MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015

Koko: px
Aloita esitys sivulta:

Download "MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Peruslaskutoimitukset. Isto Jokinen 2015"

Transkriptio

1 MATEMATIIKKA Mtemtiikk pintkäsittelijöille Peruslskutoimitukset Isto Jokinen 01

2 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen Copyright Isto Jokinen 011

3 LASKUJÄRJESTYS Lskujärjestys on seurv: 1. Sulkeiden sisällä olevt lsketn ensin. Jos sulkeit on useit sisäkkäin, lsketn sisimmäisistä ulospäin. Kerto- j jkolskut. Yhteen j vähennyslskut. Vsemmlt oikelle jos peräkkäin yhteenvähennys ti kerto-jkolskuj. Copyright Isto Jokinen 011 Esimerkki

4 LASKUJÄRJESTYS Esimerkki. (8 ) 1 Esimerkki. 1[ (6 ) ] 1 1[ ] 1 1[ 6] Copyright Isto Jokinen 011

5 MURTOLUKUJEN KERTOLASKU Murtolukujen kertolskuss osittjt j nimittäjät kerrotn keskenään. Esimerkki Jos murtoluku kerrotn kokonisluvull kerrotn vin soittj. Copyright Isto Jokinen 011 Esimerkki

6 MURTOLUKUJEN JAKOLASKU Jos murtoluku jetn kokonisluvull jetn vin osoittj. Esimerkki 6. Jos murtoluku jetn toisell murtoluvull vihdetn jkjn osoittj nimittäjä keskenään. Tämän jälkeen jettv murtoluku kerrotn sdull jkjll. Copyright Isto Jokinen 011 Esimerkki

7 MURTOLUKUJEN YHTEENLASKU Murtolukujen yhteenlskuss on nimittäjiksi stv sm luku lventmll. Esimerkki 8. Jos yhteenlskettvi termejä on useit tehdään lvennus muiden termien nimittäjien tuloll. Esimerkki 9. ) ) Copyright Isto Jokinen 011 ) 1 ) ) ( 1

8 MURTOLUKUJEN VÄHENNYSLASKU Murtolukujen vähennyslskuiss on nimittäjät lvennettv ensin smnnimisiksi kuten yhteenlskuss. Esimerkki 10. 7) Jos vähennyslskuss on usempi tekijä lvennetn luvut muiden tekijöiden tuloll. ) Copyright Isto Jokinen 011 Esimerkki 11. ) 6 ) )

9 ERI LASKUTOIMITUKSIA SEKAISIN Jos murtolukulskuiss on kerto-, jko-, yhteenj vähennyslskuj sekisin on lskujärjestys kuten yleensäkin: 1. Ensin kerto- j jkolskut. Sitten yhteen- j vähennyslskut Esimerkki 1. Copyright Isto Jokinen )

10 SEKALUKUJEN KERTO-, JAKO-, YHTEEN- JA VÄHENNYSLASKU Sekluvut pitää ennen lskemist muutt murtoluvuiksi. Tämän jälkeen lsketn murtolukuin kuten edellä. Esimerkki 1. Seklukuj murtolukuin 7 (1) Copyright Isto Jokinen (1 ) 1 1 9

11 OSOITTAJASSA JA NIMITTÄJÄSSÄ LASKUTOIMITUKSIA Osoittjss j nimittäjässä olevt lskutoimitukset lsketn ensin. Tämän jälkeen tehdään jkolsku. Esimerkki 1. Esimerkki (1 7) (1 7) Copyright Isto Jokinen 011

12 TEKIJÖINÄ MUUTTUJIA KERTOLASKUT Esimerkki 16. Esimerkki 17. 6b c 10bc c 10b 0c 10b c b Copyright Isto Jokinen 011 Esimerkki 18. 1x y 1yz xq 180xyz 0yxq 9 z q

13 TEKIJÖINÄ MUUTTUJIA JAKOLASKUT Esimerkki 19. x : y 6b 1y : 7b x 1y 1 x 7y 7b 6b 1y x y Copyright Isto Jokinen 011 8b 6b y b y

14 TEKIJÖINÄ MUUTTUJIA YHTEEN- JA VÄHENNYSLASKUT Esimerkki 0. Esimerkki 1. Esimerkki. x y ) ) x yz x y ) z) 8x y 16x 1x 1y 1y 0x xz 1yz 1yz 1x 1y 0x xz 1yz Copyright Isto Jokinen 011 xz yz ) z) x y 0xz 1yz 6xz 1yz 1xz 1yz 7x 6y

15 SUUREET JA MITTAYKSIKÖT Suure = lukurvo yksikkö Esimerkiksi 18 kg:ss 18 on lukurvo j kg yksikkö. Knsinvälisessä yksikköjärjestelmässä ( SIjärjestelmässä ) on seitsemän perussuurett j perusyksikköä. Kikki muut suureet j yksiköt on johdnnisyksikköjä jotk perustuvt perussuureisiin j perusyksiköihin. Copyright Isto Jokinen 011 Suureill on myös tunnukset. Esimerkiksi mssn tunnus on m j jn tunnus t.

