Tik Tietokoneanimaatio

Koko: px
Aloita esitys sivulta:

Download "Tik-111.5450 Tietokoneanimaatio"

Transkriptio

1 Tik Tietokoneanimaatio 5.luento: dynamiikka (rigid body dynamics, physically based models, constraints) Tassu Animaatio luento 5 1

2 Sisältö fysiikan kertausta: Newtonin lait, vapaakappalemalli, translaatioliike pyörimisliike: erottaminen translaatiosta, liikeyhtälöt vuorovaikutusvoimia: gravitaatio, (sähkö/magnetismi), jousto, viskositeetti, törmäykset, kitka numeerista integrointia: Euler, Simpson,... vapaa liike avaruudessa, planeetat, raketti pyörimisliikkeen sivuvaikutukset: coriolis, prekessio kovien esineiden törmäykset, liikemäärän yhtälöt impulssin laskenta, esimerkkejä: biljardipallot, kuutiot jousiyhtälöt, joustava törmäys kitkavoimat holonomiset rajoitteet, kinemaattisten rakenteiden dynamiikka, rankaisuvoima käänteisdynamiikka, teleologinen mallintaminen esimerkkejä videolta... Harjoitustehtävä: biljardi, pöydälle putoava kuutio (tai palloja), tms Tassu Animaatio luento 5 2

3 Fysiikan kertausta (1) Peruskäsitteitä paikka x, nopeus v = dx/dt, kiihtyvyys a = dv/dt = d 2 x/dt 2 voima F, Massa m, Newtonin lait (1) inertia (2) F = ma (3) vastavoima Analogisesti pyörimisliikkeelle asento φ, kulmanopeus ω = dφ/dt, kulmakiihtyvyys α = dω/dt = d 2 φ/dt 2 kätevää esittää asento ja sen derivaatat vektorina tai kvaterniona momentti T = Fh (h=voiman etäisyys kiertoakselista), hitausmomentti I (1) pyörimisnopeus ja -akseli säilyvät (2) T = Iα (3) vastamomentti Vapaakappalemalli translaatio ja rotaatio erotetaan toisistaan: summataan voimat massakeskipisteeseen (CM) ja momentit CM:n ympäri kytketyt objektit irrotetaan (vuorovaikutus voimaparina) kappaleen liikeyhtälöt lasketaan CM:lle Tassu Animaatio luento 5 3

4 Yksinkertaisia tapauksia vapaa liike avaruudessa, planeetat, raketti, heitetty esine Kuva Alonso-Finn Tassu Animaatio luento 5 4

5 Fysiikan kertausta (2) Liikemäärä p = mv [kg m/s] törmäyksissä Σp säilyy Liike-energia E = 1/2 mv 2 = pv = p 2 /2m [kg m 2 /s 2 ] säilyy, jollei ulkoisia voimia voiman tekemä työ E = F x [F kg m/s 2 ] Vuorovaikutusvoimia jousivoima F x gravitaatio F m 1 m 2 /d 2 magneettikenttä F qb v kitka F Fn virtausvastus F va Potentiaalienergia voimakentässä esim. gravitaatiolle E = mg x Tassu Animaatio luento 5 5

6 Tassu Animaatio luento 5 6

7 Tassu Animaatio luento 5 7

8 Tassu Animaatio luento 5 8

9 Tassu Animaatio luento 5 9

10 Pistemassan liikeyhtälö m d 2 x/dt 2 + ß dx/dt + k x = F ext Käyttökelpoinen monessa yhteydessä! Esim. teleskooppijalka Ratkaisuna harmoninen liike x(t) = x 0 e -ßt cos(t k/m 2π) m F x k ß Tassu Animaatio luento 5 10

