S Laskennallinen systeemibiologia

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "S Laskennallinen systeemibiologia"

Transkriptio

1 S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c c Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn. Rtkisu: Algoritmin nsimmäinn kirros loittn tsimällä täisyystulukost lyhin khn yksikön välinn täisyys. Jos löytyy usmpi vihtohtoj, vlitn niistä stunnissti jokin. Tulukost c c nähään, ttä lyhin täisyys on yksiköin j välillä, min = ist(, ) =. Yhisttään nämä yhtisksi solmuksi ; täisyys :st kumpnkin solmuun, on puoliks solmujn täisyystä. Sn siis survnlinn rknn:

2 Survksi lsktn yhisttyn solmun täisyyt muihin yksiköihin. Etäisyyt lsktn yksinkrtissti kskirvoin: ist(, c) = ist(, ) = ist(, ) = ist(, c) + ist(, c) ist(, ) + ist(, ) ist(, ) + ist(, ) Muoosttn täisyyksistä uusi täisyystulukko: c c j loittn lgoritmin kirros lust. Vlitn jälln pinin täisyys, tällä krt min = ist(, ) =. Yhisttään j : Lsktn jälln uut täisyyt ist(, ) = ist(, ) + ist(, )

3 ist(, c) = ist(, c) + ist(, c) = = 4, j sijoittn n täisyystulukkoon: c c Nyt pinin täisyys on min = ist(, c) = 4. Yhisttään j c, sn surv tilnn: c c c c Lsktn khn jäljllä olvn solmun välinn täisyys ist(c, ) = jolloin khn solmun välinn täisyys tunntn: ist(, ) + ist(c, ) c 0 8 c 0, Nyt voin määrittää lopullisn puun muoto täisyyksinn: 3

4 4 c 4 c 3 4 c c 4

5 . HMM λ on määritlty survin prmtrin: mlliss on kolm til S, S, S 3, hvintokkosto A = {,, 3}, siirtymätonnäköisyysmtriisi 0 / / P = 0 0, 0 0 lkutilvktori π = [ 0 0] T skä hvintojn tonnäköisyyt () = / () = / (3) = 0 () = / () = 0 (3) = / 3 () = 0 3 () = / 3 (3) = / Määritä hvitull skvnssill O kikki mhollist tilskvnssit skä hvitun skvnssin tonnäköisyys p(o λ). ) O =,, 3 ) O =, 3,. Rtkisu: Mlli voin kuvt grfissti hlposti survll tvll: / / S p() = ½ p() = ½ p(3) = 0 S p() = ½ p() = 0 p(3) = ½ S 3 p() = 0 p() = ½ p(3) = ½ ) Alkutilvktorist nähään, ttä loitus tphtuu in tilst S. Siirtymätonnäköisyysmtriisist puolstn huomtn, ttä tilst S voin siirtyä tonnäköisyyllä / joko tiln S ti S 3. Tässä vihss mhollist ritit ovt siis S, S j S, S 3. Tilss S on kuitnkin tonnäköisyys 0 mittoi hvittu, jotn ino mhollinn tilskvnssi, jok tuottisi hvinnot, on S, S 3. Tilst S 3 siirrytään tonnäköisyyllä tiln S, joss on mhollist mittoi viiminn hvinto 3. Tällä prustll ino mhollinn tilskvnssi on S, S 3, S. 5