16 SUUREET JA MITTAYKSIKÖT Perussuureet Suure Tunnus Yksikkö Pituus l m Mss m kg Aik t s Lämpötil T K Copyright Isto Jokinen 011 Ainemäärä n mol Sähkövirt I A Vlovoim Cd

17 SUUREET JA MITTAYKSIKÖT Johdnnissuureet Johdnnissuureit on hyvin pljon. Esimerkiksi nopeus ( m/s ) on mtk jettun jll. Kiihtyvyys ( m/s ) on nopeus jettun jll. Voim ts on mss kert kiihtyvyys ( kgm/s ) j työ voim kerrottun mtkll (kgm/s m ) Molekyylimss on mss jettun inemäärällä kg/mol. Konsentrtio on inemäärä jettun tilvuudell ( mol/dm ), joss ts yksikkö dm ts on pituuden yksikkö dm on pituuden yksikkö dm korotettun kolmnteen potenssiin. Copyright Isto Jokinen 011

18 KERRANNAISYKSIKÖT Kun jonkin suureen lukurvo on hyvin suuri ti pieni, käytetään kerrnnisyksikköjä. Tällöin suureen suuruus on helpompi hhmott. Esimerkiksi mtkn ilmoittminen metreinä ei olisi selkeää, kun se olisi 0000 m. Selkeämpää on ilmoitt mtk kilometreinä, jolloin se on 0 km. Mlikerroksen pksuus ts on hyvä ilmoitt mikrometreinä (µm) eikä metreinä. Esim. 180 µm on sopivmpi kuin 0, m. Kerrnnisyksiköitä tulisi käyttää niin, että suureen lukurvo on välillä Copyright Isto Jokinen 011 Esimerkiksi 0 mg on sopivmpi tp ilmoitt mss kuin 0,0 g ti 0,0000 kg.

19 KERRANNAISYKSIKÖT Yleisimmin käytettävät kerrnnisyksiköt: Nimi Lyhenne Kerroin Ter T 10 1 Gig G 10 9 Meg M 10 6 Kilo k Copyright Isto Jokinen 011 Milli m 10 - Mikro µ 10-6 Nno n 10-9 Piko p 10-1

20 POTENSSI Potenssilskuiss kntluku kerrotn itsellään eksponentin mukn. Esimerkki. Potenssilskujen lskusäännöt: Copyright Isto Jokinen y x y x y x y x y x y x ) (

21 POTENSSI Potenssilskujen lskusäännöt: ( b) b c 1 c 1 b c c c b c Copyright Isto Jokinen 011

22 POTENSSI Potenssilskujen lskusäännöt: 1 b c b c Copyright Isto Jokinen 011

23 POTENSSI Esimerkkejä. Copyright Isto Jokinen ) (

24 POTENSSI Esimerkkejä. Copyright Isto Jokinen

25 JUURI Juurin on potenssin vstkkinen lskutoimitus Esimerkkejä 6. Neliöjuuri luvust on kosk =. Neliöjuuri luvust 81 on 9, kosk 9 = 81. Kuutiojuuri luvust 7 on, kosk = 7. Copyright Isto Jokinen 011 Neljäs juuri luvust 6 on, kosk = 6. Khdekss juuri luvust 906 on, kosk 8 = 906

26 TEKIJÄYHTÄLÖN RATKAISEMINEN Tekijäyhtälöiden rtkisu trvitn hyvin pljon fysiikss, kemiss, teknisessä lskennss j ongelmnrtkisutehtävissä. Tämän vuoksi tekijäyhtälöiden rtkisun hllint on hyvin tärkeää. Esimerkki 7. Tekijäyhtälöitä: n I t z F ( v v ) 0 1 t U PV v n s t R m M I nrt Copyright Isto Jokinen 011

27 TEKIJÄYHTÄLÖN RATKAISEMINEN Tekijän yhtälöstä pitää rtkist se tekijä jot kysytään tehtävässä. Esimerkiksi jos kysytään vstust ( R ), on yhtälöstä rtkistv se. Jos yhtälössä on pelkkiä kerto- j jkolskuj voidn termejä siirtää yhtälön puolilt toisiin kun niiden pikt vihdetn nimittäjästä osoittjn j päinvstoin. Tämä vst puolittin kertomist j jkmist, mutt on yksinkertisemp tehdä. Copyright Isto Jokinen 011 Teknisessä lskennss lskukvt ovt olemss, mutt niistä joudutn usein rtkisemn kysytty tekijä.

