Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki

Koko: px
Aloita esitys sivulta:

Download "Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki"

Transkriptio

1 Säännöllisstä luskkst dtrministisksi tilkonksi: simrkki Hikki Turiinn Yksinkrtistn säännöllistn luskkidn muuttminn dtrministisiksi tilkoniksi onnistuu usin plkästään lusktt tutkimll. Jos luskkn rknn on monimutkinn, stt kuitnkin toisinn oll vik vrmistu siitä, hyväksyykö luskkst suorn muodostttu dtrministinn tilkon täsmällissti luskkn määrittlmän kiln. Tässä sittään, kuink mikä thns säännöllinn lusk voidn systmttissti muunt dtrministisksi tilkonksi noudttmll tittyjä muodostussääntöjä. Esimrkkinä käyttään kkoston Σ = {, } yli määritltyä säännöllistä lusktt ( ) () Säännöllinn lusk voidn muunt dtrministisksi tilkonksi muodostmll luskkst nsin pädtrministinn tilkon, jok muunntn sittn dtrministisksi. Epädtrministinn tilkon sdn lähtmällä liikkll luskkn pinimmistä liluskkist j yhdistlmällä niistä muodostttuj yksinkrtisi tilkonit suurmmiksi tilkoniksi muunnossääntöjn vull, kunns sdn nnttu säännöllistä lusktt vstv pädtrministinn tilkon. Esimrkkitpuksss voidn siis nsin muodost tilkont kkoston mrkill j : Tilkonidn liittäminn präkkäin (konktntio): Esimrkkilusk sisältää liluskkinn mm. luskkt j, joist kumpikin riksn koostuu kolmst präkkäin liittystä pinmmästä säännöllisstä luskkst. Ylissti kht säännöllistä lusktt L 1 j L 2 vstvt tilkont M 1 j M 2 voidn liittää präkkäin lusktt L 1 L 2 vstvksi tilkonksi survsti: 1

2 Tilkonidn M 1 j M 2 konktntio 1. Lisää tilkonn M 1 kikist lopputiloist tyhjä -siirtymä tilkonn M 2 lkutiln. 2. Ast uudn tilkonn lkutilksi M 1 :n lkutil. 3. Ast uudn tilkonn (inoiksi) lopputiloiksi kikki M 2 :n lopputilt. Voidn jtll, ttä M käyttäytyy nsin kutn tilkon M 1 j trkist, ttä sill nntun syötsnn w lkuos kuuluu kiln L 1. Jos näin on, tilkon lk sn jälkn toimi tilkonn M 2 tvoin j trkist, ttä syötsnn loppuos kuuluu kiln L 2. Jos myös tämä trkistus onnistuu, tilkon hyväksyy syöttn w. Formlisti muunnos voidn sittää survsti: jos M 1 = (K 1, Σ, 1, s 1, F 1 ) j M 2 = (K 2, Σ, 2, s 2, F 2 ) ovt kksi tilkontt, niidn konktntio on tilkon M = (K, Σ,, s, F ), missä K = K 1 K 2 (M sisältää kikki M 1 :n j M 2 :n tilt) s = s 1 (M:n lkutil on sm kuin M 1 :n lkutil) F = F 2 (M:n lopputiloj ovt kikki M 2 :n lopputilt) = 1 2 (F 1 {} {s 2 }) (M sisältää kikki M 1 :n j M 2 :n tilsiirtymät skä lisäksi -siirtymät M 1 :n lopputiloist M 2 :n lkutiln) Esimrkkinä nntun säännöllisn luskkn ( ) () liluskkit j vstvt tilkont sdn liittämällä luskkit j vstvi tilkonit präkkäin sopivss järjstyksssä. Kun nsin liittään kksi lusktt vstv tilkontt toisiins präkkäin, sdn lusktt vstv tilkon 1 Kun tähän tilkonsn liittään vilä lusktt vstv tilkon, sdn luskkll tilkon Vstvsti luskktt vstv tilkon on 1 Sovllttss muunnoksi systmttissti stt tilkonisiin syntyä trpttomi -siirtymiä. Tässä sityksssä niitä i ol riksn poistttu välimuodoist; its siss kikki -siirtymät poistuvt lopult tilkonn dtrminisoinnin yhtydssä. 2

