

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4

6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 Datamuuntimet 1 Pekka antala 19.11.2012 Datamuuntimet 6. Analogisen signaalin liittäminen mikroprosessoriin 2 6.1 Näytteenotto analogisesta signaalista 2 6.2. DA-muuntimet 4 7. AD-muuntimet 5 7.1 Analoginen

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D104: Kuvien suodatus 0.9 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio Sisältö 1 Johdanto 1

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

12. Laskostumisen teoria ja käytäntö

12. Laskostumisen teoria ja käytäntö 12.1. Aliakset eli laskostuminen ja näytteistys 12. Laskostumisen teoria ja käytäntö Monet seikat vaikuttavat kuvien laatuun tietokonegrafiikassa. Mallintamisesta ja muista tekijöistä syntyy myös artefakteja,

Lisätiedot

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio

DSP:n kertausta. 1 Spektri, DFT, DTFT ja aika-taajuusresoluutio DSP:n kertausta Kerrataan/käydään läpi: ffl Spektri, DFT, DTFT ja FFT ffl signaalin jaksollisuuden ja spektrin harmonisuuden yhteys ffl aika-taajuusresoluutio Spektri, DFT, DTFT ja aika-taajuusresoluutio

Lisätiedot

LEHDISTÖTIEDOTE. Nikon tuo markkinoille uuden sukupolven. kuvankäsittelyohjelmiston. Capture NX2: entistä tehokkaampi ja helppokäyttöisempi

LEHDISTÖTIEDOTE. Nikon tuo markkinoille uuden sukupolven. kuvankäsittelyohjelmiston. Capture NX2: entistä tehokkaampi ja helppokäyttöisempi Nikon tuo markkinoille uuden sukupolven kuvankäsittelyohjelmiston Capture NX2: entistä tehokkaampi ja helppokäyttöisempi Amsterdam, Alankomaat, 3. kesäkuuta 2008 Nikon Europe julkistaa uuden Capture NX2

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina

1 Kohina. 2 Kohinalähteet. 2.1 Raekohina. 2.2 Terminen kohina 1 Kohina Kohina on yleinen ongelma integroiduissa piireissä. Kohinaa aiheuttavat pienet virta- ja jänniteheilahtelut, jotka ovat komponenteista johtuvia. Myös ulkopuoliset lähteet voivat aiheuttaa kohinaa.

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.

1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden

Lisätiedot

Radioamatöörikurssi 2016

Radioamatöörikurssi 2016 Radioamatöörikurssi 2016 Radiotekniikan komponentit 9.11.2016 Tatu Peltola, OH2EAT 1 / 30 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, 70211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO

ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, 70211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT Erkki Björk Kuopion yliopisto PL 1627, 7211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO Melun vaimeneminen ulkoympäristössä riippuu sää- ja ympäristöolosuhteista. Tärkein ääntä

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA

PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA PSYKOAKUSTINEN ADAPTIIVINEN EKVALISAATTORI KUULOKEKUUNTELUUN MELUSSA Jussi Rämö 1, Vesa Välimäki 1 ja Miikka Tikander 2 1 Aalto-yliopisto, Signaalinkäsittelyn ja akustiikan laitos PL 13000, 00076 AALTO

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

T Digitaalinen signaalinkäsittely ja suodatus

T Digitaalinen signaalinkäsittely ja suodatus T-63 Digitaalinen signaalinkäsittely ja suodatus 2 välikoe / tentti Ke 4528 klo 6-9 Sali A (A-x) ja B (x-ö)m 2 vk on oikeus tehdä vain kerran joko 75 tai 45 Tee välikokeessa tehtävät, 2 ja 7 (palaute)

Lisätiedot

Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen

Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely. Jyri Näränen Havaitsevan tähtitieteen pk 1 luento 7, Kuvankäsittely Jyri Näränen 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen tekeminen 3. FITS 4. Kuvankatseluohjelmistoja 5. Kuvankäsittelyohjelmistoja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

1 db Compression point

1 db Compression point Spektrianalysaattori mittaukset 1. Työn tarkoitus Työssä tutustutaan vahvistimen ja mixerin perusmittauksiin ja spektrianalysaattorin toimintaan. 2. Teoriaa RF- vahvistimen ominaisuudet ja käyttäytyminen

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Kuulohavainnon perusteet

Kuulohavainnon perusteet Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI

LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Johdatus matematiikkaan - tarinaosasto Tero Kilpeläinen

Johdatus matematiikkaan - tarinaosasto Tero Kilpeläinen Tero Kilpeläinen Syksy 2011 Mitä todistettavaa? Seuraavassa esimerkkejä lauseista, joiden todistukset eivät ole ilmeisiä. Aritmetiikan peruslause Jokainen luonnollinen luku voidaan esittää yksikäsitteisellä

Lisätiedot

Derivointiesimerkkejä 2

Derivointiesimerkkejä 2 Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 3 puheen havaitseminen Mikä on akustinen vihje (acoustic cue)? Selitä seuraavat käsitteet ohjelman ja kirjan tietoja käyttäen: Spektrogrammi

Lisätiedot

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

Kenguru 2011 Cadet (8. ja 9. luokka)

Kenguru 2011 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot

Digitaalinen kuvankäsittely T-61.247 (3 ov) L

Digitaalinen kuvankäsittely T-61.247 (3 ov) L 9.3 Lineaarinen alipäästösuodatus (3.6.)........ 7 Digitaalinen kuvankäsittely T-6.247 (3 ov) L Luento #3 24.9.24 9.4 Kuvan terävöittäminen ylipäästösuodatuksella (3.7). 75. Fourier-muunnoksen perusteet................