28 TEKIJÄYHTÄLÖN RATKAISEMINEN Esimerkki 8. Termien siirto yhtälöiden puolist toisille. Rtkistn R, I, P, V j R. Copyright Isto Jokinen 011 I R U R I U I R U T n V P R R T n V P P T R n V V T R n P T R n V P

29 TEKIJÄYHTÄLÖN RATKAISEMINEN Esimerkki 9. Termien siirto kun lskukvst hlutn rtkist I. Lskukv on muoto: m M I t z F Kun I rtkistn on kikki muut tekijät pitsi I siirrettävä yhtälön toiselle puolelle. Sdn: m z F M t I I m z F M t Tämän jälkeen sijoitetn luvut rvot m,z,f,m j t:n pikoille j rtkistn tehtävä. Copyright Isto Jokinen 011

30 TEKIJÄYHTÄLÖN RATKAISEMINEN Jos tekijäyhtälössä on yhteen- j vähennyslsku on termit vähennettävä ti lisättävä puolittin. Esimerkki 0. Kiihtyvyyden yhtälöstä rtkistn loppunopeus v Copyright Isto Jokinen 011. Käyttö opetuksess tekijän luvll v v t v v t t v v

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 1. Isto Jokinen 2011

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 1. Isto Jokinen 2011 MATEMATIIKKA Mtemtiikk pintkäsittelijöille PAOJ 1. Isto Jokinen 011 SISÄLTÖ 1. Lskujärjestys 1. Murtoluvuill lskeminen. Suureet j mittyksiköt 4. Potenssi. Juuri 6. Tekijäyhtälöiden rtkiseminen 7. Suhde

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.

Lisätiedot

Copyright Isto Jokinen MATEMATIIKKA. Matematiikkaa pintakäsittelijöille Peruslaskutoimitukset Isto Jokinen 2015

Copyright Isto Jokinen MATEMATIIKKA. Matematiikkaa pintakäsittelijöille Peruslaskutoimitukset Isto Jokinen 2015 Coprigh so Jokie MATEMATKKA Memiikk pikäsielijöille Peruslskuoimiukse so Jokie 0 SSÄLTÖ. Lskujärjess. Muroluuill lskemie. Suuree j miksikö. Poessi. Juuri. Tekijähälöide rkisemie Käöoikeus opeuksess ekijä

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden

Lisätiedot

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle. Alkeistason matikkaa Plus-, miinus-, kerto- ja jakolaskujen laskujärjestys Esim. jos pitää laskea tällainen lasku:? niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus-

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Opettajan sähköposti: Algebra ja geometria 5 op

Opettajan sähköposti: Algebra ja geometria 5 op Opettjn sähköposti: jouko.teeriho@lpinmk.fi Algebr j geometri 5 op Os: Sisältö Algebrn lskulit (luvut j lusekkeet) Tärkeimmät yhtälötyypit Suorn yhtälöt, linerinen mlli Toisen steen polynomimlli Muit yhtälötyyppejä,

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi

Fysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Ari Tuomenlehto - 0 - Lusekkeen käsittelyä Luseke j lusekkeen rvo Näkyviin merkittyä

Lisätiedot

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14 Yksikkömuunnokset Pituus pinta-ala ja tilavuus lördag 8 februari 4 SI-järjestelmän perussuureet ja yksiköt Suure Suureen tunnus Perusyksikkö Yksikön lyhenne Määritelmä Lähde: Mittatekniikan keskus MIKES

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. MAB 0: Kertauskurssi Opettaja: Janne.Lemberg @ tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26. Alustava aikataulu: ma 29.8 ke 31.8 ma 5.9 ke 7.9 ma 12.9 ke 14.9 ma 19.9 ke 21.9 ma 26.9 ke 28.9

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan.

Laskut kirjoitetaan vasempaan reunaan, vastaukset tulevat oikeaan reunaan. 2. Peruslsket 2.1 Yhtee- j väheyslsku Lske: 23 14 9 MENU. Vlitse Mi Syötä lskuluseke. Pi EXE. Lskut kirjoitet vsemp reu, vstukset tulevt oike reu. 2.2 Näytö tyhjeys Vlitse Edit j pi Cler All. Pi OK. Huom!