3 Tilkonidn yhdist (unioni): Luskkit j vstvt tilkont voitiin muodost liittämällä tilkonit toisiins präkkäin. Esimrkkiluskkn os ( ) vrtn trvitn kuitnkin uusi muunnossääntö, jonk vull kht säännöllistä lusktt L 1 j L 2 vstvist tilkonist M 1 j M 2 voidn muodost säännöllistä lusktt (L 1 L 2 ) vstv tilkon M. Tilkonidn M 1 j M 2 yhdist 1. Ot käyttöön uusi til j lisää siitä -siirtymät M 1 :n j M 2 :n lkutiloihin. Ast tämä uusi til tilkonidn yhdistn lkutilksi. 2. Ast uudn tilkonn lopputiloiksi kikki M 1 :n j M 2 :n lopputilt. M voidn tässä tpuksss jtll tilkonksi, jok nsin vlits pädtrministissti, käyttäytyykö s M 1 :n vi M 2 :n tvoin, minkä jälkn s toimii vlinnn mukissti. Epädtrministisyydn nsiost tilkon hyväksyy syötsnn w, jos j vin, jos vähintään toinn lkupräisistä tilkonist M 1 ti M 2 hyväksyisi sn. Formlisti sitttynä khdn tilkonn M 1 = (K 1, Σ, 1, s 1, F 1 ) j M 2 = (K 2, Σ, 2, s 2, F 2 ) yhdist M = (K, Σ,, s, F ) on K = K 1 K 2 {s} (M sisältää kikki M 1 :n j M 2 :n tilt skä lisäksi yhdn ylimääräisn tiln s, jok on smll M:n lkutil) F = F 1 F 2 (M:n lopputiloj ovt kikki M 1 :n j M 2 :n lopputilt) = 1 2 {(s,, s 1 ), (s,, s 2 )} (M sisältää kikki M 1 :n j M 2 :n tilsiirtymät skä lisäksi -siirtymät uudst lkutilst s M 1 :n j M 2 :n lkutiloihin) Muunnoksn vull sdn säännöllisiä luskkit j vstvist tilkonist muodostttu tilkon luskkll ( ). (Kikiss surviss kuviss tilkonidn muuttunt skä tilkonisiin lisätyt tilt j tilsiirtymät on korostttu.) 3

4 Klnn tähti -oprtio: Säännöllisill luskkill määritllyistä oprtioist jäljllä on vilä Klnn tähti -oprtio, jot simrkkiluskkss sovlltn sim. liluskksn ( ). Myös tämä oprtio voidn sittää tilkonmuunnoksn, jonk vull mitä thns säännöllistä lusktt L vstvst tilkonst M voidn muodost lusktt L vstv tilkon M. Klnn tähti -oprtio tilkonll M 1. Lisää tilkonsn M -siirtymät kikist sn lopputiloist tkisin sn lkutiln. 2. Lisää tilkonsn uusi til j yhdistä s -siirtymän vull konn lkutiln. Vihd konsn lisätty til konn lkutilksi. 3. Ast konn lopputiloiksi konn uusi lkutil skä kikki M:n lopputilt. Konn M (lkupräisistä) lopputiloist lähtvät uudt -siirtymät mhdollistvt sn, ttä kon voi luk smn mrkkijonon mont krt präkkäin, mikä vst Klnn tähti -oprtioon liittyvää luskkn toisto. Konn uudn hyväksyvän lkutiln nsiost kon hyväksyy myös tyhjän mrkkijonon (jok täytyy hyväksyä, kosk tyhjä mrkkijono kuuluu in Klnn tähti -oprtion määrittlmään kiln). 2 Anntust tilkonst M = (K, Σ,, s, F ) muunnoksn vull stvn tilkonn M = (K, Σ,, s, F ) formli määritlmä on surv: K = K {s } F = F {s } = (F {} {s}) (M sisältää kikki M:n tilt skä lisäksi yhdn ylimääräisn tiln s, jok on smll M :n lkutil) (M :n lopputiloj ovt kikki M:n lopputilt skä uusi lkutil s ) (M sisältää kikki M:n tilsiirtymät skä lisäksi -siirtymät kikist lopputiloistn M:n lkupräisn lkutiln s) 2 Huom, ttä muunnoksss lisätään tilkonll uusi hyväksyvä lkutil, sillä tyhjän mrkkijonon hyväksymistä i ylissti voi totutt vin sttmll konn lkupräinn lkutil lopputilksi! Esimrkiksi jos tilkonll, jok hyväksyy kiln (), yrittään thdä Klnn tähti -muunnos lisäämällä -siirtymä tilkonn lopputilst sn lkutiln j muuttmll lkutil hyväksyväksi, sdn tilkon, jok hyväksyy sim. mrkkijonon, jok i kuitnkn kuulu kiln (() ). Ylissti Klnn tähti -oprtio siis vtii uudn lkutiln luomist tilkonll; tässä tpuksss oik muunnos siis tuott tilkonn. 4

