MS-A0102 Differentiaali- ja integraalilaskenta 1
|
|
- Juha Mattila
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto
2 Sisältö Käytännön asiat Jonot Sarjat
3 1.1 Opettajat luennoitsija Riikka Korte luennot tentit suoritusmerkinnät pääassistentti Casimir Lindfors käytännön järjestelyt laskarit laskaripisteet ilmoittautumiset 5 laskuharjoitusassistenttia : laskareiden pitäminen, tehtävien korjaaminen, pisteiden kirjaaminen
4 1.1 Viikko-ohjelma 2 luentoa (ti & to 10-12) 2 harjoitukset 6 eri ryhmää ilmoittaudu tasan yhteen ryhmään Vierailu muissa ryhmissä sallittua, mikäli luokkiin mahtuu!
5 1.1 Kurssin suoritus 1. 40% laskuharjoitukset Alkuviikko: laskareissa laskettavia tehtäviä + verkkotehtäviä Loppuviikko: etukäteen laskettavia tehtäviä + kirjallisesti palautettavia
6 1.1 Kurssin suoritus 1. 40% laskuharjoitukset Alkuviikko: laskareissa laskettavia tehtäviä + verkkotehtäviä Loppuviikko: etukäteen laskettavia tehtäviä + kirjallisesti palautettavia 2. 40% loppukoe , uusinta- / korotusmahdollisuus tentissä 19.1.
7 1.1 Kurssin suoritus 1. 40% laskuharjoitukset Alkuviikko: laskareissa laskettavia tehtäviä + verkkotehtäviä Loppuviikko: etukäteen laskettavia tehtäviä + kirjallisesti palautettavia 2. 40% loppukoe , uusinta- / korotusmahdollisuus tentissä % luentotehtävät tehdään MyCoursesissa ennen jokaista luentoa tarkoituksena tutustua luennon aiheeseen hieman etukäteen
8 1.1 Kurssin suoritus 1. 40% laskuharjoitukset Alkuviikko: laskareissa laskettavia tehtäviä + verkkotehtäviä Loppuviikko: etukäteen laskettavia tehtäviä + kirjallisesti palautettavia 2. 40% loppukoe , uusinta- / korotusmahdollisuus tentissä % luentotehtävät tehdään MyCoursesissa ennen jokaista luentoa tarkoituksena tutustua luennon aiheeseen hieman etukäteen 4. 10% harjoituskokeet, 2-3 kpl ajankohdista tiedotetaan myöhemmin, noin 2-3 vrk aikaa tehdä
9 1.1 Kurssin suoritus 1. 40% laskuharjoitukset Alkuviikko: laskareissa laskettavia tehtäviä + verkkotehtäviä Loppuviikko: etukäteen laskettavia tehtäviä + kirjallisesti palautettavia 2. 40% loppukoe , uusinta- / korotusmahdollisuus tentissä % luentotehtävät tehdään MyCoursesissa ennen jokaista luentoa tarkoituksena tutustua luennon aiheeseen hieman etukäteen 4. 10% harjoituskokeet, 2-3 kpl ajankohdista tiedotetaan myöhemmin, noin 2-3 vrk aikaa tehdä tai pelkkä TENTTI
10 1.1 Oma tavoite kurssilla??
11 1.1 Oma tavoite kurssilla?? Läpipääsy? Riittävän hyvä arvosana? 3? 5? Oppia ymmärtämään asiat? Saada riittävät esitiedot muita kursseja varten? Joku muu?
12 1.1 Palauteryhmä Palautetta jo kurssin aikana voi ottaa huomioon jo tällä kurssilla! Kokoontuu noin 2 kertaa kurssin aikana esim. kahvilassa. Noin 3-6 henkilöä Vapaaehtoisia? Ilmoittaudu luentotauolla tai lähetä sähköpostia luennoitsijalle.
13 2.0 Ensimmäinen luento Lukujonot Sarjat Geometrinen sarja Suhdetesti
14 3.1 Lukujoukot Luonnollisten lukujen joukko N = Z + = {1, 2, 3,... }.