11 Fysiikan numeerinen laskenta Perusyhtälöt integraaleja: a(t) = Σ F(t) / m ; v(t) = a dt ; x(t) = v dt Diskretoidaan differenssikaavoiksi: numeerista integrointia! Eulerin menetelmä: v(t+ t) = v(t) + t a(t); x(t+ t) = x(t) + t v(t) Ongelmia virheet kumuloituvat nopeasti epästabiilisuus Neptune effect Askeleen t pienentäminen pienentää virheitä lisää laskentatyötä Tassu Animaatio luento 5 11

12 Muita integrointimenetelmiä Puolisuunnikassääntö A = x (f(x) + f(x+ x)) / 2 Midpoint rule A = x f(x+ x/2) virheet kumuloituvat paljon hitaammin! kuten Euler, mutta lasketaan nopeus puolen askeleen vaihesiirrossa a(t) = F(t) / m ; v(t+ t/2) = v(t- t/2) + t a(t) ; x(t+ t) = x(t) + t v(t+ t/2) Simpsonin kaava 2 polynomiapproksimaatio Runge-Kutta suositeltavin menetelmä A A Tassu Animaatio luento 5 12

13 Pyörimisliike Kappaleen hitausmomentti z-akselin ympäri I z = ρ (x 2 + y 2 ) dv Hitausmomentin laskenta kaikkien suuntien suhteeen matriisimuodossa I obj = Rotaatiolla akselit käännettävissä niin että matriisi diagonaalinen saadaan kappaleen pääakselit Kunkin pääakselin ympäri pyöriminen helppoa, analogiset kaavat translaatioliikkeen kanssa Yleisessä tapauksessa hitausmomentti muuttuu pyörimisliikkeen mukana laskettava joka hetki uudelleen tapahtuu similariteettimuunnoksella I (t) = R(t) I obj R -1 (t) Similariteettimuunnos siirtää maailman sopivaan koordinaatistoon, jossa I obj operoi, ja sitten takaisin Tuttua grafiikasta? vrt. rotaatio/skaalaus kiintopisteen suhteen Tassu Animaatio luento 5 13

14 Tassu Animaatio luento 5 14

15 Hitausmomentin laskenta Numeerinen integrointi I z = ρ (x 2 + y 2 ) dv I z i ρ (x 2 + y 2 ) V i Yksinkertaisille muodoille tarkkoja kaavoja Monimutkainen muoto jaetaan osiin, joiden hitausmomentit summataan (etäisyyden neliöllä painotettuina) esim. kuutiot karusellissa Hankalammat muodot pilkotaan viipaleiksi tai vokseleiksi, jotka summataan äärellisinä tilavuuselementteinä toimii myös tiheydeltään (ρ) vaihtelevalle materiaalille Analogisesti lasketaan muitakin tilavuusintegraaleja, esim. massakeskipiste CM x = 1/M ρx dv, jossa M = ρ dv Tassu Animaatio luento 5 15

16 Pyörimisen kokonaisyhtälöt Kappaleen asema kullakin hetkellä voidaan ilmaista tilavektorilla S(t) = [ x(t), R(t), P(t), L(t) ] T missä x = paikka, R = asento (R matriisi, muut vektoreita) Lasketaan apusuureet P = liikemäärä eli impulssi (linear momentum) L = impulssimomentti (angular momentum) I(t) = R(t) I obj R T (t), ω(t) = I(t) -1 L(t), v(t) = P(t) / m Tilavektorin muutos ajassa on sitten ds/dt = [ v(t), ω(t)*r(t), F(t), τ (t) ] missä F = ulkoiset voimat, τ = ulkoiset momentit ja ω*r = [ ω R 1, ω R 2, ω R 3 ], R i = sarake i Näitä yhtälöitä integroidaan askelittain Tassu Animaatio luento 5 16

17 Tilayhtälöt koottuna Laskentajärjestys: (1) Alustus: laske hitausmomentti I obj ja lähtötila S(t 0 ) (2) Nykytilan analyysi: laske I(t), ω(t) ja v(t), sekä ulkoiset F(t) ja τ(t) (3) Integroi differentiaaliyhtälöstä seuraava tila S(t+ t) (4) Tutki mahdolliset törmäykset; - jos on, niin päivitä momentteja P(t) ja L(t), ja laske samalla energiahäviö. (5) Renderoi kuva (6) Jatka iteraatiota kohdasta (2) Tassu Animaatio luento 5 17

