MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
|
|
- Irma Pesonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 1 / 23 7: In
2 Suorkulmion pint-l Integrlilsku voidn tulkit eräiden pint-lojen lskemiseksi. Aluksi trkstelln umpinisten tsokäyrien rjmien lueiden pint-loj j pyritään ntmn pint-llle integrlien knnlt käyttökelpoinen määritelmä. Askel 1: Suorkulmion pint-l on knt korkeus: A = b. b Tässä ei ole vrsinisesti jteltu mitään mtemttisesti, vn on hyväksytty käyttökelpoisen määritelmänä. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 2 / 23 7: In
3 Suunnikkn pint-l Askel 2: Suunnikkn pint-l on knt korkeus: A = h. h Ajteltu, että pint-ln täytyy oll summutuv. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 3 / 23 7: In
4 Kolmion pint-l Askel 3: Kolmion pint-l on A = 1 2 h. h Ajteltu, että yhdenmuotoisten kppleiden pint-lojen tulee oll smoj. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 4 / 23 7: In
5 Monikulmio Monikulmio on tsolue, jot rj umpininen j itseään leikkmton murtoviiv. Murtoviiv koostuu peräkkäisistä jnoist, joille edellisen päätepiste = seurvn lkupiste. Se on umpininen, jos viimeisen päätepiste = ensimmäisen lkupiste. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 5 / 23 7: In
6 Umpinisen monikulmion pint-l Askel 4: Monikulmion pint-l määritellään jkmll monikulmio kolmioihin (= monikulmion kolmiointi) j lskemll kolmioiden pint-lojen summ. Luse: Kolmioiden pint-lojen summ ei riipu kolmioinnin vlinnst. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 6 / 23 7: In
7 Yleisen tsojoukon pint-l likimäärin Askel 5: Muodostetn rjoitetulle tsolueelle D sisämonikulmioit M s j ulkomonikulmioit M u : M s D M u. Monikulmioille pätee A(M s ) A(M u ) seuruksen siitä, että sm on tott sisäkkäisille kolmioille. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 7 / 23 7: In
8 Pint-ln määritelmä Määritelmä Rjoitetull tsojoukoll D on pint-l, jos jokist ε > 0 vst sisämonikulmio M s j ulkomonikulmio M u, joiden pint-lojen erotus on pienempi kuin ε: A(M u ) A(M s ) < ε. Tällöin kikkien lukujen A(M s ) j A(M u ) välissä on yksikäsitteinen reliluku A(D), jot kutsutn joukon D pint-lksi. Yllätys: Vikk joukon D reun olisi jop jtkuv umpininen tsokäyrä, ei sillä in ole pint-l! Reunkäyrä voi oll niin kiemurtelev, että sen pint-l > 0. Ensimmäinen esimerkki [W.F. Osgood, 1903]. Sitten on rjoitettuj joukkoj D, joiden reun ei edes ole jtkuv tsokäyrä. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 8 / 23 7: In
9 Määrätty integrli I Olkoon f : [, b] R sellinen, että f (x) 0 kikill x [, b]. Kuink suuren pint-ln A käyrä y = f (x) rj yhdessä x-kselin knss välillä [, b], joss jtelln < b? y y = f (x) A = b f(x) dx b x Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- jnovember integrlilskent 20, Luento 9 / 23 7: In
10 Määrätty integrli II Kutsumme tätä pint-l A (jos se on ylipäätään olemss) määrätyksi integrliksi A = f (x) dx Määrätty integrli on siis reliluku (ei funktio). Myöhemmin hvitn, että ehto f (x) 0 ei trvit linkn. x-kselin lpuolelle jäävä pint-l voidn ymmärtää negtiivisen. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 10 / 23 7: In
11 Määrätty integrli III Tällä kurssill integrli määritellään kikille ploittin jtkuville funktioille. Ploittinen jtkuvuus trksti hetken päästä. Yleisemmin integrli voidn tutki myös rjoitettujen funktioiden tpuksess, jolloin puhutn Riemnn-integrlist. Ploittin jtkuvt funktiot ovt Riemnn-integroituvi kuten hetken päästä määritellään. Ikävä kyllä, kikki rjoitetut funktiot eivät ole Riemnn-integroituvi. Tämä hnkloitt yleisen tpuksen käsittelyä. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 11 / 23 7: In
12 Jtkuvn funktion integrli I Olkoon f : [, b] R jtkuv, joss < b. Välin [, b] jkoon eli ositukseen = x 0 < x 1 < x 2 < < x n = b liittyy sitä vstv funktion f yläsumm S = j lsumm s = n M k (x k x k 1 ), M k = mx{f (x) x k 1 x x k } k=1 n m k (x k x k 1 ), m k = min{f (x) x k 1 x x k }. k=1 Nämä ovt positiivisen funktion tpuksess erään ulko- j sisämonikulmion (= pylväsdigrmmit) pint-loj. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 12 / 23 7: In
13 Jtkuvn funktion integrli II y y y = f ( x) y = f (x) b x b x Punisten pylväiden pint-lojen summ on (tsvälistä jko vstv) yläsumm S vsemmnpuoleisess kuvss j lsumm s oikenpuoleisess kuvss. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 13 / 23 7: In