6 Nyt voin lsk siis hvintojn tonnäköisyys: p(o λ) = (π(s ) ()) ( P S S 3 3 () ) ( P S3 S (3) ) = ( /)(/ /)( /) = /6 ) Jälln loitustil on S. Tkisin smn tiln i voi siirtyä, jotn mhollist siirtymäkohtt ovt S j S 3. Huomtn, ttä molmmt tilt voivt mittoi hvinnon 3. Tässä vihss on siis kksi mhollist rittiä, S, S j S, S 3. Tilst S siirrytään tonnäköisyyllä tkisin tiln S, joss voin kuin voinkin mittoi viiminn hvinto,. Ritti S, S, S voi siis tuott hvinnot. Tilst S 3 siirrytään tonnäköisyyllä tiln S, joss voin myös mittoi viiminn hvinto. Ritti S, S 3, S voi siis myös tuott hvintosrjn. Tonnäköisyys hvintosrjll sn lskmll yhtn tonnäköisyyt kikill mhollisill tvoill tuott hvinnot. Tällöin tuloksksi sn p(o λ) = (π(s ) ()) ( P S S (3) ) ( P S S () ) + (π(s ) ()) ( P S S 3 3 (3) ) ( P S3 S () ) = ( /)(/ /)( /) + ( /)(/ /)( /) = /6 + /6 = /8. Tällisn hvintosrjn tkminn on siis kksi krt tonnäköismpää kuin )-kohn hvintojn. Tämä on titnkin ootttviss, sillä smnlist hvinnot voivt tull khst ritistä, jotk tonnäköisyyltään vstvt )-kohn polku. 3. Tutkitn viittä minohpposkvnssiä WRCCTGC, WCCGGCC, WCGCC, WCCCGCC, WCCGC. Käyttään HMM-protiinimlli (pituus 8), jolloin Vitri-lgoritmi tuott survt tonnäköisimmät polut: m 0 m i m m 3 m 4 m 5 6 m 7 m 8 m 0 m m m 3 m 4 m 5 m 6 m 7 m 8 m 0 m m 3 4 m 5 m 6 m 7 m 8 m 0 m m m 3 m 4 m 5 m 6 m 7 m 8 m 0 m m m 3 4 m 5 6 m 7 m 8 Määritä Vitri-lgoritmin tulostn prustll linjus nntuill skvnssill. 6

7 Rtkisu: Vitri-lgoritmin tuloksist muoosttn linjus survsti. Polun nsimmäinn til m 0 on loitustil j m 8 loptustil, jotn n ivät vst minohppoj. Jokinn polun mtch- j insrt-til vst yhtä minohppo, jotn nnttu skvnssi sijoittn optimlisn polun mukissti ri tiloill: m j i -tilt svt linjuksn minohpon j -tilt ukon knss. Esimrkiksi nsimmäinn skvnssi: m 0 m i m m 3 m 4 m 5 6 m 7 m 8 W R C C T G C Sm totuttn myös muill skvnssill. Linjus sn linjmll jokisst skvnssistä vstvt mtch-tilt (ti mtch-tiln puuttuss vstv lt-til) ksknään. Lopult linjuksn sn WRCCTG-C W-CCGGCC W-C--GCC W-CCCGCC W-CC-G-C 7

Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki

Säännöllisestä lausekkeesta deterministiseksi tilakoneeksi: esimerkki Säännöllisstä luskkst dtrministisksi tilkonksi: simrkki Hikki Turiinn Yksinkrtistn säännöllistn luskkidn muuttminn dtrministisiksi tilkoniksi onnistuu usin plkästään lusktt tutkimll. Jos luskkn rknn on

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint vrkkotsoll Vrkon topologi Liiknnmtriisi Liikntnhllint vrkkotsoll Kuormntsus lunto2.ppt S-38. Liiknntorin prustt Kvät 200 2 2. Liikntnhllint vrkkotsoll 2. Liikntnhllint

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka]

Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka] Oikosulkukstoisuus DN EN 439-1/EC 439-1 mukn Tyyppikostus DN EN 439-1 Järjstlmän tyyppikostuksn yhtyssä suoritttiin survt Rittl-virtkiskojärjstlmin skä vstvin Rittl RiLin-komponnttin kostukst: Eristysominisuut

Lisätiedot

= e on Schrödingerin yhtälön ratkaisu. ) on redusoitu massa. Aaltofunktio ψ

= e on Schrödingerin yhtälön ratkaisu. ) on redusoitu massa. Aaltofunktio ψ S-46, FYSIIKKA IV (EST Kvät, LH4 Rtkisut / LH4- Osoit, ttä vyn ltofunktio ψ = on Schöingin yhtälön tkisu Rtkisu: Schöingin yhtälö llokoointiss on ψ ψ ψ sin θ V ψ Eψ + + =, µ µ sin θ θ θ sin θ φ missä µ

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että

a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij

Lisätiedot

Knauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus.

Knauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus. Knuf Sfor Sätilysuojlvy 03/2009 Knuf Sfor Sätilysuojlvy 0% lyijyä. 100% turvllisuus. Knuf Sfor Knuf Sfor Suoj röntgnsätiltä Lyijytön Suoj plolt Hlppo snt Hyvä äännristävyys Ympäristöystävällinn hävittää

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

TASORITILÄN ASENNUS SEKÄ ALUSVALUN SIISTIMINEN ANKKURIREIKIEN PORAUS POIKKILEIKKAUS REUNAPALKISTA KANNATTIMEN KOHDALLA ALUSVALU KANNATTIMEN ASENNUS

TASORITILÄN ASENNUS SEKÄ ALUSVALUN SIISTIMINEN ANKKURIREIKIEN PORAUS POIKKILEIKKAUS REUNAPALKISTA KANNATTIMEN KOHDALLA ALUSVALU KANNATTIMEN ASENNUS 12*1 6 1*1 - - 6 6 OS-6 IP1 OS-6 IP1 6 4*2 3 OS-6 IP1 OS-6 IP1 99-12*1 24 1*1 OS-6 IP1 HVINNKUV 1*1 1*1 OSLUTTLO KOKOONPNOLL R1Y-1, JOT VLMISTTN 1 KPPLTT PL* S3K2 42.1.9 1 PL*122 S3K2 371.1 1. 1 PL1*9

Lisätiedot

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään

Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

ELEC-E8419 tentti joulukuu 2016

ELEC-E8419 tentti joulukuu 2016 ELECE849 tntti oulukuu 6 rtkisut. Erilisiss päsymmtrisissä vioiss komponnttivrkot kytktään yhtn ri tvoin. Ehot komponnttivrkkon kytknnöill päsymmtrisissä vioiss ovt survt: vihinn msulku: vihinn moikosulku:

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A11 Titorkntt j lgoritmit Kirros 8: Vrkkolgoritmj (os II) Tommi Junttil Alto-yliopisto Prustitin korkkoulu Titotkniikn litos Syksy 1 Aiht: Pinottut vrkot Minimlist virittäjäpuut Lyhimmät polut Mtrili

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

/-zîe. r/2 MANNERHEIMIN LASTENSUOJELULIITTO

/-zîe. r/2 MANNERHEIMIN LASTENSUOJELULIITTO Kruunupyyn kunt 26.L.2075 r/2 Sosili- j terveyslutkunt /-zîe MLL;n Lsten j nuorten puhelimen j netin vustus vuodelle 2015 f7o Toivomme, että kuntnne vust Lsten j nuorten puhelin- j nettiplvelun toimint.

Lisätiedot

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },

Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 }, T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla

Puolijohdekomponenttien perusteet A Ratkaisut 1, Kevät Tarvittava akseptoridouppaus p-tyypin kerrokseen saadaan kaavalla OY/PJKOMP R1 17 Puolijohkoonnttin rustt 5171A Rtkisut 1, Kvät 17 1. ( Trvittv kstoriouus tyyin krroksn sn kvll kbt ln Ł ni ni Ł kbt 1 ( 1 c,85 V 17» 1,8 1 c. 17 1 c Ł,59V Mtrilivkiot on otttu luntoonistn

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen)

Laskennan mallit Erilliskoe , ratkaisuja (Jyrki Kivinen) 58226 Lskennn mllit Erilliskoe 4.2.2, rtkisuj (Jyrki Kivinen). [6+6+3+3 pistettä] () Kieli A koostuu niistä kkoston {, } merkkijonoist, joiss esiintyy osjono. Esitä kielelle A sekä deterministinen äärellinen

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Juuri- j logritmiunktiot -kurssin krtusthtävin j -srjojn rtkisut prustuvt oppikirjn titoihin j mntlmiin. Kustkin thtävästä on ylnsä vin yksi rtkisu, mikä i kuitnkn trkoit sitä, ttä rtkisu

Lisätiedot

12. Liikenteenhallinta verkkotasolla

12. Liikenteenhallinta verkkotasolla 12. Liikenteenhllint verkkotsoll luento12.ppt S-38.1145 Liikenneteorin perusteet Kevät 2006 1 12. Liikenteenhllint verkkotsoll Sisältö Verkon topologi Liikennemtriisi Liikenteenhllint verkkotsoll Kuormntsus

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014) 7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus

SALAINEN KIRJASTO. Harjoitusvihkon. Eija Lehtiniemi OPETTAJAN OHJEET. Erityisopetus E i j L e h t i n i e m i M e r v i Wä r e S L I N E N P I N E N H R J O I T U S V I H K O SLINEN KIRJSTO Hrjoitusvihkon Eij Lehtiniemi OPETTJN OHJEET Erityisopetus HRJOITUSVIHKON SISÄLTÖ Vlmiushrjoitukset

Lisätiedot

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä Kttoeristeet - nyt entistä prempi kokonisrtkisuj Entistä suurempi Kuormituskestävyys j Jtkuv Keymrk- Lunvlvontjärjestelmä Rockwool-ekolvll kttoeristeet seisovt omill jloilln Ekolvoj käytettäessä työ on

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.

Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2. Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen

Lisätiedot

Moraalinen uhkapeli: laajennuksia

Moraalinen uhkapeli: laajennuksia Morlinen uhkeli: ljennuksi Mt-2.4142 Otimointioin seminri Juho Kokkl 4.3.2008 steeminlsin Lbortorio Teknillinen korkekoulu Esitelmä 12 Juho Kokkl Otimointioin seminri - Kevät 2008 Esitksen rkenne Informtiivisuus

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty

Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty Grfinen ohjeisto Julkis- j yksityislojen toimihenkilöliitto Jyty Julkis- j yksityislojen toimihenkilöliitto Jyty Grfinen ohjeisto Sisällysluettelo: 1. Johdnto 2. Peruselementit Tunnus j versiot...2.1 Tunnuksen

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

S , Fysiikka IV (Sf), 2 VK

S , Fysiikka IV (Sf), 2 VK S-11446, Fysiikk IV (Sf, VK 455 1 Slitä lyhysti mutt mhdollisimm täsmällissti: Kskimääräis ktä mlli j itsäist lktroi roksimtio b Mo frmioi ltofuktio hiukksvihtosymmtri j s totutumi dtrmittiltofuktioss

Lisätiedot

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31

Säännöt 2 7. Regler 8 13. Regler. Regler. Rules 26 31 Säännöt 8 9 Rules B tyhjä suositusruutu krtt rhmittri vesiruutu viinitrhruutu utio viinitrhruutu Sisällys C pelilut Viiniyhdistyksen suositus -ltt hintmerkkiä Ltikoit: punviiniltikko vlkoviiniltikko smppnjltikko

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C Tietojenkäsittelyteori Kevät 6 Kierros 8, 7.. mliskuut Demonstrtiotehtävien rtkisut D: Määrittele Turingin koneen stndrdimllin muunnelm, joss koneen työnuh on molempiin suuntiin ääretön, j osoit

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut 583 Tietorkenteet j lgoritmit (kevät 205) Toinen välikoe, mllirtkisut. () Brnh n oun. Brnh n oun on lgoritmityyppi, joss tutkitn kikki ongelmn mhollisi rtkisuj puumisess rkenteess. Kun hvitn, että jokin

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Valmennuksen ja arvioinnin tukijärjestemä (VAT)

Valmennuksen ja arvioinnin tukijärjestemä (VAT) Vlmennuksen j rvioinnin tukijärjestemä (VAT) Työhön kuntoutuksen trkoitus on utt sikst kuntoutumn siten, että siirtyminen koulutukseen ti työelämään on mhdollist. VAT -järjestelmä on kehitetty kuntoutumisen

Lisätiedot

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto

Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto

Lisätiedot

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista

y 1 = f 1 (t,y 1,,y n ) y 2 = f 2 (t,y 1,,y n ) (1) y n = f n (t,y 1,,y n ) DY-ryhmään liittyvä alkuarvotehtävä muodostuu ryhmästä (1) ja alkuehdoista 9 5 DIFFERENTIAALIYHTÄLÖRYHMÄT 5. Esimmäis krtluvu diffrtilihtälörhmät Diffrtilihtälörhmiä trvit usiss sovlluksiss. Näistä usimmt void mllit simmäis krtluvu diffrtilihtälörhmi vull. Esimmäis krtluvu diffrtilihtälörhmä

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

4.7.2 Testerit. Test ok. virhe vast.ota. lähetä τ. virhe. virhe. vast.ota. τ τ. vast.ota. lähetä. lähetä. lähetä ok

4.7.2 Testerit. Test ok. virhe vast.ota. lähetä τ. virhe. virhe. vast.ota. τ τ. vast.ota. lähetä. lähetä. lähetä ok OHJ-2600 Tilkoneet 204 6. Tämän tehtävän tvoite on kuvn LTS:ää vstesimerkkinä käyttäen osoitt, että nnetun LTS:n knss minimlinen CFFD-smnlinen LTS ei in ole yksikäsitteinen. P Q AG(P) = AG(Q) f, {{}} f,

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida?