18 Vielä pyörähtelystä Myös massa m(t) voi riippua ajasta, mikä vaikuttaa hitausmomenttiin I obj (t) esim. avaruusraketti Vakiomassankin jakauma voi vaihdella esim. voltti/uimahyppy kierteellä, tai kiihdytyspiruetti luistimilla Video: Atlanta in motion Pyöriminen ulkoisten voimien vaikuttaessa Coriolis: esim. matalapainesykloni, hurrikaani prekessio: hyrrän akselin keinuminen Tassu Animaatio luento 5 18

19 Esineiden törmäilyt Joustavien materiaalien kohtaaminen muodonmuutos mallinnetaan jousena vaimennus otettava huomioon m F x Kosketuksen kesto ja syvyys hetkittäin collision detection k ß geometrista etäisyyslaskentaa Varoitus: Neptune effect liian jäykkä materiaali ratkaisu 1: adaptiivinen askelpituus integroinnissa ratkaisu 2: liikemäärän laskenta (ks. seuraavat sivut) Muodonmuutoksen visualisointi Tassu Animaatio luento 5 19

20 Kovien esineiden törmäys Törmäyshetkellä vaikuttaa hyvin nopeasti iso voima (impulssi) tavallinen voiman ja kiihtyvyyden laskenta ei toimi! lasketaan liikemäärän muutosta p = F(t)dt Yleensä riittää analysoida kahta kappaletta yhdessä (todennäköisyys monen yhtäaikaiseen törmäykseen hyvin pieni) Liikemäärä ja energia säilyvät kimmoisessa törmäyksessä p = p 1 + p 2 = p 1 * + p 2 * ( * törmäyksen jälkeen ) ja 2 E = p 1 v 1 + p 2 v 2 = p 1 * v 1 * + p 2* v 2 * Vastaavanlaiset yhtälöt pyörimisliikkeelle L = L 1 + L 2 = L 1 * + L 2 * ja 2 E = L 1 ω 1 + L 2 ω 2 = L 1 * ω 1 * + L 2 * ω 2 * Tassu Animaatio luento 5 20

21 Impulssinvaihto Periaate laskennassa: erotellaan liikemäärä komponentteihin (a) yhteisen massakeskipisteen liike p CM = p 1 + p 2 Säilyy törmäyksessä (b) kummankin kappaleen liike CM:n suhteen p 1 = p 1-1/2 p CM Summa p1 + p2 = 0 säilyy Saman kokoinen, vastakkaismerkkinen muutos molemmissa impulssi p vaihtuu kappaleesta toiseen (p 1 + p) + (p 2 - p) = Tassu Animaatio luento 5 21

22 Energian säilyminen Energiaa voi myös hävitä muodonmuutoksiin kokonaisliikemäärä säilyy tässäkin tapauksessa merkintä: W ω Yleistetty Newtonin laki ε = coefficient of restitution kimmoinen törmäys: kaikki energia säilyy ε = 1 kimmoton törmäys: maksimaalinen energiahäviö ε = 0 (esineet sulautuvat toisiinsa) Tassu Animaatio luento 5 22

23 Esimerkki 1: pomppiva pallo /*** ball falling sequence ***/ lastframe = -1; for(time=0;time<=simultime;time+=simulstep) { frame = time * FRAMERATE; if(frame > lastframe) { makeframe(viewangle,eye,coi,ballname,ball,frame); lastframe = frame; } y < r velocity[y] += SIMULSTEP * GRAVITY; ball [Y] += SIMULSTEP * velocity[y]; if(ball[y] < BALLSIZE) /* bounce */ { moveback = BALLSIZE - ball[y]; bouncetime = time - (moveback / velocity[y]); törmäyshetken laskenta tarkasti } } simulointi ja animaatio eri aika-askelin ball[y] += 2 * moveback; velocity[y] = -DAMPING * velocity[y]; impulse = velocity[y]; // makesound(bouncetime, impulse); if(fabs(velocity[y]) < -GRAVITY*SIMULSTEP) break; liike ei enää laskettavissa r + + impulssin heijastuminen + y Tassu Animaatio luento 5 23

24 Esimerkki 2: biljardipallot Tarkastellaan yhteisen massakeskipisteen suhteen Törmäysimpulssi p aina pallon säteen suunnassa vastaavaa kuin törmäys kiinteään seinään jos ei kitkaa, ei pallon pyöriminen vaikuta epärealistista! Suorassa törmäyksessä pallot vaihtavat koko liikemääränsä keskenään p 1* = p 2 ja p 2* = p 1 p p (1) (2) Vinossa törmäyksessä p ei ole samansuuntainen kuin pallojen liike liikemäärä heijastuu törmäyksen tangenttitasosta p = 2 p N (3) Tassu Animaatio luento 5 24

25 Esim. 3: partikkeli ja kappale Partikkeli osuu liikkumattomaan esineeseen (2D-tarkastelu, törmäys pinnan normaalin suunnassa) Liikemäärän (p) ja impulssimomentin (L) yhteys: dp/dt = F, dl/dt = r F = r dp/dt L = r p Yhtälöt ennen/jälkeen törmäyksen p 0 = p 1 + p 2 (p=mv) r p 0 = r p 1 + L (L = Iω) energiatasapaino: p 02 /m = p 12 /m + p 22 /M + L 2 /I Ratkaisu p 2 =. 1/m. p 0 1/m + 1/M + r 2 /I ja p 1 = p 0 - p 2, L = r p 2 Laskuharjoitus: entä jos m jää kiinni kappaleeseen? m L m r p 0 p 1 I M p 2 (1) (2) Tassu Animaatio luento 5 25

26 Monitahokkaiden törmäilyistä Törmäyssuunta kohtisuorassa tasoa vastaan jos nurkittain, niin approksimoidaan Tormäyskohdan hakeminen on geometrista laskentaa: point-in-polyhedron edge-face intersection back vector tarkan kohdan selvittämiseksi Tassu Animaatio luento 5 26

27 Referenssejä Perusteellinen johdanto, kaavoja, koodia Witkin & Baraff: Siggraph 97 tutorial Kirja + video: Making Them Move (eds. Badler ) 1991 Artikkeleita Hahn: Realistic animation of rigid bodies, Siggraph 88 Baraff: useita artikkeleita, mm. Siggraph 89 Hodgins: Animating Human Athletics, Siggraph 95 Raibert +: Animation of dynamic legged locomotion, Siggraph 91 Jane Wilhelms:??? Witkin & Kass: Spacetime Constraints, Siggraph Tassu Animaatio luento 5 27

28 Videot Atlanta in Motion, J.Hodkins 1996 On the Run, MIT leg lab Tassu Animaatio luento 5 28

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken

Voiman ja liikemäärän yhteys: Tämä pätee kun voima F on vakio hetken Liikemäärä Henkilöauto törmää tukkirekkaan, miksi henkilöautossa olijat loukkaantuvat vakavasti, mutta rekan kuljettaja selviää yleensä aina vammoitta? Mihin suuntaan ja millä nopeudella rekka ja henkilöauto

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Tik-111.5450 Tietokoneanimaatio

Tik-111.5450 Tietokoneanimaatio Tik-111.5450 Tietokoneanimaatio 3. Asennon (pyörähdysliikkeen) esittäminen ja interpolointi 3.10.05 - Tassu Animaatio 2005 - luento 3 1 Sisältö matriisiesitys, matriisin komponenttivektorien merkitys perusakselien

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Matemaattisesta mallintamisesta

Matemaattisesta mallintamisesta Matemaattisesta mallintamisesta (Fysikaalinen mallintaminen) 1. Matemaattisen mallin konstruointi dynaamiselle reaalimaailman järjestelmälle pääpaino fysikaalisella mallintamisella samat periaatteet pätevät