Lisätiedot

Kenguru 2006 sivu 1 Cadet-ratkaisut

Kenguru 2006 sivu 1 Cadet-ratkaisut Kenguru 2006 sivu 1 3 pistettä 1. Kenguru astuu sisään sokkeloon. Se saa käydä vain kolmion muotoisissa huoneissa. Mistä se pääsee ulos? A) a B) b C) c D) d E) e 2. Kengurukilpailu on pidetty Euroopassa

Lisätiedot

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan

Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Johdatus digitaalitekniikkaan Digitaalitekniikan matematiikka Luku 1 Sivu 1 (19) Digitaalitekniikan matematiikka Luku 1 Sivu 2 (19) Johdanto Tässä luvussa esitellään tiedon lajeja ja tiedolle tehtävää käsittelyä käsitellään tiedon

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

Spektrianalysaattori. Spektrianalysaattori

Spektrianalysaattori. Spektrianalysaattori Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

7.1 Taustamelun estimoinnista

7.1 Taustamelun estimoinnista 7 Puheen ehostus Puheen ehostamisea taroitetaan seaisia menetemiä, joia puheen aatua pyritään parantamaan. Kuuostaa ysinertaiseta, mutta mitä sitten taroitetaan aadua? Siä voidaan taroittaa ainain seeyttä

Lisätiedot

Signaalien datamuunnokset. Digitaalitekniikan edut

Signaalien datamuunnokset. Digitaalitekniikan edut Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena

Lisätiedot

Signaalien datamuunnokset

Signaalien datamuunnokset Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Korkean resoluution ja suuren kuva-alueen SAR

Korkean resoluution ja suuren kuva-alueen SAR Korkean resoluution ja suuren kuva-alueen SAR MATINE tutkimusseminaari 17.11.2016 Risto Vehmas, Juha Jylhä, Minna Väilä, Ari Visa Tampereen teknillinen yliopisto Signaalinkäsittelyn laitos Hankkeelle myönnetty

Lisätiedot

Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik

Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik Havaitsevan tähtitieteen pk 1 luento 12, Kalvot: Jyri Näränen & Mikael Granvik 7. Kuvankäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 7. Kuvankäsittely 1. CCD kuvien jälkikäsittely 2. CCD havaintojen

Lisätiedot

Isompi näyttö kannettavaan tietokoneeseen eli läppäriin

Isompi näyttö kannettavaan tietokoneeseen eli läppäriin Mukanetin logo Isompi näyttö kannettavaan tietokoneeseen eli läppäriin Läppäri on kätevä, koska se on kokonaisuus, mutta sen näyttö ei ole aina riittävän kokoinen ja kaksin sitä on vaikea katsoa yhdessä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

Kenguru 2013 Benjamin sivu 1 / 7 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Benjamin sivu 1 / 7 (6. ja 7. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Benjamin sivu 1 / 7 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja: TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus

Lisätiedot

Televerkon synkronointi

Televerkon synkronointi Televerkon synkronointi ITU-T:n suositukset G.810, G.811, G.812, G.823 Rka/ML -k2002 Tiedonvälitystekniikka 5a - 1 Kurssin kuva välitysjärjestelmästä H.323 or SIP IP SIP or ISUP PABX CAS, R2 ISDN Kytkentäkenttä

Lisätiedot

Kuvan käsittelyn vaiheet

Kuvan käsittelyn vaiheet Kuvan käsittelyn vaiheet Kuvan muodostus Kuva kaapataan analogisella tai digitaalisella kameralla [image acquisition]. Analoginen kuva digitoidaan. Digitoituun kuvaan otetaan tehtävän ratkaisun kannalta

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA

DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA Opinnäytetyö (AMK) Tietotekniikka Sulautetut ohjelmistot 2014 Jami Koivisto DIGITAALISEN SIGNAALINKÄSITTELIJÄN TOTEUTUS ARDUINOLLA OPINNÄYTETYÖ (AMK) TIIVISTELMÄ TURUN AMMATTIKORKEAKOULU Tietotekniikan

Lisätiedot

Suodinpankit ja muunnokset*

Suodinpankit ja muunnokset* Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN

KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN KOLMIULOTTEISEN TILAN AKUSTIIKAN MALLINTAMINEN KAKSIULOTTEISIA AALTOJOHTOVERKKOJA KÄYTTÄEN Antti Kelloniemi 1, Vesa Välimäki 2 1 Tietoliikenneohjelmistojen ja multimedian laboratorio, PL 5, 15 TKK, antti.kelloniemi@tkk.fi

Lisätiedot

NELIÖJUURI. Neliöjuuren laskusääntöjä

NELIÖJUURI. Neliöjuuren laskusääntöjä NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin

Lisätiedot