Alipäästösuotimen muuntaminen muiksi perussuotimiksi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Alipäästösuotimen muuntaminen muiksi perussuotimiksi"

Transkriptio

1 Alipäästösuotimen muuntaminen muiksi perussuotimiksi Usein suodinsuunnittelussa on lähtökohtana alipäästösuodin (LPF), josta voidaan yksinkertaisilla operaatioilla muodostaa ylipäästö- (HPF), kaistanpäästö- (BPF) ja kaistanestosuotimia (BSF). LPF -> HPF FIR-alipäästösuodin voidaan muuntaa ylipäästösuotimeksi vaihtamalla joka toisen suodinkertoimen etumerkki. Teoreettisesti tässä moduloidaan alipäästösuotimen spektrillä fs/2-taajuista kantoaaltoa, jolloin suotimen spektri siirtyy taajuuden fs/2 ympäristöön. Näin ylipäästösuotimen rajataajuus (f s /2 f c ) määräytyy suoraan lähtökohtana olevan alipäästösuotimen rajataajuudesta f c (kuva ). h[n].4 H(f) f2/2 fs/2 h2[n].4 H2(f)] fs/2 fs/2 Kuva. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Ylipäästösuodin on tässä muodostettu vaihtamalla alipäästösuotimen impulssivasteessa joka toisen arvon etumerkki. LPF -> BPF Kaistanpäästösuodatus voidaan toteuttaa suorittamalla sopivilla rajataajuuksilla alipäästö- (h ) ja ylipäästösuodatus (h 2 ) peräkkäin (kaskadissa). Tarvittaessa peräkkäiset suotimet voidaan korvata yhdellä suotimella (kaistanpäästösuodin h 3 ) konvoloimalla impulssivasteet (kuva 2). Konvoluution tuloksena syntyvän suotimen asteluku on Q + Q 2, missä Q on alipäästösuotimen h asteluku ja Q 2 on ylipäästösuotimen h 2 asteluku. Jotta peräkkäiset suotimet toteuttaisivat kaistanpäästösuodatuksen on alipäästösuotimen rajataajuuden (f c ) oltava suurempi

2 kuin f s /4 ja vastaavasti ylipäästösuotimen rajataajuuden (f s /2 f c ) pienempi kuin f s /4. Kaistanpäästösuotimen rajataajuudet määräytyvät suoraan lähtökohtana olevien ali- ja ylipäästösuotimen rajataajuuksista (kuva 3). LP HP x[n] h [n] h 2 [n] y[n] BP x[n] h 3 [n] = h [n]* h 2 [n] y[n] Kuva 2. Kaistanpäästösuodatuksen toteuttaminen peräkkäisellä ali- (h) ja ylipäästösuotimella (h2). Tarvittaessa suotimet voidaan yhdistää yhdeksi kaistanpäästösuotimeksi (h3) konvoloimalla ali-ja ylipäästösuotimen impulssivasteet keskenään. h[n].5 H(f) h2[n] h3[n] = h[n] * h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 3. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2)sekä näistä muodostetun kaistanpäästösuotimen (h3) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Kaistanpäästösuodin on tässä muodostettu konvoloimalla ali- ja ylipäästösuotimen impulssivasteet. LPF -> BSF

3 Kaistanestosuodatus voidaan toteuttaa sopivan rajataajuuden omaavilla rinnakkaisilla alipäästö- (h ) ja ylipäästösuotimella (h 2 ). Tarvittaessa rinnakkaiset suotimet voidaan korvata yhdellä suotimella (kaistanestosuodin h 3 ) laskemalla impulssivasteet yhteen (kuva 4). Yhteenlaskun tuloksena syntyvän suotimen asteluku on sama kuin yhteenlaskettavien suotimien asteluku. LP BS h [n] x[n] y[n] x[n] h 3 [n] = h [n] + h 2 [n] h 2 [n] y[n] HP Kuva 4. Kaistanestosuodatuksen toteuttaminen rinnakkaisella ali- (h) ja ylipäästösuotimella (h2). Tarvittaessa suotimet voidaan yhdistää yhdeksi kaistanestosuotimeksi (h3) laskemalla yhteen ali-ja ylipäästösuotimen impulssivasteiden arvot. h[n].5 H(f) h2[n] h3[n] = h[n] + h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 5. Alipäästö- (h) ja vastaavan ylipäästösuotimen (h2)sekä näistä muodostetun kaistanestosuotimen (h3) impulssivasteet (vasemmalla) ja amplitudispektrit (oikealla). Kaistanestosuodin on tässä muodostettu laskemalla yhteen ali- ja ylipäästösuotimen impulssivasteet. Jotta peräkkäiset suotimet toteuttaisivat kaistanestosuodatuksen on alipäästösuotimen rajataajuuden (f c ) oltava pienempi kuin f s /4 ja vastaavasti ylipäästösuotimen