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Numeerinen integrointi Analyyttisesti derivointi triviaalia, integrointi vaikeaa. Numeerisesti laskettaessa tilanne on päinvastainen. Integrointi on yhteenlaskua, joka on tasoittava operaatio: lähtötietojen

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta

Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION. Rutherfordin sironta Utsjoki 21.7.-1.8.2008 ABI KURSSI MEKANIIKKAA MOMENTUM IMPULSE ENERGY CONSERVATION Rutherfordin sironta vm MOMENTUM IMPULSE COLLISIONS Rekan ja henkilöauton törmäyksessä vaikuttavia voimia on lukematon

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Moottorisahan ketjun kytkentä

Moottorisahan ketjun kytkentä Moottorisahan ketjun kytkentä Moottorisaha kiihdytetään tyhjäkäynniltä kierrosnopeuteen 9600 r/min n. 120 krt/h. Mikä on teräketjun keskipakoiskytkimen kytkentäaika ja kuinka paljon kytkin lämpenee, kun

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Harjoitustyö Hidastuva liike Biljardisimulaatio

Harjoitustyö Hidastuva liike Biljardisimulaatio Harjoitustyö Hidastuva liike Biljardisimulaatio Tietotekniikka Ammattialan matemaattiset menetelmät Tommi Sukuvaara Nico Hätönen, Joni Toivonen, Tomi Poutiainen INTINU13A6 Arviointi Päiväys Arvosana Opettajan

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002

Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 Kimmoton törmäys Jani-Matti Hätinen 012327153 Työn pvm 1.11.2002 assistentti Stefan Eriksson 22.11.2002 1 1 Tiivistelmä Tutkittiin liikemäärän ja liike-energian muuttumista kimmottomassa törmäyksessä.

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Mekaniikka 1 Lukion fysiikan kertausta

Mekaniikka 1 Lukion fysiikan kertausta Mekaniikka 1 Lukion fysiikan kertausta 21.7.2009 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, loistavia tehtäviä, loistavaa filosofiaa LAske! Sisältö Alustavia lähtökohtia mekaniikkaan...

Lisätiedot

Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op)

Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Kon-41.4027 Hydraulijärjestelmien mallintaminen ja simulointi L (3 op) Viikkoharjoitukset syksyllä 2015 Paikka: Maarintalo, E-sali Aika: perjantaisin klo 10:15-13:00 (14:00) Päivämäärät: Opetushenkilöstö

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Perusopintojen Laboratoriotöiden Työselostus 1

Perusopintojen Laboratoriotöiden Työselostus 1 Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa

Lisätiedot

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki

2 Keskeisvoimakenttä. 2.1 Newtonin gravitaatiolaki 2 Keskeisvoimakenttä 2.1 Newtonin gravitaatiolaki Newton oletti, että kappale, jolla on massa m 1, vaikuttaa etäisyydellä r 12 olevaan toiseen kappaleeseen, jonka massa on m 2, gravitaatiovoimalla, joka

Lisätiedot

4.3 Liikemäärän säilyminen

4.3 Liikemäärän säilyminen Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,

Lisätiedot

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen

BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,

Lisätiedot

FY1 Fysiikka luonnontieteenä

FY1 Fysiikka luonnontieteenä Ismo Koponen 10.12.2014 FY1 Fysiikka luonnontieteenä saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 1.6.2005, malliratkaisut. 1 Kuvaan 1 on piiretty kahden suoraviivaisesti samaan suuntaan liikkuvan auton ja B nopeudet ajan funktiona. utot ovat rinnakkain ajanhetkellä t = 0 s. a) Kuvaile auton liikettä ajan funktiona. Kumpi autoista

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

Simulointi. Varianssinhallintaa Esimerkki

Simulointi. Varianssinhallintaa Esimerkki Simulointi Varianssinhallintaa Esimerkki M C Esimerkki Tarkastellaan lasersäteen sirontaa partikkelikerroksesta Jukka Räbinän pro gradu 2005 Tavoitteena simuloida sirontakuvion tunnuslukuja Monte Carlo

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike

Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen

6. TAIVAANMEKANIIKKA. Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen 6. TAIVAANMEKANIIKKA Antiikki: planeetat = vaeltavia tähtiä jotka liikkuvat kiintotähtien suhteen Näennäinen liike voi olla hyvinkin monimutkaista: esim. ulkoplaneetan suunta retrograadinen opposition

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

+ = +, (1) + = +. (2)

+ = +, (1) + = +. (2) TÖRMÄYKSET 1 Johdanto Tarkastellaan kahden kappaleen välistä törmäystä yhdessä ulottuvuudessa. Törmäyksessä kappaleet vuorovaikuttavat vaihtaen liikemääriä ja energiaa keskenään. Törmäyksessä kappaleet

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Mallien perusteet. Tavoittena on valottaa (kontinuumi)mallien yleistä rakennetta säilymislakien ja systeemiajattelun pohjalta.

Mallien perusteet. Tavoittena on valottaa (kontinuumi)mallien yleistä rakennetta säilymislakien ja systeemiajattelun pohjalta. Mallien perusteet Tavoittena on valottaa (kontinuumi)mallien yleistä rakennetta säilymislakien ja systeemiajattelun pohjalta. Pyrkimys erottaa mallien yleispätevät ja tapauskohtaiset piirteet. Sisältö:

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä

3D animaatio: liikekäyrät ja interpolointi. Tommi Tykkälä 3D animaatio: liikekäyrät ja interpolointi Tommi Tykkälä Läpivienti Keyframe-animaatio Lineaarisesta interpoloinnista TCB-splineihin Bezier-käyrät Rotaatioiden interpolointi Kameran animointi Skenegraafit

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

1 Oikean painoisen kuulan valinta

1 Oikean painoisen kuulan valinta Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE

SMG-4500 Tuulivoima. Neljännen luennon aihepiirit. Tuulivoimalan rakenne. Tuuliturbiinin toiminta TUULIVOIMALAN RAKENNE SMG-4500 Tuulivoima Neljännen luennon aihepiirit Tuulivoimalan rakenne Tuuliturbiinin toiminta Turbiinin teho Nostovoima ja vastusvoima Suhteellinen tuuli Pintasuhde Turbiinin tehonsäätö 1 TUULIVOIMALAN

Lisätiedot

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö

RATKAISUT. Luokka 1. Tehtävä 1. 1 a + 1 b = 1 f. , a = 2,0 m, b = 0,22 m. 1 f = a+ b. a) Gaussin kuvausyhtälö RATKAISUT Luokka 1 Tehtävä 1 a) Gaussin kuvausyhtälö 1 a + 1 b = 1 f, a =,0 m, b = 0, m. 1 f = a+ b ab = f = ab,0 m 0, m = a+ b,0 m+ 0, m = 0,198198 m 0,0 m 1 p b) b = 0,5 m 1 a = b f bf a= bf b f = 0,5m

Lisätiedot

T-111.450 Tietokoneanimaatio ja mallintaminen. Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02

T-111.450 Tietokoneanimaatio ja mallintaminen. Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02 T-111.450 Tietokoneanimaatio ja mallintaminen Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio 02/02 Animaatio / 1 2D Avainkuvatekniikka Sisältö Kerronnallisia

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta

Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta Mekaniikkaa ja sähköstatiikkaa Lukion fysiikan kertausta 1.2.2010 Pietarsaaren lukio Vesa Maanselkä Kiihdyttäviä autoja, lipsuvia hihnoja, sähköisiä potentiaaleja loistavia tehtäviä, loistavaa filosofiaa

Lisätiedot

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).

On määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko). TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Luku 5: Rajapinnat. Grafiikkarajapinnat Fysiikkamoottorit Äänet Kontrollilaitteet

Luku 5: Rajapinnat. Grafiikkarajapinnat Fysiikkamoottorit Äänet Kontrollilaitteet Grafiikkarajapinnat Fysiikkamoottorit Äänet Kontrollilaitteet Ohjelmointirajapinnat Peliohjelmoijalle on nykyään tarjolla lukuisia valmiita kirjastoja sekä kaupallisena että ilmaisena Nopeuttavat pelin

Lisätiedot

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP101/K1 KINEMATIIKAN KUVAAJAT FYSP101/K1 KINEMATIIKAN KUVAAJAT Työn tavoitteita tutustua kattavasti DataStudio -ohjelmiston käyttöön syventää kinematiikan kuvaajien (paikka, nopeus, kiihtyvyys) hallintaa oppia yhdistämään kinematiikan

Lisätiedot

4 Liikemäärä ja liikemäärän säilyminen

4 Liikemäärä ja liikemäärän säilyminen 4 Liikemäärä ja liikemäärän säilyminen 4. Liikemäärä ja implssi 4-. a) Hyökkääjän liikemäärä on p = = 89 kg 8,0 m/s 70 kgm/s. b) 05-kiloisella polstajalla on yhtä sri liikemäärä, jos nopes on kgm 7 p v

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

saa valmiuksia osallistua ympäristöä ja teknologiaa koskevaan kriittiseen keskusteluun ja päätöksentekoon.

saa valmiuksia osallistua ympäristöä ja teknologiaa koskevaan kriittiseen keskusteluun ja päätöksentekoon. Pakollinen kurssi 1. Fysiikka luonnontieteenä (FY1) saa tyydytystä tiedon ja ymmärtämisen tarpeelleen sekä saa vaikutteita, jotka herättävät ja syventävät kiinnostusta fysiikkaa kohtaan tutustuu aineen

Lisätiedot

4.1 Vuorovaikutuksen käsite mekaniikan perustana

4.1 Vuorovaikutuksen käsite mekaniikan perustana 91 4 NEWTONIN KOLMS LKI Dynamiikan perusprobleema on kappaleen liikkeen ennustaminen siihen kohdistuvien vuorovaikutusten perusteella. Tämä on mahdollista, jos pystytään määrittämään kuhunkin vuorovaikutukseen

Lisätiedot

Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12. 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17

Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12. 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17 7 SISÄLLYSLUETTELO Alkulause 5 Sisällysluettelo 7 Kirjallisuusluettelo 12 KINEMATIIKKA 1 JOHDANTO 15 1.1 Kinematiikan tehtävä 15 1.2 Historiallista taustaa 17 2 PARTIKKELIN KINEMATIIKKA 19 2.1 Suoraviivainen

Lisätiedot

Väitöskirja klassisen mekaniikan ja talouden dynamiikan yhteydestä

Väitöskirja klassisen mekaniikan ja talouden dynamiikan yhteydestä Kansantaloudellinen aikakauskirja - 92. vsk. - 1/1996 Väitöskirja klassisen mekaniikan ja talouden dynamiikan yhteydestä MATTI HEIMONEN TTT, apul. professori Helsingin yliopisto, oikeustieteen laitos Matti

Lisätiedot

Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012

Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012 Pelimatematiikka ja ohjelmointi ATMOS, Mikkeli - 16.11.2012 Teemu Saarelainen, lehtori teemu.saarelainen@kyamk.fi GameLab gamelab.kyamk.fi & facebook.com/kyamk.gamelab Sisältö Miksi pelimatematiikkaa?

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

DYNAMIIKAN PERUSKÄSITTEET

DYNAMIIKAN PERUSKÄSITTEET DYNAMIIKAN PERUSKÄSITTEET 1. Perushahmotus Kappale Mekaniikassa kappaleiksi sanotaan yleisesti kaikkia aineellisia olioita. Kappaleita ovat esimerkiksi: pallo, kirja, pöytä ja auto. Myös elektroni on kappale,

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot