Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Samankaltaiset tiedostot
5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

2 Epäoleellinen integraali

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

3 Integraali ja derivaatta

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

5 Epäoleellinen integraali

Riemannin integraali

6 Integraali ja derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

Riemannin integraalista

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

Pertti Koivisto. Analyysi B

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Lisää määrätystä integraalista Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

4. Reaalifunktioiden määrätty integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

Kertausta ja täydennystä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Riemannin integraalista

Integraalilaskenta. Määrätty integraali

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

Lebesguen integraali - Rieszin määritelmä

2.4 Pienimmän neliösumman menetelmä

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit

Johdatus reaalifunktioihin P, 5op

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

ANALYYSI 2. Tero Kilpeläinen

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

MS-A0102 Differentiaali- ja integraalilaskenta 1

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Matemaattiset menetelmät I. Seppo Hassi

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

2 Funktion derivaatta

Pertti Koivisto. Analyysi C

Matematiikan peruskurssi. Seppo Hassi

Analyyttinen lukuteoria

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

2.2 Monotoniset jonot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2

Analyysin perusteet kauppatieteilijöille P

ANALYYSI I, kevät 2009

2 Funktion derivaatta

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

Pinta-alan laskeminen

ANALYYSI I, kevät 2009

ANALYYSIN TEORIA A JA B

Matematiikan tukikurssi

ANALYYSI I, kevät 2009

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

ANALYYSI 3. Tero Kilpeläinen

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

3 Lukujonon raja-arvo

Preliminäärikoe Pitkä Matematiikka

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

3 Lukujonon raja-arvo

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

Riemann-integraalin ja mittaintegraalin vertailua

Sarjat ja integraalit

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Sinilause ja kosinilause

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Matematiikan tukikurssi

R(f, T ) := f(t k )(x k x k 1 ).

2. Useamman muuttujan funktioiden integraalilaskentaa. käsitteet kuten esimerkiksi useamman muuttujan funktioiden jatkuvuus jäävät

Luku I on funktion f Riemannin integraali välillä [a, b] ja sitä merkitään b

Sarjojen tasainen suppeneminen

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

Matematiikan perusteet taloustieteilijöille P

Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

4 Pinta-alasovelluksia

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

6 Integraalilaskentaa

Lebesguen integraali

1 Määrittelyjä ja aputuloksia

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa

Analyysi III S

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Matematiikan tukikurssi

Mika Hirvensalo. Insinöörimatematiikka B 2014

1.3 Toispuoleiset ja epäoleelliset raja-arvot

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Transkriptio:

Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A = m A j inf A = min A, kun A = {f() ], [ }. Yllä inf A min A j sup A m A trkoittvt, että min A j m A eivät ole olemss. Tässä tehtävässä ei trvitse nt täsmällistä perustelu, että infimum j supremum toteuttvt vditut ehdot. Esimerkiksi funktion kuvjn tukeutuv perustelu on riittävä.. Todist monisteen luse.6. 3. Todist monisteen luse.7. 4. Arvioi ylä- j lsummi käyttämällä funktion { + 3, kun <, f() = 4, kun, kuvjn j -kselin väliin jäävän lueen pint-l välillä [, ], kun jko on tsvälinen j osvälien lukumäärä n = 4. 5. Ann jokin välin [, ] jko, jok sisältää porrsfunktion f() = + + porrspisteet välillä [, ]. 6. Olkoot f j g välin [, b] porrsfunktioit. Osoit, että myös fg on välin [, b] porrsfunktio. 7. Määritä porrsfunktion integrli yli välin [, 3]. f() = + + 8. Ann esimerkki sellisest välillä [, 4] määritellystä porrsfunktiost f, että f = 4, 3 f = 5 j f =.

9. Trkstelln funktiot f() = +. Ann esimerkki sellisest välillä [, 3] määritellystä porrsfunktiost g, että g f j 3 g = 3.. Olkoot f : [, b] R j g : [, b] R sellisi porrsfunktioit, että f j g M (M R). Osoit, että fg M f.. Ann esimerkki sellisist välin [, 4] porrsfunktioist f j g, että g 3 j fg > 3 f.. Osoit todeksi ti (vstesimerkillä) epätodeksi, että jos g j h ovt välin [, b] porrsfunktioit j g h, niin g h välillä [, b]. 3. Ann esimerkki sellisest funktiost f, että I L (f, [, ]) = j I U (f, [, ]) = 3. 4. Ann esimerkki sellisist funktioist f j g, että I L (f, [, 5]) + I L (g, [, 5]) < I L (f + g, [, 5]). Tässä tehtävässä lintegrlien rvoj ei trvitse perustell täsmällisesti. Esimerkiksi funktioiden kuvjiin ti monisteen esimerkkeihin tukeutuv perustelu on riittävä. 5. Osoit Riemnnin ehto käyttäen, että funktio f() = on Riemnn-integroituv välillä [, ] j Lusett.3 voi käyttää. f() d =.