5 Edllä muodostttiin tilkon säännöllisll luskkll ( ). Kun tätä lusktt vstvll tilkonll suorittn Klnn tähti -oprtio, sdn tilkon luskkll ( ) : Esimrkki jtkuu: Nyt voidn muodost tilkon koko luskkll ( ) (). Liittämällä luskkit ( ) j vstvt tilkont präkkäin sdn luskkll ( ) tilkon Luskkn () tilkon sdn liittämällä nsin präkkäin luskkidn j tilkont j suorittmll muodosttull tilkonll Klnn tähti -oprtio: Liittään nyt luskkidn ( ) j () tilkont toisiins: 5

6 Kun tähän tilkonsn liittään vilä luskkn tilkon, sdn lopult lusktt ( ) () vstvksi tilkonksi Epädtrministisn tilkonn dtrminisointi: Dtrminisointi vrtn numroidn tilkonn tilt: Tilkontt dtrminisoitss käsitllään tiljoukkoj, joihin krätään kikki mhdollist tilt, joihin pädtrministinn tilkon voi päätyä, kun s luk yhdn mrkin syötttä krrlln lähtin jostkin tilst (ti tiloist) liikkll. Nämä tiljoukot tulkitn lopuksi dtrministisn tilkonn tiloiksi. Dtrministisn tilkonn lkutil muodostuu kikist niistä pädtrministisn tilkonn tiloist, joiss pädtrministinn tilkon voi oll nnn, kuin s luk yhtään syötmrkkiä. Slvästi til 1 kuuluu tähän tiljoukkoon, kosk s on pädtrministisn tilkonn lkutil. Epädtrministisn tilkonn -siirtymin vuoksi kon voi kuitnkin siirtyä lkutilstn muihin tiloihin ilmn, ttä s luk yhtään syötttä. Esimrkkitilkon voi siirtyä lkutilstn -siirtymin vull tiloihin 2 j 15, j tilst 2 on dlln -siirtymät tiloihin 3 j 4. Sur siis, ttä pädtrministinn tilkon voi oll missä thns tiloist 1, 2, 3, 4 ti 15 nnn, kuin s on vilä luknut yhtään mrkkiä syöttstä. Tutkitn sittn, mihin kikkiin tiloihin tilkon voi päätyä nsimmäisn syötmrkin lukmisn jälkn. Kosk tilkon voi oll yhdssä usst mhdollisst tilst nnn mrkin lukmist, voi kon myös päätyä usihin ri 6

7 tiloihin mrkin luttun. Sdn siis joukko mhdollisi tiloj, joiss tilkon voi oll luttun yhdn mrkin syötttä. Kosk tilst 1 on inostn -siirtymiä muihin tiloihin, kon i voi siirtyä tästä tilst mihinkään muuhun tiln millään kkoston mrkillä. Sm pät tiln 2. Olttn, ttä nsimmäinn syötmrkki on. Tiloist 3, 4 j 15 nähdään, ttä tilkon voi :n lukmll siirtyä johonkin tiloist 5, 6 ti 16 riippun siitä, missä tilss s oli nnn :n lukmist. Nämä ivät kuitnkn ol inot mhdollist tilt, joihin kon voi päästä :n luttun, sillä kon voi mrkin lukmisn jälkn thdä -siirtymiä ilmn, ttä s luk lisää syötttä. Nähdään, ttä tilkon voi siirtyä -siirtymin vull dlln tilst 5 tiln 7, tilst 6 tiln 8, tilst 16 tiln 17 j dlln tilst 17 jompnkumpn tiloist 18 ti 22. Jos siis nsimmäinn tilkonn lukm mrkki on, tilkon voi mrkin luttun oll missä thns tiloist 5, 6, 7, 8, 16, 17, 18 ti 22. Jos ts olttn, ttä nsimmäinn syötmrkki onkin, nähdään, tti mistään tilst 1, 2, 3, 4 ti 15 lähd yhtään -kirjimll nimttyä siirtymää johonkin toisn tiln. Sitn niidn tilojn joukko, johon tilkon voi päätyä, kun nsimmäinn syötmrkki on, on tyhjä ( ). Kirjoittn dllä olvn trkstlun tulokst tulukkoon: lähtötilojn joukko kohdtilojn joukko, kohdtilojn joukko, kun lutn kun lutn Tutkitn nyt smll tvll, mihin tiloihin tilkon voi päätyä khdn syötmrkin lukmisn jälkn. Tässä vihss tidtään, ttä jos nsimmäinn luttu mrkki on ollut, tilkon on mrkin lukmisn jälkn josskin tiloist 5, 6, 7, 8, 16, 17, 18 ti 22. Olttn, ttä myös toinn luttu mrkki on j määrittään n tilt, joihin tilkon voi päätyä, kun s läht liikkll jostkin dllä lutllust tilst j suoritt :n lukmisn jälkn mhdollissti vilä -siirtymiä. Huomtn, tti tiloist 5, 6, 8, 16, 17, 18 j 22 lähd yhtään :ll nimttyä siirtymää. Aino :ll nimtty siirtymä läht tilst 7 tiln 9, j tilst 9 pääs -siirtymän kutt dlln tiln 11. Jos siis toinnkin luttu mrkki on, tilkon päätyy johonkin tiloist {9, 11}. Sm trkstlu toisttn tiloist 5, 6, 7, 8, 16, 17, 18 j 22 liikkll lähtin myös syötmrkill, jolloin tulukko voidn täydntää survsti: lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn 7

8 Entä, jos nsimmäinn syötmrkki onkin ollut? Tulukost nähdään, ttä pädtrministinn tilkon i tällöin voi oll missään tilss. Tällöin survn syötmrkin lukminn (olip mrkki mikä thns) i voi vidä pädtrminististä tilkontt dllnkään mihinkään tiln, mikä mrkitään tulukkoon survsti: lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn Tulukkoon on nyt stu tito siitä, missä tiloiss pädtrministinn tilkon voi oll khdn mrkin lukmisn jälkn. Sm trkstlu suorittn nyt kolmnnll syötmrkill lähtin riksn liikkll tiljoukoist {9, 11} j {10, 12, 19, 20, 23}, jolloin tulukko täydntyy muotoon lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn {9, 11} {2, 3, 4, 13, 15} {10, 12, 19, 20, 23} {2, 3, 4, 14, 15, 18, 21, 22} Sm trkstlu täytyy toist dlln tiljoukoill {2, 3, 4, 13, 15} j {2, 3, 4, 14, 15, 18, 21, 22}, jotk ivät ol ikismmin siintynt tulukoss. Nyt sdn lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn {9, 11} {2, 3, 4, 13, 15} {10, 12, 19, 20, 23} {2, 3, 4, 14, 15, 18, 21, 22} {2, 3, 4, 13, 15} {5, 6, 7, 8, 16, 17, 18, 22} {2, 3, 4, 14, 15, 18, 21, 22} {5, 6, 7, 8, 16, 17, 18, 22} {19, 20, 23} Tulukkoon syntyy jälln uusi tiljoukko {19, 20, 23}, joll trkstlu täytyy toist: 8

9 lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn {9, 11} {2, 3, 4, 13, 15} {10, 12, 19, 20, 23} {2, 3, 4, 14, 15, 18, 21, 22} {2, 3, 4, 13, 15} {5, 6, 7, 8, 16, 17, 18, 22} {2, 3, 4, 14, 15, 18, 21, 22} {5, 6, 7, 8, 16, 17, 18, 22} {19, 20, 23} {19, 20, 23} {18, 21, 22} Toisttn trkstlu vilä tiljoukoll {18, 21, 22}: lähtötilojn joukko kohdtilojn joukko, kun lutn kohdtilojn joukko, kun lutn {9, 11} {2, 3, 4, 13, 15} {10, 12, 19, 20, 23} {2, 3, 4, 14, 15, 18, 21, 22} {2, 3, 4, 13, 15} {5, 6, 7, 8, 16, 17, 18, 22} {2, 3, 4, 14, 15, 18, 21, 22} {5, 6, 7, 8, 16, 17, 18, 22} {19, 20, 23} {19, 20, 23} {18, 21, 22} {18, 21, 22} {19, 20, 23} Trkstlu on nyt thty kikill tulukoss siintyvill tiljoukoill. Tulkitn nyt tulukoss siintyvät tiljoukot dtrministisn tilkonn yksittäisiksi tiloiksi j lutn tulukost tilojn välist siirtymät ri kkoston mrkillä: {1,2,3,4,15} {5,6,7,8,16,17,18,22} {2,3,4,13,15} {9,11} {10,12,19,20,23} {2,3,4,14,15,18,21,22}, {19,20,23} {18,21,22} (Tilkon on dtrministinn, kosk sn jokisst tilst läht täsmälln yksi millä thns kkoston mrkillä nimtty siirtymä johonkin toisn tiln, ikä tilkon myöskään sisällä -siirtymiä.) 9

10 Vlitn lopuksi dtrministisn tilkonn lopputilt. Lopputiloiksi mrkitään kikki n tilt, jotk vstvt jotkin pädtrministisn tilkonn tilojn joukko, joss on vähintään yksi pädtrministisn tilkonn lopputil. (Kosk tiljoukot krtovt n tilt, joiss pädtrministinn tilkon voi oll luttun sill nntun syöttn, yhdnkin lopputiln kuuluminn tiljoukkoon trkoitt, ttä jokin pädtrministisn tilkonn lkutilst lähtvä polku päätyy tähän lopputiln, jolloin tilkon hyväksyy syöttn.) Kosk simrkkitpuksss pädtrministisn tilkonn ino lopputil on til 23, lopputiloiksi mrkitään tiljoukkoj {10, 12, 19, 20, 23} j {19, 20, 23} vstvt tilt (nämä ovt inot tiljoukot, jotk sisältävät tiln 23). Säännöllistä lusktt ( ) () vstv dtrministinn tilkon on siis {1,2,3,4,15} {5,6,7,8,16,17,18,22} {2,3,4,13,15} {9,11} {10,12,19,20,23} {2,3,4,14,15,18,21,22}, {19,20,23} {18,21,22} Epädtrministisn tilkonn dtrminisointi 1. Määritä nsin n tilt, joiss pädtrministinn tilkon voi oll nnn, kuin s luk yhtään syötttä. Näihin tiloihin kuuluu pädtrministisn tilkonn lkutil skä kikki n tilt, joihin tilkon voi päästä lkutilstn -siirtymin vull. 2. Toist niin kun, kun jäljllä on käsittlmättömiä tiljoukkoj: Vlits jokin käsittlmätön tiljoukko Q. Muodost sittn kkoston Σ jokisll mrkill Σ riksn uusi tiljoukko, jok sisältää kikki n tilt, joihin pädtrministinn tilkon voi päästä, kun s läht jostkin tiljoukon Q tilst, luk syöttstä mrkin j suoritt sn jälkn mhdollissti vilä -siirtymiä. 3. Muodost dtrministinn tilkon tulkitsmll tiljoukot dtrministisn tilkonn tiloiksi. 4. Mrkits dtrministisn tilkonn lopputiloiksi kikki n tilt, joit vst pädtrministisn tilkonn tilojn joukko, jok sisältää vähintään yhdn pädtrministisn konn lopputiln. 10

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä

Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Knauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus.

Knauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus. Knuf Sfor Sätilysuojlvy 03/2009 Knuf Sfor Sätilysuojlvy 0% lyijyä. 100% turvllisuus. Knuf Sfor Knuf Sfor Suoj röntgnsätiltä Lyijytön Suoj plolt Hlppo snt Hyvä äännristävyys Ympäristöystävällinn hävittää

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista

Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista

TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista TAMPEREEN YLIOPISTO Vlinnisten opintojen syventäviin opintoihin kuuluv tutkielm Luri Kumpulinen Büchin utomteist Luonnontieteiden tiedekunt Tietojenkäsittelytieteiden tutkinto-ohjelm Huhtikuu 2017 Tmpereen

Lisätiedot

2.5 Säännöllisten kielten rajoituksista

2.5 Säännöllisten kielten rajoituksista 68 2.5 Säännöllisten kielten rjoituksist Minkä thns kkoston formlej kieliä (= päätösongelmi, tunnistusongelmi) on ylinumeroituv määrä kun ts säännöllisiä lusekkeit (= merkkijonoj) on numeroituv määrä Näin

Lisätiedot

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista 9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafitoriaan Syksy 2017 Lauri Hlla Tamprn yliopisto Luonnontitidn tidkunta 2 Luku 1 Pruskäsittitä 1.1 Määritlmiä 1.2 Esimrkkjä 1.3 Trminologiaa 1.4 Joitakin rikoisia yksinkrtaisia graafja 1.5

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C Tietojenkäsittelyteori Kevät 6 Kierros 8, 7.. mliskuut Demonstrtiotehtävien rtkisut D: Määrittele Turingin koneen stndrdimllin muunnelm, joss koneen työnuh on molempiin suuntiin ääretön, j osoit

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen)

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen) 58226 Lskennn mllit Erilliskoe 4.2.2, rtkisuj (Jyrki Kivinen). [6+6+3+3 pistettä] () Kieli A koostuu niistä kkoston {, } merkkijonoist, joiss esiintyy osjono. Esitä kielelle A sekä deterministinen äärellinen

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila;

Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila; Q on utomtin tilojen äärellinen joukko; Σ on utomtin syötekkosto; δ : Q Σ Q on utomtin siirtymäfunktio; q Q on utomtin lkutil; F Q on utomtin hyväksyvien tilojen joukko. Siirtymäfunktio δ on määritelmän

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Ohjelmistotekniikan matemaattiset menetelmät tentin kysymykset, vastaukset ja arvosteluperiaatteita

Ohjelmistotekniikan matemaattiset menetelmät tentin kysymykset, vastaukset ja arvosteluperiaatteita Ohjelmistotekniikn mtemttiset menetelmät tentin 2.1.200 kysymykset, vstukset j rvosteluperitteit Antti Vlmri TT / Ohj 1. helmikuut 200 Tässä tekstissä käyn läpi opintojkson 100500 Ohjelmistotekniikn mtemttiset

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Juuri- j logritmiunktiot -kurssin krtusthtävin j -srjojn rtkisut prustuvt oppikirjn titoihin j mntlmiin. Kustkin thtävästä on ylnsä vin yksi rtkisu, mikä i kuitnkn trkoit sitä, ttä rtkisu

Lisätiedot

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

Lue tämä Pika-asennusopas ennen koneen käyttöä varmistuaksesi asetusten ja asennuksen oikeasta suorituksesta.

Lue tämä Pika-asennusopas ennen koneen käyttöä varmistuaksesi asetusten ja asennuksen oikeasta suorituksesta. Pik-snnusops Aloit tästä MFC-250C MFC-290C MFC-297C Lu tämä Pik-snnusops nnn konn käyttöä vrmistukssi stustn j snnuksn oikst suorituksst. VAROITUS Nout näitä vroituksi mhollistn hnkilövhinkojn välttämisksi.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Asentajan viiteopas. Jaetut ilmastointilaitteet RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B

Asentajan viiteopas. Jaetut ilmastointilaitteet RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B Asntjn viitops Jtut ilmstointilittt RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B RZQSG100L9V1B RZQSG125L9V1B RZQSG140L9V1B RZQSG100L8Y1B RZQSG125L8Y1B

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint vrkkotsoll Vrkon topologi Liiknnmtriisi Liikntnhllint vrkkotsoll Kuormntsus lunto2.ppt S-38. Liiknntorin prustt Kvät 200 2 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

TASORITILÄN ASENNUS SEKÄ ALUSVALUN SIISTIMINEN ANKKURIREIKIEN PORAUS POIKKILEIKKAUS REUNAPALKISTA KANNATTIMEN KOHDALLA ALUSVALU KANNATTIMEN ASENNUS

TASORITILÄN ASENNUS SEKÄ ALUSVALUN SIISTIMINEN ANKKURIREIKIEN PORAUS POIKKILEIKKAUS REUNAPALKISTA KANNATTIMEN KOHDALLA ALUSVALU KANNATTIMEN ASENNUS 12*1 6 1*1 - - 6 6 OS-6 IP1 OS-6 IP1 6 4*2 3 OS-6 IP1 OS-6 IP1 99-12*1 24 1*1 OS-6 IP1 HVINNKUV 1*1 1*1 OSLUTTLO KOKOONPNOLL R1Y-1, JOT VLMISTTN 1 KPPLTT PL* S3K2 42.1.9 1 PL*122 S3K2 371.1 1. 1 PL1*9

Lisätiedot

3.5 Kosinilause. h a c. D m C b A

3.5 Kosinilause. h a c. D m C b A 3.5 Kosiniluse Jos kolmiost tunnetn kksi sivu j näien välinen kulm, sinilusett on sngen vike sovelt kolmion rtkisemiseen. Luse on työklun vuton myös kolmion kulmien rtkisemiseen tpuksess, jolloin kolmion

Lisätiedot

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen.

Mutta esimerkiksi 0-kertaisesti pumpattaessa: Siten L ei voi olla säännöllinen. 2.8 Säännöllisten kielten rjoituksist Krdinliteettisyistä on oltv olemss (pljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituv määrä, säännöllisiä lusekkeit vin numeroituvsti. Voidnko löytää konkreettinen,

Lisätiedot

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007

Automaattinen puheentunnistus. Teemu Hirsimäki <teemu.hirsimaki@hut.fi> Informaatiotekniikan laboratorio 30.1.2007 Automttinn puntunnitu Tmu Hirimki Informtiotkniikn lbortorio 30.1.2007 1 Mit puntunnitu on? Puntunnitin on jrjtlm, jok pyrkii tulkitmn putt jollin tvll. Kyttökotit: kyttöliittymn oju,

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Uudet golfin säännöt 2019

Uudet golfin säännöt 2019 omm p l H mm a p No mm r a P Uudt golf säännöt 2019 Yvs C. Ton-That on viralln golftuomari ja kirjantkijä. Hänn palkitut golfsääntöoppaansa on käänntty yli 20 killl ja niitä on myyty yli 1,5 miljoonaa

Lisätiedot

Arvioita karakterisummille: Pólya-Vinogradovin epäyhtälö ja sen parannuksia

Arvioita karakterisummille: Pólya-Vinogradovin epäyhtälö ja sen parannuksia Solmu 2/2015 1 Arvioita karaktrisummill: Pólya-Vinogradovin päyhtälö ja sn parannuksia Jss Jääsaari Matmatiikan ja tilastotitn laitos, Hlsingin yliopisto Johdanto Alkuluvut ovat analyyttisn lukutorian

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida?

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida? Pitkäikistyöttömin työkykyisyys j mitn sitä tulisi rvioid? Rij Krätär, kuntoutuslääkäri, kouluttj Oorninki Oy www.oorninki.fi Tässä sityksssä Tuloksi pitkäikistyöttömin työkykyä j työkyvyn rviot koskvst

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Valmennuksen ja arvioinnin tukijärjestemä (VAT)

Valmennuksen ja arvioinnin tukijärjestemä (VAT) Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A11 Titorkntt j lgoritmit Kirros 8: Vrkkolgoritmj (os II) Tommi Junttil Alto-yliopisto Prustitin korkkoulu Titotkniikn litos Syksy 1 Aiht: Pinottut vrkot Minimlist virittäjäpuut Lyhimmät polut Mtrili

Lisätiedot

Kierros 8: Verkkoalgoritmeja (osa II)

Kierros 8: Verkkoalgoritmeja (osa II) Kirros 8: Vrkkolgoritmj (os II) Tommi Junttil Alto Univrsity Shool o Sin Dprtmnt o Computr Sin CS-A11 Dt Struturs n Algorithms Autumn 1 Tommi Junttil (Alto Univrsity) Kirros 8 CS-A11 / Autumn 1 1 / 1 Aiht:

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN) Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.

Lisätiedot

ELEC-E8419 tentti joulukuu 2016

ELEC-E8419 tentti joulukuu 2016 ELECE849 tntti oulukuu 6 rtkisut. Erilisiss päsymmtrisissä vioiss komponnttivrkot kytktään yhtn ri tvoin. Ehot komponnttivrkkon kytknnöill päsymmtrisissä vioiss ovt survt: vihinn msulku: vihinn moikosulku:

Lisätiedot

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus E i j L e h t i n i e m i M e r v i Wä r e S L I N E N P I N E N H R J O I T U S V I H K O SLINEN KIRJSTO Hrjoitusvihkon Eij Lehtiniemi OPETTJN OHJEET Erityisopetus HRJOITUSVIHKON SISÄLTÖ Vlmiushrjoitukset

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA

uusi COOLSIDE JÄÄHDYTYSYKSIKKÖ PALVELIMILLE C_GNR_0608 Mikroprosessori RCGROUP SpA COOLS COOLSIDE uusi JÄÄHDYTYSYKSIKKÖ PALVELIMILLE Jäähdytysteho Kylmäine Puhllintyyppi Mikroprosessori jop 96,0 kw sroll R410A ksili MP.COM T: MONO DXA (R410A) Jäähdytysteho jop 21,9 kw Ilmluhdutteinen

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen luentomonisteest krsien muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden

Lisätiedot

TIEA241 Automaatit ja kieliopit

TIEA241 Automaatit ja kieliopit TIEA241 Automtit j kieliopit Antti Vlmri Jyväskylän yliopisto Informtioteknologin tiedekunt Symoleit 1 1 Johdnto 4 2 Äärelliset utomtit j säännölliset kielet 10 3 Yhteysriippumttomt kieliopit 87 4 Lskettvuus

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Luku 28 Oligopoli. Yritysten lukumäärä. Muutama yritys. Oligopoli. Tennispallot Raakaöljy

Luku 28 Oligopoli. Yritysten lukumäärä. Muutama yritys. Oligopoli. Tennispallot Raakaöljy Y56 Kvät 00 Luku 8 Oligopoli Tässä luvuss trkstlmm hrvn tuottjn mrkkinoit li oligopoli. Trkstlmm kht vihtohtoist mlli: Cournot j Stcklrg oligopolimllj. Lisäksi trkstlmm, mikä on krtlli j mitn sn toimint

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk d Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A1 Muotoilun milm j muotoilusuunnistus Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Etsitään j löydetään muotoilu ympäristöstä.

Lisätiedot

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto

Lisätiedot

TUTCATIN KÄYNNISTÄMINEN...1

TUTCATIN KÄYNNISTÄMINEN...1 1 TUTCAT 1 TUTCATIN KÄYNNISTÄMINEN...1 PERUSHAKU JA KIRJAN SAATAVUUSTIEDOT... 3 YHDISTELMÄHAKU...4 4 OMIEN LAINOJEN UUSIMINEN...5 5 KIRJAN VARAAMINEN...5 6 TUTCATISSA LIIKKUMINEN...7 1 Tutctin käynnistäminen

Lisätiedot

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012.

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012. mpereen teknillinen yliopisto hum 3.8. Konstruktiotekniikn litos MEC-430 Elementtimenetelmän perusteet. Luento vk Syksy 0. Mtemtiikn j mtriisilskennn kertust Yleistä Kirjoittelen tänne joitin kurssin keskeisiä

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot