MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
|
|
- Emilia Heikkilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 1 / 19
2 Integroimismenetelmiä Helpoimmt integrlit voi lske suorn peruskvoj käyttämällä. Os hnklmmist tpuksist plutuu näihin, jos integrlist onnistuu tunnistmn sisäfunktion derivtn. Systemttisempi menetelmiä ovt osittisintegointi, sijoitusmenetelmä, j osmurtohjotelmt. Osittisintegrointi j sijoitusmenetelmä (eli muuttujnvihtomenetelmä) ovt tulon derivoimissäännön j ketjusäännön soveltmist tkperin. Lopuksi vilkistn numeerist integrointi. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 2 / 19
3 Osittisintegrointi I Luse Olkoot f j g jtkuvsti derivoituvi funktioit välillä [, b] (eli käytännössä hiemn suuremmll voimell välillä). Tällöin b f (x)g(x) dx = / b b f (x)g(x) f (x)g (x) dx. Vstvsti integrlifunktioille pätee f (x)g(x) dx = f (x)g(x) f (x)g (x) dx. Perustelu: Tulon derivoimissääntö, integrointi j termien ryhmittely. Ide: Toimii silloin, kun funktion f (x)g (x) integrointi on helpomp kuin lkuperäisen funktion f (x)g(x). Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 3 / 19
4 Osittisintegrointi II Lske integrli π 0 x sin x dx. Rtkisu: Kokeilln osittisintegrointi j vlitn f (x) = sin x j g(x) = x, jolloin f (x) = cos x j g (x) = 1. Näin sdn π 0 x sin x dx = / π ( cos x) x 0 π 0 ( cos x) 1 dx = π cos π / π sin x = π. 0 Huom: Jos f j g vlitn esimerkissä toisin päin, niin osittisintegrointi joht entistä hnklmpn integrliin. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 4 / 19
5 Osittisintegrointi III Lske integrlifunktio e x sin x dx. Rtkisu: Vlitse f (x) = e x j g(x) = sin x. Tulull. Lske integrli xe x dx. Rtkisu: Vlitse f (x) = e x j g(x) = x. Tulull. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 5 / 19
6 Osittisintegrointi IV Lske integrlifunktio x ln x dx. Rtkisu: Vlitse f (x) = x j g(x) = ln x. Tulull. Osittisintegroinniss on strtegisen iden vlit funktioksi g sellinen os integrndiss, että muodostettess g mhdollisimmn pljon phuutt poistuu integrlimerkin lt. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 6 / 19
7 Sijoitusmenetelmä I Luse Jos f on jtkuv j g jtkuvsti derivoituv suljetull välillä [, b], niin b kun A = g(), B = g(b). f (g(x))g (x) dx = Käytännössä: Sijoitus u = g(x), jolloin B A f (u) du, du dx = g (x) du = g (x) dx Rjojen muutos: x = u = g() = A, x = b u = g(b) = B. Huom, että sijoituksen jälkeen ei trvitse enää plt lkuperäiseen muuttujn x (pitsi integrlifunktiot lskettess; kts. ll). Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 7 / 19
8 Sijoitusmenetelmä II Muunnos u = g(x) voidn (usein) kirjoitt myös käänteisfunktion vull: x = g 1 (u) dx = (g 1 ) (u) du = joten tulos on sm kuin ikisemmin. 1 g ( g 1 (u) ) du = 1 g (x) du, Integroimisrjojen vihtminen on helpomp lkuperäistä muunnost x u käyttämällä. Sen sijn differentilin muuttuminen dx du on joskus helpompi lske yllä nnetun käänteisen muodon vull. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 8 / 19
9 Sijoitusmenetelmä III Lske integrli π 2 0 sin x dx. Rtkisu: Neliöjuuren hävittämiseksi sijoitetn x = t 2, kun t 0. Tällöin dx = 2t dt j käänteisestä muodost t = x sdn: Kun x = 0, niin t = 0 = 0; kun x = π 2, niin t = π 2 = π. Näin ollen π 2 0 sin x dx = π 0 π 2t sin t dt = 2 t sin t dt = 2π. 0 (Viimeinen integrli lskettiin ikisemmss esimerkissä osittisintegroimll) Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 9 / 19
10 Sijoitusmenetelmä IV Myös integrlifunktio voidn usein lske sijoitusmenetelmän vull. Tällöin säästytään integroimisrjojen muuttmiselt, mutt joudutn plmn uudest muuttujst t tkisin lkuperäiseen muuttujn x. Määritä integrlifunktio dx x(1 + x). Rtkisu: Sijoitetn x = t 2, t > 0, eli t = x, jolloin sdn dx 2t dt = x(1 + x) t(1 + t 2 ) = 2 rctn t + C = 2 rctn x + C. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 10 / 19
11 Osmurtohjotelm I Kikki relikertoimiset rtionlifunktiot R(x) = P(x)/Q(x) voidn integroid osmurtohjotelmien vull. Ensimmäinen vihe: Jkokulmss jkmll (ti muuten) plutetn tilnne siihen, että deg P(x) < deg Q(x). x x + 1 x 2 x 2 1 x 3 x 2 1 = (x + 1) 1 x + 1 = (x 2 1) + 1 x 2 1 = x 3 x x = x + 1 x x + 1 = 1 1 x + 1 = x 2 1 x x 2 1 = x 2 1 x x 2 1 = x(x 2 1) x x x 2 1 = x + x x 2 1 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 11 / 19
12 Osmurtohjotelm II Osmurtohjotelm voidn käyttää integroinniss seurvll tvll. ( x x + 1 dx = 1 1 ) dx = x ln x C. x + 1 Toinen vihe: Jetn nimittäjässä olev polynomi Q(x) joko 1. ti 2. steen relikertoimisiin tekijöihin. Relijuurisess tpuksess trvitn vin helpoint tulost x + b (x x 1 )(x x 2 ) = A + B, x x 1 x x 2 kun kertoimet A, B vlitn sopivll tvll. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 12 / 19
13 Osmurtohjotelm III Muodost lusekkeen 2x + 3 (x 4)(x + 5) osmurtohjotelm. Rtkisu: Hjotelm on muoto 2x + 3 (x 4)(x + 5) = A x 4 + B x + 5. Kerrotn yhtälö puolittin lusekkeell (x 4)(x + 5), jolloin sdn 2x + 3 = A(x + 5) + B(x 4). Kertoimet A j B sdn tästä khdell eri tvll: Tp 1: Sijoitetn vuorotellen x = 4 ti x = 5. Tp 2: Verrtn x:n potenssien kertoimi yhtälön eri puolill. Molempien tpojen tuloksen sdn A = 11/9 j B = 7/9. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 13 / 19
14 Osmurtohjotelm IV Integroi rtionliluseke 2x + 1 x 2 + 2x + 2. Rtkisu: Nyt nimittäjän nollkohdt eivät ole relisi, joten ei yritetä pilkko sitä ensimmäisen steen tekijöihin (vikk se olisi mhdollist kompleksiluvuill). Sen sijn täydennetään neliöksi. Tulull. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 14 / 19
15 Numeerinen integrointi I Hnklien integrlien likirvoj voidn joskus lske kehittämällä integrndi Tylor-polynomiksi. Tämä edellyttää kuitenkin sitä, että integroitv funktio on nnettu jonkin lusekkeen vull, jot ostn derivoid. Mittusdtss funktiost tunnetn vin sen rvot tietyissä pisteissä y k = f (k x), j derivtoist ei oikein ole tieto. Toivotn, että funktio f ei kerrssn vlln villiydy smpluspisteiden k x, k N, välissä, ti kikki toivo on mennyttä. Ruhllisesti käyttäytyvissä tpuksiss integrli (reliluku) voidn lske likimääräisesti numeerisill menetelmillä, kvdrtuureill. Eri kvdrtuurit poikkevt toisistn trkkuuden j lskenttyömäärän knnlt, sekä sen knnlt, mitä ne edellyttävät funktiolt f. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 15 / 19
16 Numeerinen integrointi II Yksinkertisin tp on puolisuunnikssääntö eli trpetsikv, joss funktion kuvj pproksimoidn murtoviivll: b ( 1 f (x) dx T n = h 2 y 0 + y 1 + y y n ) 2 y n, joss h = (b )/n on skelpituus, n N jkovälien lukumäärä, x k = + kh, 0 k n, ovt jkopisteet j y k = f (x k ). y y = f (x) b x Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 16 / 19
17 Numeerinen integrointi III Keskipistesääntö ( pylväsdigrmmipproksimtio ) b f (x) dx M n = h(f (m 1 ) + f (m 2 ) + + f (m n )), m k = (x k 1 + x k )/2, y y = f (x) b x Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 17 / 19
18 Numeerinen integrointi IV Sileämmille funktioille f Simpsonin sääntö b f (x) dx S n = h 3 (y 0 + 4y 1 + 2y 2 + 4y 3 + 2y y n 1 + y n ) tuott trkemmn lopputuloksen smll jkovälien lukumääräällä n. Simpsonin säännössä funktiot ensin interpoloidn 2. steen polynomill khdell peräkkäisellä jkovälillä. Tämän tki jkovälien lukumäärän n täytyy oll prillinen. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 18 / 19
19 Numeerinen integrointi V y y = f (x) Hienommiss kvdrtuureiss (Gussin kvdrtuuri, Guss-Lobtto, jne.) jkovälitkään eivät enää ole yhtä pitkiä, vn jko tihennetään kohdiss, joss funktion heilhtelu on suurt j/ti olln lähellä välin päätepistettä. Ken joutuu numeerisesti integrlin tietokoneell lskemn, tutustukoon sin trkemmin wikipedin j kirjllisuuden vull. b x Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{3,4} Mtemtiikn(ELEC*) j systeeminlyysin Differentili- litos) j integrlilskent 1 Luento : Integroimismenet 19 / 19
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,
Lisätiedota = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1
5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen
LisätiedotMS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli
Lisätiedot6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
LisätiedotNumeerinen integrointi.
Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun
LisätiedotDifferentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset
Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen
Lisätiedot1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
Lisätiedotx k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b
5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),
LisätiedotNumeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29
Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()
LisätiedotSisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20
Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät
LisätiedotRiemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
LisätiedotAnalyysin perusteet kauppatieteilijöille 800118P
Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions
LisätiedotOSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss
LisätiedotMatematiikan tukikurssi. Hannu Kivimäki
Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn
Lisätiedot10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
LisätiedotNumeerinen integrointi
Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)
LisätiedotKäydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
Lisätiedot5 Epäoleellinen integraali
5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss
LisätiedotIntegraalilaskenta. Määrätty integraali
9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),
LisätiedotIntegraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.
LisätiedotSyksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
LisätiedotDifferentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista
Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,
LisätiedotMatematiikan perusteet taloustieteilijöille 2 800118P
Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4
LisätiedotIntegroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto
Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt
Lisätiedotsin θ θ θ r 2 sin 2 θ φ 2 = 0.
Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin
Lisätiedot5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos
LisätiedotIntegroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä
Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,
Lisätiedot2.4 Pienimmän neliösumman menetelmä
2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn
LisätiedotMääritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.
Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio
Lisätiedot.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
LisätiedotRiemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
Lisätiedot4 Pinta-alasovelluksia
Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion
Lisätiedot4. Reaalifunktioiden määrätty integraali
6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
LisätiedotII.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Lisätiedotlim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.
Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös
Lisätiedot521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:
12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:
Lisätiedot4 Taso- ja avaruuskäyrät
P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen
Lisätiedot2 Epäoleellinen integraali
ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli
LisätiedotAnalyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että
Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oeislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
LisätiedotPreliminäärikoe Pitkä Matematiikka 5.2.2013
Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II
MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut
LisätiedotSarjaratkaisun etsiminen Maplella
Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.
Lisätiedot11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedot3 Integraali ja derivaatta
3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,
LisätiedotViikon aiheet. Pinta-ala
info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu
Lisätiedotfunktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.
I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..
LisätiedotMuuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali
Viikon aiheet Integroimisen työkalut: Rationaalifunktioiden jako osamurtoihin Rekursio integraaleissa CDH: Luku 4, Prujut206: Luvut 4-4.2.5, Prujut2008: s. 89-6 Kun integraali h(x) ei näytä alkeisfunktioiden
LisätiedotNeliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen
LisätiedotMatemaattiset menetelmät I. Seppo Hassi
Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotPinta-alan laskeminen
Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin
LisätiedotTehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi
Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
Lisätiedot4 DETERMINANTTI JA KÄÄNTEISMATRIISI
4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.
LisätiedotSeurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotRiemannin integraalista
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin
Lisätiedot2.1 Vaillinaiset yhtälöt
.1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön
LisätiedotMika Hirvensalo. Insinöörimatematiikka B 2014
Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen
LisätiedotKertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
LisätiedotTee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!
MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotDifferentiaali- ja integraalilaskenta 1
(DRAFT) Differentili- j integrlilskent 1 Hrri Vrpnen October 16, 2015 2 Esipuhe Tätä monistett on kirjoitettu Alto-yliopiston mtemtiikn j systeeminlyysin litoksen syksyn 2015 periodin I kursseill MS-A0103
LisätiedotDifferentiaali- ja integraalilaskenta 1
(DRAFT) Differentili- j integrlilskent 1 Hrri Vrpnen October 16, 2015 2 Esipuhe Tätä monistett on kirjoitettu Alto-yliopiston mtemtiikn j systeeminlyysin litoksen syksyn 2015 periodin I kursseill MS-A0103
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotAnalyysin perusteet kauppatieteilijöille P
Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2017 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................
LisätiedotReaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.
Lisätiedot5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)
Lisätiedot763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS
0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotSisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15
Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1
Lisätiedot2.4. Juurifunktio ja -yhtälöt
.. Juurifuktio j -yhtälöt.. Juurifuktio j -yhtälöt Juurifuktio lähtökoht void pitää potessifuktiot: f (x) x, missä o luoollie luku;,,,, j yhdistety potessifuktio määrittelee puolest yhtälö f (x) [g(x)],,,,,...
Lisätiedot( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,
Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Pekk Alestlo Alto-yliopisto.9.26 Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä
LisätiedotPolynomien laskutoimitukset
Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää
LisätiedotMITEN MÄÄRITÄN ASYMPTOOTIT?
MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
Lisätiedot6 Kertausosa. 6 Kertausosa
Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)
LisätiedotParaabelikin on sellainen pistejoukko, joka määritellään urakäsitteen avulla. Paraabelin jokainen piste toteuttaa erään etäisyysehdon.
5. Prbeli Prbelikin on sellinen pistejoukko, jok määritellään urkäsitteen vull. Prbelin jokinen piste toteutt erään etäissehdon. ********************************************** MÄÄRITELMÄ : Prbeli on tson
LisätiedotTEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.
Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.
Lisätiedot