14 Ominisuuksi Ain pätee: (i) Kun jkopisteitä lisätään (snotn: jko tihennetään), niin s ksv j S pienenee; (ii) s S, vikk ne lskettisiin eri jkopisteillä. Perustelu: (i) Kuviost (ti muull tvoin) nähdään, miten l- j yläsumm muuttuvt, kun lisätään yksi jkopiste. Piirrä! (ii) Jos ylä- j lsummn lskemiseen käytetään smoj jkopisteitä, niin väite on selvä, kosk m k M k kikill k. Jos jkopisteet eivät ole smt, niin trkstelln tihennettyä jko ottmll mukn molempien jkojen kikki pisteet. Tämän jälkeen väite seur kohdst (i). Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 14 / 23 7: In
15 Integrlin määritelmä Määritelmä Positiivinen funktio f on Riemnn-integroituv välillä [, b], jos jokist ε > 0 vst sellinen jko, joss S s < ε. Funktion f integrli I R on tällöin se yksikäsitteinen luku, jolle s I S kikiss joiss; merkitään f (x) dx = I. Positiivisen funktion tpuksess tämä vst täsmälleen sitä vtimust, että jkoihin liittyvien pylväsdigrmmien vull lsketut ulkoj sisämonikulmioiden pint-lt sdn mielivltisen lähelle toisin, kun jko tihennetään riittävästi. Mikä tulee ongelmksi, jos funktio ei olekn positiivinen? Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 15 / 23 7: In
16 Sopimuksi I Olkoon f : [, b] R funktio, joss < b j f (x) 0. Ljennetn integrlimerkin käyttöä tekemällä seurvt sopimukset: b f (x) dx = 0, f (x) dx = ( f (x)) dx = f (x) dx, f (x) dx. Viimeinen sopimus mhdollist negtiivisten funktioiden integroimisen. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 16 / 23 7: In
17 Sopimuksi II Näiden sopimusten nojll pätee f (x) dx = c f (x) dx + f (x) dx c kikill, b, c järjestyksestä riippumtt Piirrä kuvio!. Lisäksi voimme integroid sekä positiivisi että negtiivisi rvoj svuttvi funktiot määrittelemällä f (x) dx = f + (x) dx + f (x) dx joss f + (x) = mx(f (x), 0) j f (x) = min(f (x), 0). Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 17 / 23 7: In
18 Riemnn-integroituvuus Luse Integrli on määritelty kikille jtkuville funktioille j se voidn lske rj-rvon n f (x) dx = lim f (x k ) x n k=1 käyttämällä tsvälisiä jkopisteitä x k = + k x, joss x = (b )/n on skelpituus j 0 k n. Yleisemmin: Edellisessä summss rvon f (x k ) tilll voi oll mikä thns rvo f (z k ), kun x k 1 z k x k, eikä jon trvitse oll tsvälinen. Aino vtimus: Jkovälien mx-pituus 0, kun n. Tässä tpuksess puhutn integrlin lskemisest Riemnnin summien vull. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 18 / 23 7: In
19 Ploittin jtkuv funktio Määritelmä Funktio f : [, b] R on ploittin jtkuv, jos sillä on vin äärellinen määrä epäjtkuvuuskohti c 1 < c 2 < < c m b, joiss kikiss toispuoliset rj-rvot ovt olemss j äärellisiä (ts. ± ei sllit). Määritelmästä seur, että jokisell yksittäisellä välillä [c k 1, c k ] funktio f voidn muokt jtkuvksi muuttmll päätepistervoiksi ko. toispuoliset rj-rvot. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 19 / 23 7: In
20 Integrlin yleistys Määritelmä Jos f : [, b] R on ploittin jtkuv, niin f (x) dx = m+1 k=1 ck c k 1 f (x) dx, kun käytetään edellisen sivun merkintöjä, c 0 =, c m+1 = b j f tulkitn jtkuvksi jokisell välillä [c k 1, c k ] erikseen. Käytännössä integrlin lskeminen täytyy tehdä usemmss osss yllä olevn kvn tpn myös silloin, kun funktio f on määritelty ploittin joko epäyhtenäisellä integroimislueell ti eri kvoin eri os-lueiss (jtkuvuudest riippumtt). Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 20 / 23 7: In
21 Integrlin ominisuuksi Ploittin jtkuvien funktioiden integrlille pätee Linerisuus: Jos c 1, c 2 R, niin ( c1 f (x) + c 2 g(x) ) dx = c 1 f (x) dx + c 2 g(x) dx. Positiivisuus: Jos h(x) 0 kikill x, niin Seurus: f (x) g(x) f (x) dx Erityisesti: Kosk ±f (x) f (x), niin ± f (x) dx f (x) dx h(x) dx 0. g(x) dx f (x) dx f (x) dx. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 21 / 23 7: In
22 Integrlilskennn välirvoluse Luse Jos f : [, b] R on jtkuv, niin f (x) dx = f (c)(b ) jollkin c [, b], ts. f (c) = 1 f (x) dx = f = funktion f keskirvo välillä [, b]. b Perustelu: Tehdään tulull. Mihin trvitn jtkuvuutt? Riittäisikö ploittinen jtkuvuus? Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 22 / 23 7: In
23 Anlyysin perusluse Luse Anlyysin perusluse: Jos f : [, b] R on jtkuv, niin kikill x ], b[. d dx x f (t) dt = f (x) Perustelu: Tehdään tulull lähtien erotusosmäärästä. Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto, MS-A010{2,3,4,5} Mtemtiikn j (SCI,ELEC*, systeeminlyysin ENG*) litos) Differentili- j November integrlilskent 20, Luento 23 / 23 7: In
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,
Lisätiedota = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1
5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi
LisätiedotIntegraalilaskenta. Määrätty integraali