15 3.1 Lukujoukot Luonnollisten lukujen joukko N = Z + = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Huom! Joskus käytetään merkintää N = {0, 1, 2, 3,... }.
16 3.1 Lukujoukot Luonnollisten lukujen joukko N = Z + = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Huom! Joskus käytetään merkintää N = {0, 1, 2, 3,... }. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... } = {..., 2, 1, 0, 1, 2,... }.
17 3.1 Lukujoukot Luonnollisten lukujen joukko N = Z + = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Huom! Joskus käytetään merkintää N = {0, 1, 2, 3,... }. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... } = {..., 2, 1, 0, 1, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}.
18 3.1 Lukujoukot Luonnollisten lukujen joukko N = Z + = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Huom! Joskus käytetään merkintää N = {0, 1, 2, 3,... }. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... } = {..., 2, 1, 0, 1, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen joukko R.
19 3.2 Lukujonot Lukujono = ääretön jono reaalilukuja a n R, kun indeksi n N. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
20 3.2 Lukujonot Lukujono = ääretön jono reaalilukuja a n R, kun indeksi n N. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Täsmällinen tulkinta: Lukujono on funktio f : N R, jolle f (n) = a n.
21 3.2 Lukujonot Lukujono = ääretön jono reaalilukuja a n R, kun indeksi n N. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Täsmällinen tulkinta: Lukujono on funktio f : N R, jolle f (n) = a n. Jonon indeksöinti voi alkaa myös jostakin muusta arvosta kuin 1. Jos indeksin alkuarvo ei ole tärkeä tai tilanne on muuten selvä, voidaan käyttää merkintää (a n ).
22 3.2 Lukujonot Lukujono = ääretön jono reaalilukuja a n R, kun indeksi n N. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Täsmällinen tulkinta: Lukujono on funktio f : N R, jolle f (n) = a n. Jonon indeksöinti voi alkaa myös jostakin muusta arvosta kuin 1. Jos indeksin alkuarvo ei ole tärkeä tai tilanne on muuten selvä, voidaan käyttää merkintää (a n ). Joissakin sovelluksissa esiintyy myös jonoja, joiden indeksijoukkona on kaikkien kokonaislukujen joukko Z. (a k ) k Z = (..., a 2, a 1, a 0, a 1, a 2,... )
23 3.2 Käytännössä Jonoja voidaan määritellä
24 3.2 Käytännössä Jonoja voidaan määritellä antamalla yleisen termin lauseke; esimerkiksi a n = 2 n, kun n N lukujono (2, 4, 8, 16,... ).
25 3.2 Käytännössä Jonoja voidaan määritellä antamalla yleisen termin lauseke; esimerkiksi a n = 2 n, kun n N lukujono (2, 4, 8, 16,... ). rekursiivisesti palautuskaavojen avulla, erityisesti monissa numeerisissa menetelmissä. Esimerkiksi f 0 = 0, f 1 = 1, f n = f n 2 + f n 1, kun n 2 Fibonaccin lukujono (0, 1, 1, 2, 3, 5,... ).
26 3.2 Käytännössä Jonoja voidaan määritellä antamalla yleisen termin lauseke; esimerkiksi a n = 2 n, kun n N lukujono (2, 4, 8, 16,... ). rekursiivisesti palautuskaavojen avulla, erityisesti monissa numeerisissa menetelmissä. Esimerkiksi f 0 = 0, f 1 = 1, f n = f n 2 + f n 1, kun n 2 Fibonaccin lukujono (0, 1, 1, 2, 3, 5,... ). tekemällä mittauksia jostakin systeemistä; esimerkiksi äänen voimakkuus tasaisin aikavälein (idealisoituna äärettömäksi jonoksi).
27 3.2 Perusongelmat Mitä jonon ominaisuuksia saadaan selville yleisen termin tai palautuskaavojen avulla?
28 3.2 Perusongelmat Mitä jonon ominaisuuksia saadaan selville yleisen termin tai palautuskaavojen avulla? Miten palautuskaavasta saadaan yleisen termin lauseke?
29 3.2 Perusongelmat Mitä jonon ominaisuuksia saadaan selville yleisen termin tai palautuskaavojen avulla? Miten palautuskaavasta saadaan yleisen termin lauseke? Esimerkiksi Fibonaccin jonolle f n = 1 5 ( ϕ n ( ϕ) n), jossa ϕ = on ns. kultaisen leikkauksen suhde.
30 4.1 Sarja Lukujonon (a k ) k N osasummien osasummien jono (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., s n = a 1 + a a n = n a k. k=1
31 4.1 Sarja Lukujonon (a k ) k N osasummien osasummien jono (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., s n = a 1 + a a n = n a k. k=1 Määritelmä 1 Jos osasummien jonolla (s n ) on raja-arvo s R, niin sanotaan, että jonosta (a k ) muodostettu sarja suppenee ja sen summa on s. Tällöin merkitään a 1 + a 2 + = a k = lim k=1 n k=1 n a k = s.
32 4.1 Indeksöinti Osasummat kannattaa indeksöidä samalla tavalla kuin jono (a k ); esim. jonon (a k ) k=0 osasummat ovat s 0 = a 0, s 1 = a 0 + a 1 jne.
33 4.1 Indeksöinti Osasummat kannattaa indeksöidä samalla tavalla kuin jono (a k ); esim. jonon (a k ) k=0 osasummat ovat s 0 = a 0, s 1 = a 0 + a 1 jne. Suppenevaan sarjaan voidaan tehdä summausindeksin siirtoja: esim. a k = k=1 a k+1 = k=0 a k 1. k=2
34 4.1 Indeksöinti Osasummat kannattaa indeksöidä samalla tavalla kuin jono (a k ); esim. jonon (a k ) k=0 osasummat ovat s 0 = a 0, s 1 = a 0 + a 1 jne. Suppenevaan sarjaan voidaan tehdä summausindeksin siirtoja: esim. a k = k=1 a k+1 = k=0 a k 1. k=2 Näissä kaikissa summissa ensimmäinen termi on a 1.
35 4.1 Sarjan hajaantuminen (1/2) Jos sarja ei suppene, niin se hajaantuu. Tämä voi tapahtua kolmella eri tavalla:
36 4.1 Sarjan hajaantuminen (1/2) Jos sarja ei suppene, niin se hajaantuu. Tämä voi tapahtua kolmella eri tavalla: 1. osasummat lähestyvät ääretöntä 2. osasummat lähestyvät miinus-ääretöntä 3. osasummien jono heilahtelee niin, ettei raja-arvoa ole.
37 4.1 Sarjan hajaantuminen (1/2) Jos sarja ei suppene, niin se hajaantuu. Tämä voi tapahtua kolmella eri tavalla: 1. osasummat lähestyvät ääretöntä 2. osasummat lähestyvät miinus-ääretöntä 3. osasummien jono heilahtelee niin, ettei raja-arvoa ole. Hajaantuvan sarjan tapauksessa merkintä k=1 ei oikeastaan tarkoita mitään. Usein sovitaan sen tarkoittavan osasummien jonoa, joka on aina hyvin määritelty. a k
38 4.1 Sarjan hajaantuminen (2/2) Monet sarjoihin liittyvät kummallisuudet (esim. 0 = 1-todistus) johtuvat siitä, että sarjan summaaminen tulkitaan operaatioksi, jossa kaikki jonon alkiot lasketaan yhteen samalla kertaa. Näin ei ole, vaan summa lasketaan osasumminen raja-arvona. Tämän vuoksi osa äärellisten summien laskusäännöistä ei enää päde sarjoille. Joissakin tapauksissa esimerkiksi sarjan summa voi muuttua, jos termien järjestystä vaihdetaan.
39 4.2 Geometrinen sarja Lause 2 Geometrinen sarja n aq k k=0 suppenee, jos q < 1 (tai a = 0), jolloin sen summa on Jos q 1, niin sarja hajaantuu. a 1 q.
40 4.2 Geometrinen sarja Lause 2 Geometrinen sarja n aq k k=0 suppenee, jos q < 1 (tai a = 0), jolloin sen summa on Jos q 1, niin sarja hajaantuu. n Perustelu: Sarjan osasummille pätee josta väite seuraa. k=0 a 1 q. aq k = a(1 qn+1 ), 1 q
41 4.2 Geometrinen sarja Lause 2 Geometrinen sarja n aq k k=0 suppenee, jos q < 1 (tai a = 0), jolloin sen summa on Jos q 1, niin sarja hajaantuu. n Perustelu: Sarjan osasummille pätee josta väite seuraa. Yleisemmin a q k = aqi 1 q k=i k=0 a 1 q. aq k = a(1 qn+1 ), 1 q sarjan 1. termi =, kun q < 1. 1 q
42 4.2 Suhdetesti tärkein tapa suppenemisen tutkimiseen idea: termejä verrataan sopivaan geometriseen sarjaan
43 4.2 Suhdetesti tärkein tapa suppenemisen tutkimiseen idea: termejä verrataan sopivaan geometriseen sarjaan Lause 3 Jos jostakin indeksistä alkaen on voimassa a k+1 a Q < 1, k niin sarja a k suppenee.
44 4.2 Suhdetesti tärkein tapa suppenemisen tutkimiseen idea: termejä verrataan sopivaan geometriseen sarjaan Lause 3 Jos jostakin indeksistä alkaen on voimassa a k+1 a Q < 1, k niin sarja a k suppenee. Perustelu: Sarjan alku ei vaikuta sen suppenemiseen, joten epäyhtälö voidaan olettaa kaikille indekseille.
45 4.2 Suhdetesti tärkein tapa suppenemisen tutkimiseen idea: termejä verrataan sopivaan geometriseen sarjaan Lause 3 Jos jostakin indeksistä alkaen on voimassa a k+1 a Q < 1, k niin sarja a k suppenee. Perustelu: Sarjan alku ei vaikuta sen suppenemiseen, joten epäyhtälö voidaan olettaa kaikille indekseille. Tästä seuraa a k Q a k 1 Q 2 a k 2 Q k a 0, joten sarjalle saadaan suppeneva geometrinen majorantti.
46 4.2 Suhdetestin raja-arvomuoto Lause 4 Jos on olemassa raja-arvo lim a k+1 k a = q, niin k sarja a k suppenee, jos 0 q < 1, hajaantuu, jos q > 1, voi olla suppeneva tai hajaantuva, jos q = 1. Viimeisessä kohdassa ei siis saada mitään tietoa suppenemisesta. Näin käy mm. harmonisen (hajaantuva!) ja yliharmonisen (suppeneva!) sarjan kohdalla.
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,
LisätiedotSarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
LisätiedotLukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.
Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen
LisätiedotJonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
LisätiedotReaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13
Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt
Lisätiedotreaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,
Reaaliluvuista Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Nämä kalvot sisältävät tiivistelmän reaaliluvuista ja niihin liittyvistä käsitteistä.
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo 1 Aalto-yliopisto Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos 6.9.2017 1 Kiitokset Harri Hakulalle, Janne Korvenpäälle,
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 1.9.2016 Pekka Alestalo (Aalto-yliopisto) MS-A010X Differentiaali- ja integraalilaskenta 1 1.9.2016 1 / 200 Sisältö Nämä
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo 1 Aalto-yliopisto Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos 20.10.2017 1 Kiitokset Harri Hakulalle, Janne Korvenpäälle,
LisätiedotKuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
LisätiedotSisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17
Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Lisätiedot1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
LisätiedotSarjojen suppenemisesta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Lisätiedot1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat
Lisätiedot1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotVastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotTalousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
LisätiedotIII. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,
III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat
LisätiedotTalousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8, 8.1.2018 2
Lisätiedotnyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.
Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotAlkulukujen harmoninen sarja
Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................
LisätiedotMatematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
LisätiedotPositiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
LisätiedotOsa 5. lukujonot ja sarjat.
Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
LisätiedotMS-C1540 Euklidiset avaruudet
MS-C1540 Euklidiset avaruudet MS-C1540 Euklidiset avaruudet III-periodi, kevät 2016 Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu 1 / 30 Euklidiset
LisätiedotVaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä
LisätiedotRekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä
LisätiedotSarjat ja integraalit, kevät 2015
Sarjat ja integraalit, kevät 2015 Peter Hästö 11. maaliskuuta 2015 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotRiemannin sarjateoreema
Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................
LisätiedotLukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot
Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotFunktiot ja raja-arvo P, 5op
Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:
LisätiedotReaalilukujonoista ja niiden merkityksestä kouluopetuksessa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anna-Kaisa Torvinen Reaalilukujonoista ja niiden merkityksestä kouluopetuksessa Matematiikan ja tilastotieteen laitos Matematiikka Syyskuu 2010 Tampereen yliopisto
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotV. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotMS-A010X Differentiaali- ja integraalilaskenta 1
MS-A010X Differentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 20.10.2017 Kiitokset Harri Hakulalle, Janne Korvenpäälle, Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden
LisätiedotHilbertin avaruudet, 5op Hilbert spaces, 5 cr
Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214
LisätiedotSarjat ja integraalit, kevät 2014
Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotOsa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
LisätiedotKompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
LisätiedotLukujonot lukiossa ja yliopistossa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jussi Syrjäkoski Lukujonot lukiossa ja yliopistossa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2015 2 Tampereen yliopisto Informaatiotieteiden yksikkö Syrjäkoski,
LisätiedotMatematiikka kaikille, kesä 2017
Matematiikka kaikille, kesä 2017 Luentojen 2,4 ja 6 luentokalvoja (päivittyy kurssin aikana) Henrik Wirzenius, henrik.wirzenius@helsinki.fi, June 21, 2017 1/30 Matematiikan perusteita (joukko-oppi) Kurssin
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotAnalyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotANALYYSI 2. Camilla Hollanti. Tampereen yliopisto 2010. x 3. a x 1. x 4 x 11. x 2
ANALYYSI 2 Camilla Hollanti _ M M a x x 2 x 3 x 4 x b Tampereen yliopisto 200 Sisältö. Preliminäärejä 3 2. Riemann-integraali 5 2.. Pinta-alat ja porrasfunktiot....................... 5 2... Pinta-ala
LisätiedotTehtävä 3. Määrää seuraavien jonojen raja-arvot 1.
Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.
LisätiedotInduktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
Lisätiedotx > y : y < x x y : x < y tai x = y x y : x > y tai x = y.
ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Lisätiedot3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Lisätiedot7. Tasaisen rajoituksen periaate
18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin
LisätiedotDiskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
LisätiedotTehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun
LisätiedotANALYYSI 3. Tero Kilpeläinen
ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpanoja syksyltä 2005 14. helmikuuta 2014 Sisältö 1. Esitietoja 2 1.1. Riemann-integraali............................ 2 1.2. Derivaatta.................................
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
LisätiedotTilastollinen päättely II (MAT22003), kevät 2019
Tilastollinen päättely II (MAT22003), kevät 2019 Petteri Piiroinen 13.1.2019 Tilastollinen päättely II -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Pakollinen
LisätiedotMS-A010X Di erentiaali- ja integraalilaskenta 1
MS-A010X Di erentiaali- ja integraalilaskenta 1 Pekka Alestalo Aalto-yliopisto 24.10.2016 Kiitokset Riikka Kortteelle, Jarmo Maliselle ja kurssien opiskelijoille painovirheiden korjauksista. Sisältö Nämä
Lisätiedot802118P Lineaarialgebra I (4 op)
802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
LisätiedotSarjat ja integraalit
Sarjat ja integraalit Peter Hästö 11. maaliskuuta 2015 Matemaattisten tieteiden laitos Eteneminen pvm luku v 11 2.1, 2.2 v 12 2.3, 2.4 v 13 3.1 v 14 3.2 v 15 4 v 16 5.1 v 17 5.2 v 18 6.1 v 19 6.2 Peter
Lisätiedottermit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)
LisätiedotOnko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?
Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotOutoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.
Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen
Lisätiedot=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin
FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)
LisätiedotTalousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
Lisätiedot