4 rajataajuuden (f s /2 f c ) suurempi kuin f s /4.. Kaistanestosuotimen rajataajuudet määräytyvät suoraan lähtökohtana olevien ali- ja ylipäästösuotimen rajataajuuksista (kuva 5). Esimerkki. Kaistanestosuotimen muodostaminen alipäästösuotimesta lähtien. Määritetään suodinsuunnitteluohjelmalla alipäästösuodin h (n), kun rajataajuus f c = Hz, siirtymäkaistan leveys f = Hz ja näytetaajuus f s = 2 Hz. Suunnittelun tuloksena syntyvä suodin on esitetty kuvassa 6. Kuva 6. Matlabin sptool-ohjelmistolla suunniteltu alipäästösuodin. Impulssivasteeksi saadaan nyt: h (n) = {.866,.7698,.27,.2466,.3927,.4446,.3927,.2466,.27,.7698,.866} Suodin h [n] on FIR-alipäästösuodin, jonka asteluku on. Suodinkertoimia on siis yhteensä. Impulssivaste on symmetrinen, joten suotimen vaihe on lineaarinen. Impulssivasteen arvot ovat FIR-suotimen tapauksessa myös suodinkertoimien arvoja. Suodinkertoimet ovat nyt a =.866, a =.7698, a 2 =.27, a 3 =.2466, a 4 =.3927, a 5 =.2466, a 6 =.3927, a 7 =.2466, a 8 =.27, a 9 =.7698 ja a =.866. Suodatus tapahtuu impulssivasteen ja suodatettavan signaalin konvoluutiona y(n) = h(n) * x(n).

5 Alipäästösuodin voidaan muuntaa ylipäästösuotimeksi h 2 (n) vaihtamalla joka toisen impulssivasteen arvon etumerkki: h 2 (n) = {-.866,.7698, -.27,.2466, ,.4446, ,.2466, -.27,.7698, -.866} Ylipäästösuotimen rajataajuudeksi tulee nyt Hz Hz = 9 Hz (huomaa nyt f s /2 = Hz). Spektrin muoto määräytyy myös suoraan alipäästösuotimen spektrin muodosta. Suotimilla voidaan toteuttaa kaistanestosuodatus, jonka rajataajuudet ovat Hz ja 9 Hz. Kaistanestosuodatus voidaan toteuttaa joko asettamalla ali- ja ylipäästösuodin peräkkäin tai muodostamalla erillinen kaistanestosuodin h3(n) laskemalla yhteen impulssivasteet h (n) ja h 2 (n): h 3 (n) =,.5396,,.24932,,.28892,,.32932,,.5396, } Suotimen h 3 (n) impulssivasteessa on nyt vain viisi nollasta poikkeavaa kerrointa. Kuvassa 7 on esitetty suotimien h (n), h 2 (n) ja h 3 (n) impulssivasteet ja näistä diskreetillä Fourier-muunnoksella muodostetut amplitudispektrit..2 h[n].5 H(f) h2[n] h3[n] = h[n] + h2[n] fs/2 fs/2.5.5 H2(f) -fs/2 fs/2.5.5 H3(f) -fs/2 fs/2 Kuva 7. Alipäästö-( h ), ylipäästö- (h 2 ) ja vastaavan kaistanestosuotimen (h 3 ) impulssivasteet ja näistä diskreetillä Fourier-muunnoksella muodostetut amplitudispektrit.