Pitkäaikaistyöttömien työkykyisyys ja miten sitä tulisi arvioida? Pitkäikistyöttömin työkykyisyys j mitn sitä tulisi rvioid? Rij Krätär, kuntoutuslääkäri, kouluttj Oorninki Oy www.oorninki.fi Tässä sityksssä Tuloksi pitkäikistyöttömin työkykyä j työkyvyn rviot koskvst

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

Markkinoinnin laitos Rehtorinpellonkatu 3 20500 Turku KYSELYLOMAKE

Markkinoinnin laitos Rehtorinpellonkatu 3 20500 Turku KYSELYLOMAKE Turun upporoulu LUOTTAMUKSELLINEN Mrnonnn ltos Rtornpllontu 000 Turu KYSELYLOMAKE. Kun mont rt tloussnn ttn vm voll lntrv- mut pävttästvrostos? Mtn ostost utuvt survn ostospon sn mä ol smääränn rtostostn

Lisätiedot

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka )

T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka ) T-79.3001 Kevät 2009 Logiikk tietotekniikss: perusteet Lskuhrjoitus 7 (Predikttilogiikk 9.1 10.2) 19.3. 23.3. 2009 Rtkisuj demotehtäviin Tehtävä 9.1 Rtkisuss on käytetty usen otteeseen rjoitettuj universli-

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Lue tämä Pika-asennusopas ennen koneen käyttöä varmistuaksesi asetusten ja asennuksen oikeasta suorituksesta.

Lue tämä Pika-asennusopas ennen koneen käyttöä varmistuaksesi asetusten ja asennuksen oikeasta suorituksesta. Pik-snnusops Aloit tästä MFC-250C MFC-290C MFC-297C Lu tämä Pik-snnusops nnn konn käyttöä vrmistukssi stustn j snnuksn oikst suorituksst. VAROITUS Nout näitä vroituksi mhollistn hnkilövhinkojn välttämisksi.

Lisätiedot

UUDET TUOTTEET. Sarja 500 Tarkat tiedot sivulla 104. Sarja 573 Tarkat tiedot sivulla 112. Sarja 192 Tarkat tiedot sivulla 150 ja 151.

UUDET TUOTTEET. Sarja 500 Tarkat tiedot sivulla 104. Sarja 573 Tarkat tiedot sivulla 112. Sarja 192 Tarkat tiedot sivulla 150 ja 151. UUDET TUOTTEET Srj 500 Trkt tieot sivull 104. DIGIMATIC-työntömitt, suojluokk IP-67 Srj 573 Trkt tieot sivull 112. Erikoistyöntömitt, suojluokk IP-67 Konepjtyöntömitt hiilikuituvhvisteinen Srj 552 Trkt

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot

Luento 5 Fotogrammetrian perusteet

Luento 5 Fotogrammetrian perusteet GIS-E From mesurements to mps Luento 5 Fotogrmmetrin perusteet Henrik Hggrén Petri Rönnholm Oppimistvoitteet Nope fotogrmmetrin kooste Miten 3D mittuksi voi tehdä D kuvilt mmärtää erilisi koordintistoj,

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Muita määrätyn integraalin sovelluksia

Muita määrätyn integraalin sovelluksia Muit määrätyn integrlin sovelluksi Ekstr Pohint Auto kiihyttää tsisesti viiessä sekunniss vuhist 4 km/h vuhtiin 76 km/h. ) Muoost funktio, jok ilmisee uton vuhin v(t), kun on kulunut t sekunti kiihytyksen

Lisätiedot

Asentajan viiteopas. Jaetut ilmastointilaitteet RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B

Asentajan viiteopas. Jaetut ilmastointilaitteet RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B Asntjn viitops Jtut ilmstointilittt RZQG71L9V1B RZQG100L9V1B RZQG125L9V1B RZQG140L9V1B RZQG71L8Y1B RZQG100L8Y1B RZQG125L8Y1B RZQG140L7Y1B RZQSG100L9V1B RZQSG125L9V1B RZQSG140L9V1B RZQSG100L8Y1B RZQSG125L8Y1B

Lisätiedot

Sopimuksenteon dynamiikka: moraalinen uhkapeli

Sopimuksenteon dynamiikka: moraalinen uhkapeli Sopimuksenteon dynmiikk: morlinen uhkpeli Mt-2.4142 Optimointiopin seminri Ville Venoärvi 15.4.2008 Esitelmä 15 Ville Venoärvi Sisältö Hsteit Uudelleen neuvottelu gentin työpnoksen älkeen Konvergenssi

Lisätiedot

Suorakaidekanavat. lindab suorakaidekanavat

Suorakaidekanavat. lindab suorakaidekanavat Suorkideknvt lind suorkideknvt lind suorkideknvt Sisällysluettelo Suorkideknvt Knv LKR... Liitosost Liitoslist LS... Liitoslist LS-... Kulmyhde LBR... Liitoslist LS... S-mutk LBXR... LBSR... Liitoslist

Lisätiedot

16-300mm 50 EURON CASHBACK! Ehdot PARAS KOLMESTA MAAILMASTA. www.tamron.fi. F/3.5-6.3 Di II VC PZD Macro

16-300mm 50 EURON CASHBACK! Ehdot PARAS KOLMESTA MAAILMASTA. www.tamron.fi. F/3.5-6.3 Di II VC PZD Macro Ehdot 3. Mksu suoritet se m vluutss, mistä objektiivi o ostettu. Mksu suoritet 4 viiko kuluess cshbck-dokumettie spumisest. 4. Objektiivi tulee oll Focus Nordici mhtuom j se tulee oll ostettu virllise

Lisätiedot

Projektin itsearviointi. Työkirjapohjat

Projektin itsearviointi. Työkirjapohjat TÄMÄ DOKUMENTTI ON TARKOITETTU MIELEN AVAIN -HANKKEEN PROJEKTIEN ITSEARVIOINNIN TOTEUTTAMISEEN itserviointi Työkirpoht NET EFFECT OY ANNIINA ALI-LAURILA TOIMINTA 1. Johtjuus 3. HENKILÖSTÖ 7. HENKILÖSTÖ

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

S , Fysiikka IV (ES) Tentti

S , Fysiikka IV (ES) Tentti S-1436, Fysiikk IV (S) Tetti 81 35 19 1 Vierekkäiste spektriviivje piei hvittu tjuuser Cl F mlekyyli 1 rttispektrissä 1,1 1 Hz Lske tmie välie etäisyys mlekyylissä Rtkisu Kksitmise mlekyyli pyörimiseergi

Lisätiedot

Asentajan viiteopas. Daikin Altherma - Matalan lämpötilan Split ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB

Asentajan viiteopas. Daikin Altherma - Matalan lämpötilan Split ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB Asntjn viitops Dikin Althrm - Mtln lämpötiln Split + ERHQ011-014-016BA ERLQ011-014-016CA EHVH/X11+16S18CB EHVH/X11+16S26CB Asntjn viitops Dikin Althrm - Mtln lämpötiln Split Suomi Sisällysluttlo Sisällysluttlo

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

ILMAILUHALLINTO LUFTFARTSFÖRVALTNINGEN FINNISH CIVIL AVIATION AUTHORITY

ILMAILUHALLINTO LUFTFARTSFÖRVALTNINGEN FINNISH CIVIL AVIATION AUTHORITY TARKASTUSLENTOLAUSUNTO CPL(H) Hkijn sukunimi: Lupkirjn lji: Etunimi: Lupkirjn numro: Vltio: Hkijn llkirjoitus: Fi Lntoko: Trkstuslnto: Hylätyn trkstuslnon uusint 1 Lntokoulutuksn toriosuus Hkij on suorittnut

Lisätiedot

Asentajan ja käyttäjän viiteopas

Asentajan ja käyttäjän viiteopas Asntjn j käyttäjän viitops VRV IV järjstlmän ilmstointilit RYYQ8T7Y1B RYYQ10T7Y1B RYYQ12T7Y1B RYYQ14T7Y1B RYYQ16T7Y1B RYYQ18T7Y1B RYYQ20T7Y1B RYMQ8T7Y1B RYMQ10T7Y1B RYMQ12T7Y1B RYMQ14T7Y1B RYMQ16T7Y1B

Lisätiedot