9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),
LisätiedotKäydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
LisätiedotMS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,
LisätiedotAnalyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että
Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A
Lisätiedot5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos
Lisätiedot5 Epäoleellinen integraali
5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss
Lisätiedot4. Reaalifunktioiden määrätty integraali
6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot
LisätiedotII.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
LisätiedotVille Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,
Lisätiedot3 Integraali ja derivaatta
3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,
LisätiedotKertausta ja täydennystä
LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin
LisätiedotMääritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.
Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio
Lisätiedot1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
LisätiedotRiemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss
LisätiedotIntegraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
Lisätiedot2.4 Pienimmän neliösumman menetelmä
2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn
Lisätiedotx k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b
5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),
Lisätiedoti 2 n 3 ( (n 1)a (i + 1) 3 = 1 +
I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue
LisätiedotRiemannin integraalista
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin
Lisätiedot2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.
2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x
LisätiedotSisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20
Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät
LisätiedotNumeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29
Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()
Lisätiedot11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
LisätiedotRiemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
Lisätiedot10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli
LisätiedotLebesguen integraali - Rieszin määritelmä
Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen
Lisätiedot2 Epäoleellinen integraali
ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli
Lisätiedot7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen
7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn
LisätiedotSARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.
Lisätiedot521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:
12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:
LisätiedotKertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv
Lisätiedot6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
LisätiedotIntegroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä
Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,
LisätiedotTEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.
Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.
LisätiedotDifferentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset
Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen
LisätiedotReaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.
LisätiedotViikon aiheet. Pinta-ala
info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu
LisätiedotKuvausta f sanotaan tällöin isomorfismiksi.
Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,
Lisätiedot4 Pinta-alasovelluksia
Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion
LisätiedotLebesguen integraali
LUKU 3 Lebesguen integrli Seurvss esitettävä määritelmä Lebesguen integrlille ei ole Lebesguen lkuperäinen. Vuoden 1904 luennoissn [23] hän kuitenkin setti tvoitteeksi, että integrlill olisi ominisuus:
LisätiedotVALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen
Lisätiedot4 Taso- ja avaruuskäyrät
P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen
LisätiedotSinilause ja kosinilause
Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,
LisätiedotSyksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
LisätiedotANALYYSI 2. Tero Kilpeläinen
ANALYYSI Tero Kilpeläinen 3 Teksti sisältää muistiinpnoj vuosin j 3 pidetystä kurssist. Tämän pketin trkoitus on tuke omien muistiinpnojen teko, ei korvt niitä. Mtemtiikk oppii prhiten itse kirjoitten
LisätiedotANALYYSI I, kevät 2009
ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................
LisätiedotPertti Koivisto. Analyysi C
Pertti Koivisto Anlyysi C TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 TAMPERE 28 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 JOULUKUU 28 Pertti Koivisto Anlyysi
LisätiedotANALYYSI I, kevät 2009
ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4
LisätiedotMS-A010X Di erentiaali- ja integraalilaskenta Lukujoukot. 1.2 Jonot. 1.2 Perusongelmat. 1.3 Suppeneminen I. 1.2 Jonojen ominaisuuksia
MS-AX Di erentili- j integrlilskent Pekk Alestlo Alto-yliopisto 24..26 Kiitokset Riikk Kortteelle, Jrmo Mliselle j kurssien opiskelijoille pinovirheiden korjuksist. Sisältö Nämä klvot sisältävät otsikoss
LisätiedotSarjat ja integraalit
Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................
LisätiedotNumeerinen integrointi
Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)
LisätiedotSisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15
Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1
LisätiedotNewtonin, Riemannin ja Henstock-Kurzweilin integraalit
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Annik Heinonen Newtonin, Riemnnin j Henstock-Kurzweilin integrlit Informtiotieteiden yksikkö Mtemtiikk Helmikuu 2013 Sisältö 1 Johdnto 1 2 Newtonin integrli 2 2.1
LisätiedotMatematiikan tukikurssi. Hannu Kivimäki
Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn
LisätiedotNumeerinen integrointi.
Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun
LisätiedotHELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn
LisätiedotANALYYSI I, kevät 2009
5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................
LisätiedotJohdatus fraktaaliderivaattoihin ja niiden sovelluksiin
Jodtus frktliderivttoiin j niiden sovelluksiin Hnn Hlinen Mtemtiikn pro grdu Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kesä 4 Tiivistelmä: Hnn Hlinen, Jodtus frktliderivttoiin j niiden sovelluksiin
LisätiedotMäärätty integraali. Markus Helén. Mäntän lukio
Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden
LisätiedotPinta-alan laskeminen
Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin
LisätiedotVEKTOREILLA LASKEMINEN
..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin
LisätiedotMika Hirvensalo. Insinöörimatematiikka B 2014
Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen
LisätiedotVEKTOREILLA LASKEMINEN
3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on
LisätiedotMonikulmion pinta-ala ylioppilaille
Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n
LisätiedotANALYYSIN TEORIA A JA B
ANALYYSIN TEORIA A JA B Kikki luseit ei ole muotoiltu smll tvll kuin luennoill. Ilmoit virheistä yms osoitteeseen mikko.kngsmki@ut. (jos et ole vrm, onko kyseessä virhe, niin ilmoit mieluummin). 1. Yleistä,
LisätiedotAnalyysin perusteet kauppatieteilijöille 800118P
Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................
Lisätiedot2.2 Monotoniset jonot
Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.
LisätiedotDifferentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista
Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II
MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut
LisätiedotPythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause
Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin
LisätiedotRiemann-integraalin ja mittaintegraalin vertailua
Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5
LisätiedotMatemaattiset menetelmät I. Seppo Hassi
Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt
LisätiedotMatematiikan peruskurssi. Seppo Hassi
Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
Lisätiedotlim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.
Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös
LisätiedotSarjojen tasainen suppeneminen
Srjojen tsinen suppeneminen Pro grdu -tutkielm Krist Mikkonen 165274 Itä-Suomen yliopisto Fysiikn j mtemtiikn litos 19. mrrskuut 2013 Sisältö 1 Johdnto 1 2 Lukujonoist j srjoist 2 2.1 Lukujoukoist...........................
LisätiedotPertti Koivisto. Analyysi B
Pertti Koivisto Anlyysi B TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 TAMPERE 8 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 JOULUKUU 8 Pertti Koivisto Anlyysi
LisätiedotOlkoon. M = (Q, Σ, δ, q 0, F)
T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS
0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö
LisätiedotANALYYSI 3. Tero Kilpeläinen
ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.
LisätiedotOlkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään
T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
LisätiedotAnalyysi B. Derivaatta ja integraali. Pertti Koivisto
Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,
LisätiedotIntegraalilaskennasta lukiossa ja lukion oppikirjasarjoissa
Integrlilskennst lukioss j lukion oppikirjsrjoiss Mtemtiikn pro grdu -tutkielm Mikko Huttunen Helsingin yliopisto 14. mliskuut 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Pekk Alestlo Alto-yliopisto.9.26 Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä
LisätiedotMatematiikan perusteet taloustieteilijöille 2 800118P
Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4
LisätiedotSäännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
Lisätiedot1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa
Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oeislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk
LisätiedotMatematiikan tukikurssi
Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt
Lisätiedot