6 Tehtävä Tiedetään, että FIR-suodatin, jonka kertoimet ovat a = -.7, a =.25, a 2 =.84, a 3 =.25 ja a 4 = -.7 toteuttaa oheisessa kuvassa esitetyn alipäästösuodatuksen (f s = 8 Hz, rajataajuus -6 db kohdalla) a) Esitä suodattimen impulssivaste ja differenssiyhtälö. b) Muunna a-kohdan suodatin ylipäästösuodattimeksi. Esitä suodattimen impulssivaste ja differenssiyhtälö. Hahmottele amplitudispektri. c) Yhdistä a- ja b-kohdan suodattimet siten, että niistä muodostuu kaistanpäästösuodatin. Hahmottele kaistanpäästösuodattimen amplitudispektri. Ratkaisu a) h LPF (n) = {-.7,.25,.84,.25, -.7} y(n) = -.7 x(n) +.25 x(n-) +.84 x(n-2) +.25 x(n-3) -.7 x(n-4) b) h HPF (n) = {.7,.25, -.84,.25,.7} y(n) =.7 x(n) +.25 x(n-) -.84 x(n-2) +.25 x(n-3) +.7 x(n-4)

7 c) Kaistanpäästösuodatus syntyy, kun ali- ja ylipäästö toteutetaan peräkkäin Huomaa: Tarvittaessa kaistanpäästösuodattimelle voidaan laskea kertoimet konvoluution kaavalla: h BPF ( n) = hlpf ( n) hhpf ( n) = h 4 k = LPF ( k) h HPF ( n k) = {.29,,.35,,.64,,.35,,.29}

8 Tehtävä 2 Tiedetään, että FIR-suodatin, jonka kertoimet ovat a = 5, a =.22, a 2 =.25, a 3 =.22 ja a 4 =.5 toteuttaa oheisessa kuvassa esitetyn alipäästösuodatuksen (f s = 8 Hz, rajataajuus -6 db kohdalla) a) Esitä suodattimen impulssivaste ja differenssiyhtälö. b) Muunna a-kohdan suodatin ylipäästösuodattimeksi. Esitä suodattimen impulssivaste ja differenssiyhtälö. Hahmottele amplitudispektri. c) Yhdistä a- ja b-kohdan suodattimet siten, että niistä muodostuu kaistanpäästösuodatin. Hahmottele kaistanpäästösuodattimen amplitudispektri. Ratkaisu a) h LPF (n) = {.5,.22,.25,.22,.5} y(n) =.5 x(n) +.22 x(n-) +.25 x(n-2) +.22 x(n-3) -.5 x(n-4) b) h HPF (n) = {-.5,.22, -.25,.22, -.5} y(n) = -.5 x(n) +.22 x(n-) -.25 x(n-2) +.22 x(n-3) -.5 x(n-4)

9 c) Kaistanestosuodatus syntyy, kun ali- ja ylipäästö toteutetaan rinnakkain Huomaa: Tarvittaessa kaistanestosuodattimelle voidaan laskea kertoimet laskemalla impulssivasteet yhteen: h BSF ( n) = h ( n) + h ( n) = {,.44,,.44, } LPF HPF

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SGN-1200 Signaalinkäsittelyn menetelmät, Tentti 5.5.2008 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 1 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 30.1.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-00 Signaalinkäsittelyn menetelmät, Tentti..005 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle ja sen

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN-11 Signaalinkäsittelyn perusteet Välikoe 3.5.16 Heikki Huttunen Laskimen käyttö sallittu. Muiden materiaalien käyttö ei sallittu. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla 1-3 on. Sivuilla 4-5

Lisätiedot

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö:! Johdanto! IIR vai FIR äänten suodattamiseen?!

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Suodatus 2 (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab-ohjelmistoa käyttäen. Kokoa erilliseen

Lisätiedot

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: TL61, Näytejonosysteemit (K00) Harjoitus 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) 1 (t) = cos(000πt) + sin(6000πt) + cos(00πt) ja ) (t) = cos(00πt)cos(000πt).

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

T Digitaalinen signaalinkäsittely ja suodatus

T Digitaalinen signaalinkäsittely ja suodatus T-63 Digitaalinen signaalinkäsittely ja suodatus 2 välikoe / tentti Ke 4528 klo 6-9 Sali A (A-x) ja B (x-ö)m 2 vk on oikeus tehdä vain kerran joko 75 tai 45 Tee välikokeessa tehtävät, 2 ja 7 (palaute)

Lisätiedot

Tuntematon järjestelmä. Adaptiivinen suodatin

Tuntematon järjestelmä. Adaptiivinen suodatin 1 1 Vastaa lyhyesti seuraaviin a) Miksi signaaleja ylinäytteistetään AD- ja DA-muunnosten yhteydessä? b) Esittele lohkokaaviona adaptiiviseen suodatukseen perustuva tuntemattoman järjestelmän mallinnus.

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

T SKJ - TERMEJÄ

T SKJ - TERMEJÄ T-61140 SKJ - termit Sivu 1 / 7 T-61140 SKJ - TERMEJÄ Nimi Opnro Email Signaalinkäsittelyyn liittyviä termejä ja selityksiä Kevät 2005 Täytä lomaketta kevään aikana ja kerää mahdollisesti puuttuvia termejä

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava): TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a

Lisätiedot

1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db.

1 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu päästökaistavärähtely on 0.05 db ja estokaistalla vaimennus on 44 db. TL5362DSK-algoritmit (J. Laitinen) 2.2.26 Tarkastellaan digitaalista suodatinta, jolle suurin sallittu äästökaistavärähtely on.5 db ja estokaistalla vaimennus on 44 db. 6 Kuinka suuri maksimioikkeama vahvistusarvosta

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Katsaus suodatukseen

Katsaus suodatukseen Katsaus suodatukseen Suodatuksen perustaa, ideaaliset suotimet, käytännön toteutuksia Suodatus Suodatusta käytetään yleensä signaalin muokkaukseen siten, että 2 poistetaan häiritsevä signaali hyötysignaalin

Lisätiedot

1 Johdanto. 2 Kriittinen näytteistys 2:lla alikaistalla. 1.1 Suodatinpankit audiokoodauksessa. Johdanto

1 Johdanto. 2 Kriittinen näytteistys 2:lla alikaistalla. 1.1 Suodatinpankit audiokoodauksessa. Johdanto Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online

Lisätiedot

FIR suodinpankit * 1 Johdanto

FIR suodinpankit * 1 Johdanto FIR suodinpankit * Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Saramäki. Multirate signal processing. TTKK:n kurssi 80558. * ) Aihealue on erittäin laaja. Esitys tässä on tarkoituksellisesti

Lisätiedot

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

Remez-menetelmä FIR-suodinten suunnittelussa

Remez-menetelmä FIR-suodinten suunnittelussa Luku Remez-menetelmä FIR-suodinten suunnittelussa Remez-menetelmä, eli optimaalinen menetelmä etsii minimax-mielessä optimaalista suodinta. Algoritmi johdetaan seuraavassa (täydellisyyden vuoksi) melko

Lisätiedot

Suodinpankit ja muunnokset*

Suodinpankit ja muunnokset* Suodinpankit ja muunnokset* Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Spanias et al. Audio signal processing and coding. Wiley & Sons Smith, Spectral audio signal processing, online

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..007 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons.

Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Zölzer (ed.) DAFX Digital Audio Effects. Wiley & Sons. Sisältö: Johdanto IIR vai FIR äänten suodattamiseen? Suodatinrakenteita

Lisätiedot

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen

SGN Signaalinkäsittelyn perusteet Välikoe Heikki Huttunen SGN- Signaalinkäsittelyn perusteet Välikoe.5.4 Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla -3 on. Sivuilla 4-5 on. Sivulla

Lisätiedot

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen

SGN-1251 Signaalinkäsittelyn sovellukset Välikoe Heikki Huttunen SGN-5 Signaalinkäsittelyn sovellukset Välikoe.. Heikki Huttunen Tentissä ja välikokeessa saa käyttää vain tiedekunnan laskinta. Tenttikysymyksiä ei tarvitse palauttaa. Sivuilla - on. Sivuilla 4-6 on. Vastaa

Lisätiedot

Vastekorjaus (ekvalisointi)

Vastekorjaus (ekvalisointi) Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal processing. Wiley & Sons. Sisältö: Johdanto IIR vai FIR äänten suodattamiseen? Diskreettien IIR:ien suunnittelu jatkuva-aikaisista yllykorjaimet

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

SUODATTIMET. Suodatinteorian perusteita

SUODATTIMET. Suodatinteorian perusteita SUODATTIMET Suodatinteorian perusteita Suodattimen Q arvo Jyrkkyys Vaihesiirto Suodinapproksimaatiot ja niiden ominaisuudet suodattimet - suodattimet Keraamiset suotimet esonaattorit Aktiivisuodattimet