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

0. perusmääritelmiä 1/21/13

0. perusmääritelmiä 1/21/13 Lukutyypit Laskusäännöt Laskujärjestys 0. perusääriteliä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaDonaaliluvut (Q): kaikki luvut, jotka voidaan esifää kahden

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT: 1 HUOLTOMATEMATIIKKA 1, SISÄLTÖ 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

HUOLTOMATEMATIIKKA 2, MATERIAALI

HUOLTOMATEMATIIKKA 2, MATERIAALI 1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

1. Fysiikka ja mittaaminen

1. Fysiikka ja mittaaminen 1. Fysiikka ja mittaaminen 1.1 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt pelkästään ajattelemalla Aristoteles

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

1.1 Lukujoukot ja laskutoimitukset

1.1 Lukujoukot ja laskutoimitukset . Lukujoukot j lskutoimitukset. Lukujoukot j lskutoimitukset. ) ( ) b) (7,) 7, c) ( ) d) (π ) π. ) 0 0 b) c) d) 7. ) 9 b) 0,0 c) 9 d) π . Lukujoukot j lskutoimitukset. ) Luvun - vstluku on -(-). Luvun

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

KORJAUSMATIIKKA 3, MATERIAALI

KORJAUSMATIIKKA 3, MATERIAALI 1 SISÄLTÖ KORJAUSMATIIKKA, MATERIAALI 1) Potenssi ) Juuri ) Polynomit 4) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa (tehtävissä esitellään myös. asteen yhtälön ratkaisu)

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units

OPAS. Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units OPAS Kansainvälinen suure- ja yksikköjärjestelmä International System of Quantities and Units Sisällys Esipuhe....3 1 Kansainvälinen mittayksikköjärjestelmä SI...4 2 Suure ja yksikkö....5 3 ISQ-suurejärjestelmä

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a)

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a) Kertusos Kertusos ). ) : j 7 0 7 ) 0 :( ) c) :( ). Merkitää merirosvorht (kg) sukltrffelit (kg) ) 7, 0 hit: /kg hit: 7 /kg ) 00 g 0,kg 7 0,,0,,0, 0, (kg) :. ) Vstus: ) 7, 0 ( ) ) 00 g. ) 0 7 9 7 0 0 Kertusos

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

MABK1 Kurssimateriaali. Eiran aikuislukio 2005

MABK1 Kurssimateriaali. Eiran aikuislukio 2005 MABK1 Kurssimateriaali Eiran aikuislukio 2005 Sisältö 1 Sanasto 1 2 Luvut ja laskutoimitukset 5 2.1 Lukujoukot................................ 5 2.2 Peruslaskutoimitukset.......................... 6 2.3

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

Mittaustarkkuus ja likiarvolaskennan säännöt

Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustarkkuus ja likiarvolaskennan säännöt Mittaustulokset ovat aina likiarvoja, joilla on tietty tarkkuus Kokeellisissa luonnontieteissä käsitellään usein mittaustuloksia. Mittaustulokset ovat aina

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

SUORAKULMAINEN KOLMIO

SUORAKULMAINEN KOLMIO Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016

Aalto-yliopisto, Teknillisen fysiikan laitos PHYS-E0460 Reaktorifysiikan perusteet Harjoitus 5, mallivastaukset Syksy 2016 Alto-yliopisto, Teknillisen fysiikn litos Sipilä/Heikinheimo PHYS-E0460 Rektorifysiikn perusteet Hrjoitus 5, mllivstukset Syksy 2016 Tehtävä 2 on tämän hrjoituskierroksen tulutehtävä Vlmistudu esittelemään

Lisätiedot

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen 7.lk matematiikka Hatanpään koulu Syksy 017 Janne Koponen Tässä monisteessa teoriaosuudet ovat kuvakaappauksia tekemistäni kurssin powerpoint-dioista. Diat löytyvät koulun kotisivuilta osoitteesta: http://koulut.tampere.fi/hatanpaa/matikka/monisteita/

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen 7.lk matematiikka Hatanpään koulu Syksy 017 Janne Koponen Tässä monisteessa teoriaosuudet ovat kuvakaappauksia tekemistäni kurssin powerpoint-dioista. Diat löytyvät koulun kotisivuilta osoitteesta: http://koulut.tampere.fi/hatanpaa/matikka/monisteita/

Lisätiedot

MATRIISILASKENTA. Oppitunti 1. Matriisin käsite. Tarkastellaan ratkaistavaksi annettua yhtälöä. 2 x = 2 6

MATRIISILASKENTA. Oppitunti 1. Matriisin käsite. Tarkastellaan ratkaistavaksi annettua yhtälöä. 2 x = 2 6 MRIISILSKEN Oppitunti 1... 1 Mtriisin käsite... 1 Yhtälöryhmä... Mtriisien perusopertiot... 4 Erikoisi mtriisej... 7 Käänteismtriisin käsite... 9 Ositetut mtriisit (lohkomtriisit)... 10 Kompleksiset mtriisit...

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä

Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä Kttoeristeet - nyt entistä prempi kokonisrtkisuj Entistä suurempi Kuormituskestävyys j Jtkuv Keymrk- Lunvlvontjärjestelmä Rockwool-ekolvll kttoeristeet seisovt omill jloilln Ekolvoj käytettäessä työ on

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset

Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on

Lisätiedot

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = = TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan

Lisätiedot