6. Olkoon f() =. Ann esimerkki sellisist välillä [, 4] määritellyistä porrsfunktioist g j h, että g f h j h g. 7. Todist, että jos funktio f : [, b] R on vähenevä, niin f on Riemnn-integroituv välillä [, b]. 8. Olkoon f : [, b] R sellinen funktio, että f svutt jokisell välin [, b] suljetull osvälillä suurimmn j pienimmän rvons j että f() f(y) 5 y in, kun, y [, b]. Todist Riemnnin ehto käyttäen, että f on Riemnn-integroituv välillä [, b]. 9. Olkoon f : [, 5] R, f() = + j P = {,, 4, 5}. Lske Riemnnin summ S P (f, ξ), kun () ξ =, ξ = 3 j ξ 3 = 5, (b) ξ =, ξ = j ξ 3 = 4.. Olkoon f() = j S P (f, ξ) jokin välin [, 6] jko P = {,, 3, 6} vstv Riemnnin summ. Onko mhdollist, että S P (f, ξ) =?. Osoit, että jos funktio f on Riemnn-integroituv välillä [, b], niin vstvsti funktio g() = f( c) on Riemnn-integroituv välillä [ + c, b + c] j f() d = b+c +c g() d. Vihje: Jokist välin [, b] jko {,,..., n } vst välin [ + c, b + c] jko { + c, + c,..., n + c}.. Olkoon f : [, ] R, f() = { 3, kun Q,, kun R \ Q, j S P (f, ξ) funktion f välin [, ] jkoon P liittyvä Riemnnin summ. Osoit rjrvon määritelmään perustuen, että rj-rvo ei ole olemss. S P (f, ξ) P

3. Olkoon f välillä [, b] rjoitettu funktio j S P (f, ξ) funktion f välin [, b] jkoon P liittyvä Riemnnin summ. Onko mhdollist, että S P (f, ξ) =? P 4. Olkoon S P (f, ξ) funktion f välin [, b] jkoon P liittyvä Riemnnin summ j f sellinen funktio, että f ei ole ylhäältä rjoitettu välillä [, b]. Osoit, että rj-rvo ei ole olemss. S P (f, ξ) P 5. Tiedetään, että f = 5, f = j 5 f =. Määritä () 5 f, (b) f, (c) f. 6. Osoit, että e 5 e d e. Vihje: Viikkohrjoitusten 3 tehtävä. 7. Osoit, että e e + e e log ( + ) d e. 8. Olkoon f : [, 4] R sellinen jtkuv funktio, että f()g() d = kikille välin [, 4] porrsfunktioille g. Todist, että f() = kikill [, 4]. 9. Määritä integrlilskennn välirvoluseen vull + 3 sin() Riemnnin summn määritelmä on tässä tehtävässä ljennettu koskemn myös rjoittmttomi funktioit. d.

3. Osoit integrlilskennn välirvolusett käyttäen, että 3 < 9 + d <. 3. Osoit yleistettyä integrlilskennn välirvolusett käyttäen, että 4 d 4 4 3. Vihje: = ( )/. Voit olett tunnetuksi, että ( ) d = 4. 3. Olkoon j c [, ]. Määritä f() = {, kun <,, kun, G() = f(t) dt, [, ]. c 33. Osoit, että jos funktio f : [, b] R on Riemnn-integroituv j f() kikill [, b], niin funktio G() = f(t) dt (c [, b]) c on ksvv välillä [, b]. 34. Derivoi funktio F : R R, kun () F () = sin t dt, (b) F () = sin dt, (c) F () = sin dt. 35. Määritä rj-rvo rc tn t dt. t

36. Osoit, että funktio on idosti ksvv, kun >. F () = log t dt 37. Määritä funktion 3 F () = (t )e t dt piklliset äärirvokohdt j äärirvojen ltu. 38. Olkoon f : [, b] R sellinen funktio, että f() = j f on jtkuv välillä [, b]. Osoit, että (b ) (f ()) d M, missä M = sup{f() b}. Vihje: Cuchy-Schwrzin epäyhtälö. 39. Määritä n n n sin k= Vihje: Monisteen esimerkki 3. (s. 5). (k )π. n 4. Määritä n n n k= ( + k n) 5.