Lisätiedot

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN

LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet

Lisätiedot

Luento 8. tietoverkkotekniikan laitos

Luento 8. tietoverkkotekniikan laitos Luento 8 Luento 8 Signaalien suodatus 8. Ideaaliset suodattimet Ideaaliset alipäästö-, ylipäästö-, kaistanpäästö- ja kaistanestosuodattimet Oppenheim 6.3 8. Käytännön suodattimet Käytännön suodattimet,

Lisätiedot

Mitä FIR suodin on oikeastaan. Pekka Ritamäki. Esittely. Esimerkki

Mitä FIR suodin on oikeastaan. Pekka Ritamäki. Esittely. Esimerkki Mitä FIR suodin on oikeastaan Pekka Ritamäki Esittely...1 Esimerkki...1 Mikä FIR suodin on?...3 Mitkä ovat FIR suotimen huonot ominaisuudet verrattuna IIR suotimiin?...5 Millä termeillä FIR suodinta kuvataan?...5

Lisätiedot

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus.

1 Määrittele lyhyesti seuraavat käsitteet. a) Kvantisointivirhe. b) Näytetaajuuden interpolointi. c) Adaptiivinen suodatus. TL536DSK-algoritmit (J. Laitinen) 6.4.5 Määrittele lyyeti euraavat käitteet a) Kvantiointivire. b) äytetaajuuden interpolointi. ) Adaptiivinen uodatu. a) Kvantiointivire yntyy, kun ignaalin ykittäinen

Lisätiedot

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014)

SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi. Äänitaajuusjakosuodintyö (2013-2014) TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn laitos SGN-16006 Bachelor's Laboratory Course in Signal Processing ELT-41100 Tietoliikenne-elektroniikan työkurssi Äänitaajuusjakosuodintyö (2013-2014)

Lisätiedot

Suomenkielinen käyttöohje www.macrom.it

Suomenkielinen käyttöohje www.macrom.it MA.00D Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 0 Ω 0 RCA-tuloliitäntä matalatasoiselle signaalille Tasonsäätö Alipäästösuotimen säätö Sub Sonic -suotimen säätö Bassokorostuksen

Lisätiedot

Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz.

Harjoitustyö 1. Signaaliprosessorit Sivu 1 / 11 Vähämartti Pasi & Pihlainen Tommi. Kaistanestosuodin, estä 2 khz. Amplitudi. 2 khz. Signaaliprosessorit Sivu 1 / 11 Harjoitustyö 1 Kaistanestosuodin, estä 2 khz Amplitudi f 2 khz MATLAB koodi: clear; close all; w=[0 1900 1950 2050 2100 4000]/4000; m=[1 1 0 0 1 1]; h=remez(800,w,m); [H,w]=freqz(h,1);

Lisätiedot

1 Johdanto. 2 Diskreettien IIR-suodattimien suunnittelu jatkuva-aikaisista suodattimista. 1.1 IIR vai FIR äänten suodattamiseen?

1 Johdanto. 2 Diskreettien IIR-suodattimien suunnittelu jatkuva-aikaisista suodattimista. 1.1 IIR vai FIR äänten suodattamiseen? Vastekorjaus (ekvalisointi) Lähteet: Zölzer. Digital audio signal proessing. Wiley & Sons. Regalia, Mitra. (987). Tunable digital frequeny response equalization filters. IEEE Trans. ASSP-35 No., Jan. 987.

Lisätiedot

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9

T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 1 / 9 T-61.246 DSP (Harjoitustyö 2003, v. 5.01) Sivu 2 / 9 T-61.246 Digitaalinen signaalinkäsittely ja suodatus Versio 5.01 (29.9.2003) T-61.246 Harjoitustyö

Lisätiedot

Säätötekniikan ja signaalinkäsittelyn työkurssi

Säätötekniikan ja signaalinkäsittelyn työkurssi Säätötekniikan ja signaalinkäsittelyn työkurssi Työ D102: Sinimuotoisen signaalin suodattaminen 0.4 op. Julius Luukko Lappeenrannan teknillinen yliopisto Sähkötekniikan osasto/säätötekniikan laboratorio

Lisätiedot

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus

ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely. Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus L1: Audio Prof. Vesa Välimäki ELEC-C5340 - Sovellettu digitaalinen signaalinkäsittely Luennon sisältö Äänisignaalien näytteenotto ja kvantisointi Dither Oskillaattorit Digitaalinen suodatus Lyhyt FIR-suodin

Lisätiedot

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z

5. Z-muunnos ja lineaariset diskreetit systeemit. z n = z 5. Z-muunnos ja lineaariset diskreetit systeemit Jono: (x(n)) n=0 = (x(0), x(1), x(2),..., x(n),...) Z-muunnos: X(z) = n=0 x(n)z n, jos sarja suppenee jossain kompleksitason osassa. Esim. 4. Ykkösjonon

Lisätiedot

Radioamatöörikurssi 2013

Radioamatöörikurssi 2013 Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus

Lisätiedot

1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3...

1 Äänisignaalin tallentaminen ja analysointi... 2 Q Q Q Q Häiriönpoisto... 5 Q Q Q2.3... 1 Äänisignaalin tallentaminen ja analysointi... 2 Q1.1... 2 Q1.2... 2 Q1.3... 3 Q1.4... 4 2 Häiriönpoisto... 5 Q2.1... 5 Q2.2... 8 Q2.3... 9 3 FIR- ja IIR-suotimien vertailu... 10 Q3.1... 10 Q3.2... 11

Lisätiedot

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

Yksinkertaisin järjestelmä

Yksinkertaisin järjestelmä Digitaalinen Signaalinkäsittely T05 Luento 5 -.04.006 Jarkko.Vuori@evtek.fi Yksinkertaisin järjestelmä Differenssiyhtälö [ n] x[ n] y Lohkokaavio X() Y() Siirtofunktio H ( ) Nolla-napa kuvio Ei nollia

Lisätiedot

Spektrianalysaattori. Spektrianalysaattori

Spektrianalysaattori. Spektrianalysaattori Mittaustekniikan perusteet / luento 9 Spektrianalysaattori Spektrianalyysi Jean Baptiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Radioamatöörikurssi 2015

Radioamatöörikurssi 2015 Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

T Signaalinkäsittelyjärjestelmät Kevät 2005 Pakolliset ja lisäpistelaskarit

T Signaalinkäsittelyjärjestelmät Kevät 2005 Pakolliset ja lisäpistelaskarit T-61.14 SKJ (Pakolliset ja lisäpistetehtävät 5) Sivu / 16 T-61.14 Signaalinkäsittelyjärjestelmät Kevät 5 Pakolliset ja lisäpistelaskarit HUOM! Kurssi luennoidaan todennäköisesti viimeistä kertaa keväällä

Lisätiedot

Signaalinkäsittelyn sovellukset

Signaalinkäsittelyn sovellukset Signaalinkäsittelyn laitos. Opetusmoniste 26: Institute of Signal Processing. Lecture Notes 26: Heikki Huttunen Signaalinkäsittelyn sovellukset Tampere 26 Tampereen teknillinen yliopisto. Signaalinkäsittelyn

Lisätiedot

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Elektroniikan perusteet, Radioamatööritutkintokoulutus Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:

Lisätiedot

FYSP105 / K3 RC-SUODATTIMET

FYSP105 / K3 RC-SUODATTIMET FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä

Lisätiedot

Kuvien ehostus taajuustasossa

Kuvien ehostus taajuustasossa Luku 4 Kuvien ehostus taajuustasossa Ranskalainen matemaatikko Jean Babtiste Joseph Fourier esitti 1807, että mikä tahansa jaksollinen funktio voidaan esittää eritaajuisten sinien ja kosinien painotettuna

Lisätiedot

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10

20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10 Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste

Lisätiedot

Synteesi-analyysi koodaus

Synteesi-analyysi koodaus Luku 2 Synteesi-analyysi koodaus Tärkein koodausmenetelmä puheenkoodausstandardeissa 9-luvulta alkaen on ollut synteesi-analyysi koodaus (engl. analysis-by-synthesis). Tässä lähestymistavassa optimaaliset

Lisätiedot

M2A.4000. Suomenkielinen käyttöohje. www.macrom.it

M2A.4000. Suomenkielinen käyttöohje. www.macrom.it M2A.4000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 2 3 4 5 6 7 8 9 0 2 3 4 RCAtuloliitäntä (kanavat /2) High Level

Lisätiedot

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset

Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset Muuntavat analogisen signaalin digitaaliseksi Vertaa sisääntulevaa signaalia referenssijännitteeseen Sarja- tai rinnakkaismuotoinen Tyypilliset valintakriteerit resoluutio ja nopeus Yleisimmät A/D-muunnintyypit:

Lisätiedot

SEBASTIAN RINTALA SIGNAALIN DOMINOIVAN TAAJUUDEN ARVIOINTI

SEBASTIAN RINTALA SIGNAALIN DOMINOIVAN TAAJUUDEN ARVIOINTI SEBASTIAN RINTALA SIGNAALIN DOMINOIVAN TAAJUUDEN ARVIOINTI Kandidaatintyö Tarkastaja: yliopistonlehtori Heikki Huttunen ii TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Signaalinkäsittelyn ja tietoliikennetekniikan

Lisätiedot

Suomenkielinen käyttöohje

Suomenkielinen käyttöohje M1A.4150 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op) Audiosignaalit (ver 1.0) Jyrki Laitinen TL5503 DSK, laboraatiot (1.5 op), K2005 1 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja SPDemo-ohjelmistoja käyttäen. Kokoa

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Kompleksianalyysi, viikko 7

Kompleksianalyysi, viikko 7 Kompleksianalyysi, viikko 7 Jukka Kemppainen Mathematics Division Fourier-muunnoksesta Laplace-muunnokseen Tarkastellaan seuraavassa kausaalisia signaaleja eli signaaleja x(t), joille x(t) 0 kaikilla t

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

8000253: Johdatus signaalinkäsittelyyn 2

8000253: Johdatus signaalinkäsittelyyn 2 TAMPEREEN TEKNILLINEN YLIOPISTO Tietotekniikan osasto Signaalinkäsittelyn laitos TAMPERE UNIVERSITY OF TECHNOLOGY Department of Information Technology Institute of Signal Processing Opetusmoniste 2-23

Lisätiedot

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi

Esipuhe. Tampereella, 9. toukokuuta 2003, Heikki Huttunen heikki.huttunen@tut.fi Esipuhe Käsillä oleva moniste on tarkoitettu opetusmateriaaliksi Tampereen teknillisen yliopiston signaalinkäsittelyn laitoksen kurssille "8253: Johdatus signaalinkäsittelyyn 2". Materiaali on kehittynyt

Lisätiedot

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma

KON-C3004 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma KON-C34 Kone- ja rakennustekniikan laboratoriotyöt Tiedonkeruu ja analysointi Panu Kiviluoma Mitattava suure Tarkka arvo Mittausjärjestelmä Mitattu arvo Ympäristö Mitattava suure Anturi Signaalinkäsittely

Lisätiedot

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan

Lisätiedot

4. Taajuusalueen suodatus 4.1. Taustaa Perusteita

4. Taajuusalueen suodatus 4.1. Taustaa Perusteita 4. Taajuusalueen suodatus 4.1. Taustaa Fourier esitti v. 1807 idean, että laskien yhteen jaksollisia painotettuja funktioita voidaan esittää kuinka tahansa monimutkainen jaksollinen funktio. Kuva 4.1.

Lisätiedot

S Signaalit ja järjestelmät

S Signaalit ja järjestelmät dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä

Lisätiedot

Akustisen emission anturin signaalin esikäsittelypiirin selvittäminen ja prototyypin toteuttaminen

Akustisen emission anturin signaalin esikäsittelypiirin selvittäminen ja prototyypin toteuttaminen Akustisen emission anturin signaalin esikäsittelypiirin selvittäminen ja prototyypin toteuttaminen Marko Kupiainen Kandidaatintyö 11.3.21 LUT Energia Sähkötekniikan koulutusohjelma TIIVISTELMÄ Lappeenrannan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi

LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...

Lisätiedot

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.

OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme

Lisätiedot

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja: TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus

Lisätiedot

Heikki Huttunen Signaalinkäsittelyn sovellukset

Heikki Huttunen Signaalinkäsittelyn sovellukset Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 2: Tampere University of Technology. Department of Signal Processing. Lecture Notes 2: Heikki Huttunen Signaalinkäsittelyn sovellukset

Lisätiedot

AS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan

AS Automaatio- ja systeemitekniikan projektityöt S09-18 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan AS-.32 Automaatio- ja systeemitekniikan projektityöt S9-8 Langaton anturijärjestelmä rakenteiden kunnonvalvontaan Joni Silvo Johdanto Tässä työssä tutkitaan rakenteiden kunnonvalvontaan käytettävään langattomaan

Lisätiedot

nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien

nykyään käytetään esim. kaapelitelevisioverkoissa radio- ja TVohjelmien 2.1.8. TAAJUUSJAKOKANAVOINTI (FDM) kanavointi eli multipleksointi tarkoittaa usean signaalin siirtoa samalla siirtoyhteydellä käyttäjien kannalta samanaikaisesti analogisten verkkojen siirtojärjestelmät

Lisätiedot

ILKKA HULKKO TAAJUUDEN MITTAUS PAINESIGNAALISTA. Kandidaatintyö

ILKKA HULKKO TAAJUUDEN MITTAUS PAINESIGNAALISTA. Kandidaatintyö ILKKA HULKKO TAAJUUDEN MITTAUS PAINESIGNAALISTA Kandidaatintyö Tarkastaja: Konsta Koppinen Työ jätetty tarkastettavaksi: 8.5.2009 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Automaatiotekniikan koulutusohjelma

Lisätiedot

AES-H, PES-H ja YS-L -suodatinpistokkeet. Käyttötarkoituksen kuvaus

AES-H, PES-H ja YS-L -suodatinpistokkeet. Käyttötarkoituksen kuvaus AES-H, PES-H ja YS-L -suodatinpistokkeet Käyttötarkoituksen kuvaus Taustaa Yleisessä televerkossa käytetään nykyisin usein ratkaisua, jossa olemassa olevaan tilaajalle menevään puhelinpariin kytketään

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus

Lisätiedot

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori

Perusmittalaitteet 2. Spektrianalyysi. Mittaustekniikan perusteet / luento 4. Spektrianalyysi. Logaritmiasteikko ja db (desibel) Spektrianalysaattori Mittaustekniikan perusteet / luento 4 Perusmittalaitteet Spektrianalyysi Jean Bapiste Fourier (1768-1830): Signaali voidaan esittää taajuudeltaan ja amplitudiltaan (sekä vaiheeltaan) erilaisten sinien

Lisätiedot

Luku 3. Data vektoreina

Luku 3. Data vektoreina 1 / 4 Luku 3. Data vektoreina T-61.21 Datasta tietoon, syksy 211 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 3.11.211 2 / 4 Tämän luennon sisältö 1 Data vektoreina Datamatriisi

Lisätiedot

Tämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011

Tämän luennon sisältö. Luku 3. Data vektoreina. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011 Tämän luennon sisältö Luku 3. T-6.2 Datasta tietoon, syksy 2 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto Datamatriisi Piirreirrotus: ääni- ja kuvasignaalit Dimensionaalisuuden

Lisätiedot

Signaalinkäsittelyn menetelmät

Signaalinkäsittelyn menetelmät Signaalinkäsittelyn laitos. Opetusmoniste 25: Institute of Signal Processing. Lecture Notes 25: Heikki Huttunen Signaalinkäsittelyn menetelmät Tampere 25 Opetusmoniste 25: Signaalinkäsittelyn menetelmät

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Laskuharjoitus 2 ( ): Tehtävien vastauksia

Laskuharjoitus 2 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 2 (11.9.2013): Tehtävien vastauksia 1. Eräässä kuvitteellisessa radioverkossa yhdessä radiokanavassa voi olla menossa samanaikaisesti

Lisätiedot

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen

TL5503 DSK, laboraatiot (1.5 op) Kuvasignaalit. Jyrki Laitinen TL553 DSK, laboraatiot (.5 op) Kuvasignaalit Jyrki Laitinen TL553 DSK, laboraatiot (.5 op), K25 Suorita oheisten ohjeiden mukaiset tehtävät Matlab- ja VCDemo-ohjelmistoja käyttäen. Kokoa erilliseen mittauspöytäkirjaan

Lisätiedot

Heikki Huttunen Signaalinkäsittelyn perusteet

Heikki Huttunen Signaalinkäsittelyn perusteet Tampereen teknillinen yliopisto. Signaalinkäsittelyn laitos. Opetusmoniste 24: Tampere University of Technology. Department of Signal Processing. Lecture Notes 24: Heikki Huttunen Signaalinkäsittelyn perusteet

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot