SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3
|
|
- Ada Koskinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3
2 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali bandbass kanoaaloon moduloiu sanomasignaali Kun arkasellaan moduloiujen signaalien spekrejä joka on saau esim. kahden aikasignaalin kerolaskun seurauksena, kuen DSB-modulaaiolla, arviaan seuraavia Fourier-laskennan perussäänöjä: kerolasku aika-alueessa konvoluuio aajuusalueessa konvoluuio aika-alueessa kerolasku aajuusalueessa Konvoluuioinegraali kahdelle signaalille ks. Z&T, s.39 40: τ 2 τ dτ Seuraavilla kalvoilla esimerkkejä konvoluuion sovelamisesa. Mm. suodain laskee ulosignaalin ja impulssivaseen välisen konvoluuion. Lineaarisille järjeselmille sovelleavissa superposiioperiaae mm. Fourieranalyysissä. Lineaarisuua käyeään paljon mallinnusoleuksena luonnonieeissä ja ekniikassa. Epälineaarisuude hankalia ja ei-oivouja, koska aiheuava uusia esim. sekoiajan keskeismodulaaioulokse ja jopa aivan odoamaomia esim. kaaosilmiö, perhosvaikuus ilmiöiä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
3 Konvoluuion laskeminen graafisesi esieynä τ 2 τ dτ Tieoliikenneekniikka I A Kari Kärkkäinen Osa
4 Konvoluuion laskeminen graafisesi esieynä Tieoliikenneekniikka I A Kari Kärkkäinen Osa
5 Sinimuooise signaali kompleksisena osoiinesiyksenä Eulerin kaava: e ± jω 0 cos ω0 ± j sin ω0 Reaaliarvoinen sini- ai kosinisignaali voidaan Eulerin kaavan peruseella ajaella muodosuvan kahden erisuuniin samalla kulmanopeudella ω 0 pyörivien kompleksisen osoiimen vekorisummana ks. 2-osan kalvo 4 ja 3-osan kalvo 6. Analyyisissä 2-puoleisissa spekriesiyksissä esiinyvä posiiivise ja välämäömä negaiivise aajuuspari voidaan ehkä nähdä parhaien ässä valossa. Usein riiää, eä arkasellaan vain posiiivisia aajuuksia s. 1-puoleinen spekri, jolloin 2-puoleisen ampliudispekrin arvo on kerroava kahdella. Sini- ja kosinisignaalin spekri sisälävä diskreei komponeni vain posiiivisella ja negaiivisella kulmaaajuudella. Ampliudispekri samoja, mua vaihespekri eroava vaihe/viiveero näkyy vaihespekrissä; eho on aina viipeesä riippumaon. DSB ja AM-modul. spekrissä näkyy konvoluuio kanoaallon ja sanoman spekrien välillä s. infon spekri siiryy aajuuksille ±ω 0. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
6 Sinimuooise signaali kompleksisena osoiinesiyksenä e ± jω 0 cos ω0 ± j sin ω0 Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3
7 Sinin ja kosinin spekri viivaspekrejä Sini parion funkio Sinimuooisen signaalin keskimääräinen eho ½A 2 Nähdään: Viivaspekrissä vain 2 ermiä muilla periodisilla signaaleilla yleensä määrä. Ero ilmenee vain vaihespekrissä vaihe/viive-ero ei vaikua ehon jakauumiseen aajuusalueessa. Kosini parillinen funkio Tieoliikenneekniikka I A Kari Kärkkäinen Osa
8 Funkion siiro -akselilla Spekrien esiämisessä arviaan usein ns. funkionsiiroominaisuua Huom. kuvissa funkion argumenien merki. Konvoluuio sanomasignaalin spekrin ja kanoaallon spekrin välillä arkoiaa käyännössä kanaaajuisen baseband sanomasignaalin spekrin siirymisä nollaaajuuden ympärisösä posiiiviselle ja negaiiviselle kanoaajuudelle ja ampliudispekrin keromisa luvulla ½. yf 0 Negaiivinen 0 eumerkki Posiiivinen 0 eumerkki yf + 0 f 0 yf- - 0 f Tieoliikenneekniikka I A Kari Kärkkäinen Osa
9 Nyquisin näyeenooeoreema Analogisen ja digiaalisen pulssimodulaaioiden, sekä DSP:n yheydessä operoidaan näyeiseyjen signaalien kanssa. Nyquisin näyeenooeoreeman mukaan on oeava näyeiä vähinään kaksinkeraisa kaisanleveyä vasaavalla nopeudella f s 2W, W informaaion kaisanleveys laskosumisvirheen aliasing välämiseksi palaueaessa signaalia alkuperäiseen analogiseen muooonsa ideaalisella alipääsösuodaamalla. Ideaalisen LPF:n minimikaisanleveys on W. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
10 Laskosumisen aliasing synyminen Alias näyeenoosa johuvaa, suodaus ok Alias LP-suodaimen epäideaalisuudesa johuvaa, näyeisys ok Tieoliikenneekniikka I A Kari Kärkkäinen Osa
11 Spekrin kaisanleveyden määrielmiä Aikarajoieun signaalin kaisanleveys on aina, vaikka suurin osa läheysehosa onkin keskiyny kanoaaloaajuuden lähisölle. Asia hankaloiaa kaisanleveyden määrielyä. Spekrin kaisanleveyden määrielyapoja jakuvalle ai diskreeille spekrille: Huom. sama määrielyperiaaee sopiiva myös viivaspekreille. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
12 Fourier-muunnoksen ominaisuuksia Spekrin laskennassa on usein ärkeää lineaarisuusoleuksen voimassaolo, muuen laskena vaikeuuu oleellisesi Tieoliikenneekniikka I A Kari Kärkkäinen Osa
13 Fourier-muunnoksen ominaisuuksia Tieoliikenneekniikka I A Kari Kärkkäinen Osa
14 Fourier-muunnospareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa
15 Fourier-muunnospareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa
16 Rec- ja Sinc-funkio eri muunnosalueissa Muuamia esimerkkejä spekrien muodosumisesa: Opeus: Signaali ei voi olla samanaikaisesi sekä aikarajoieu eä aajuus- Rajoieu. Pyriäessä äärellisen kaisanleveyden signaaleihin jouduaan käyämään ääreömän kesoisia signaaleja. Vr. Heisenbergin epäarkkuusperiaae fysiikassa, joka ilmaisee, eei hiukkasen paikkaa ja nopeua impulssimomenia voida miaa samanaikaisesi mielivalaisen arkasi, s. v h/2π 2π. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
17 Muuamia Fourier-muunnospareja graafisesi esieynä Esim. AWGN-kohina ACF ja PSD ova Fourier-muunnos pareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa
18 Askelfunkion spekri Tieoliikenneekniikka I A Kari Kärkkäinen Osa
19 Periodisen ja näyeiseyn signaalin spekri Tieoliikenneekniikka I A Kari Kärkkäinen Osa
20 Kerolasku ja konvoluuio spekrin laskennassa Opeus: Aikakakaisun kosinin spekri levenee, eli oheisessa kuvassa impulssifunkio muuuu kapeaksi sinc-funkioksi. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
21 Gibbsin ilmiö Signaalin kakaisun aikaikkunoinnin vaikuus spekriin näkyy ns. Gibbsin oskillaaioilmiönä johuu Fourier-sarjan epäasaisesa konvergenssisa epäjakuvuuskohdassa. Asiaan örmäään mm. signaalinkäsielyssä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
22 Kompleksiarvoinen 3D-spekri sin c100 cos2π θ Spekri DSB-moduloidulle signaalille: Alkuvaihekulma θ kosinin sisällä näkyy vain näiden reunajämien pyörähämisenä oiseen asenoon, s. se vaikuaa vain vaihespekriin, eikä ampliudispekriin. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
23 Ampliudispekri 3D-spekrin iseisarvo Huomaa FFT:n laskennassa kakaisun vuoksi synyvä Gibbsin ilmiö Bamanin korva. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
24 Vaihespekri 3D-spekrin vaihekulma-arvo Tieoliikenneekniikka I A Kari Kärkkäinen Osa
25 KAPEAKAISTAISEN KAISTANPÄÄSTÖ-SIGNAALIN ESITYSTAVAT KOMPLEKSINEN VERHOKÄYRÄ & KANTATAAJUUSMALLI Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3
26 Kapeakaisaisen kaisanpääsösignaalin esiysava Kapeakaisaiselle signaalille BW < 10% kanoaallon keskiaajuudesa, esim. BW< 100 MHz, kun f c 1GHz on olemassa käevä maemaainen esiysapa anal. & digi. modulaaio- ja simulaaioarkaseluissa kosini ja sini signaaliavaruuden kanafunkioina: Re Re Re R Re Θ an j2πfc [ e ], [ + j cos2πf + j sin2πf ] cos2πf R cos R cos 2 Re LP 1 Re [ Θ ], Im R sin[ Θ ] [ 2πf + Θ ] + Im Re C 2 Im C Im LP Im Re + C sin2πf C j R e 1 Re kapeakaisaisa kaisanpääsömoduloiua signaalia kuvaavan kompleksisen verhokäyrän LP kanaaajuinen reaaliosa I-akselin Direc ais, In-phase ais suunaan. Im kapeakaisaisa kaisanpääsömoduloiua signaalia kuvaavan kompleksisen verhokäyrän LP kanaaajuinen imaginääriosa Q-akselin Quadraure ais suunaan. R on kanaaajuisen kompleksisen verhokäyrävekorin iseisarvofunkio ja Θ on vasaava vaihefunkio, joka määriävä jokaisella ajanhekellä moduloidun ampliudi- & vaiheinformaaion arvon I/Q-asossa. Aika-akseli kohisuorassa I/Q-asoa vasaan. Kompleksisa I/Q-asoesiysä käyeään ampliudi- ja vaihemodulaaioiden havainnolliseen esiämiseen informaaion näkyessä kompleksisen verhokäyrän LP omaavana alipääsöluoneisena kanaaajuisena signaalina 3D-käyränä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa Im C, jθ j 2 Vekorin kärki piirää ajan funkiona kanaaajuisen kompleksinen verhokäyräsignaalin LP
27 Kapeakaisaisen kaisanpääsösignaalin esiysava Esim. Simuloinneissa esiinyvä I & Q-kanaaajuus -komponeni, joka kuvaava siiryvää informaaioa kompleksisen verhokäyrän LP Re & Im-osa. R 2 ai + a 2 Q Kanoaalomoduloiu kapeakaisainen kaisanpääsösignaali muodosuu näiden sinimuooisen komponenien summasa. Tieoliikenneekniikka I A Kari Kärkkäinen Osa
28 Tieoliikenneekniikka I A Kari Kärkkäinen Osa Kapeakaisaisen kaisanpääsösignaalin esiysava Kompleksisa verhokäyräesiysä hyödynneään järjeselmäanalyyseissa ja ieokonesimuloinien ns. kanaaajuisessa baseband-mallissa riiää eä näyeiseään kaisanleveyeen eikä kanoaaloaajuueen verrannollisesi. Samaa kapeakaisaisaisen kaisanpääsösignaalien kanaaajuusmallia voidaan sovelaa myös kohinan ns. kapeakaisaiselle kohinamallille. n LP kapeakaisaisen kohinaprosessin alipääsöluoneisen kanaaajuusmallin kompleksinen verhokäyrä. c ja s ova kvadrauurise kohinaprosessi. [ ] [ ] Φ + + Φ Φ Φ + Φ an 2 cos sin cos sin2 cos2 Re R f R n R n R n e R n j n n f n f n e n n c s s c s c j s c LP s c f j LP π π π π Huom! Näiä signaali- ja kohinamalleja arviaan mm. kursseissa: langaon ieoliikenne I-III, ieoliikeneen simuloinni ja yökalu.
29 Kapeakaisaisen kaisanpääösignaalin esiysava Huom! NBNW-signaalissa apahuu saunnaisia ampliudi- ja vaihemuuoksia, koska R ja Φ sokokasisia saunnaismuuujia. Huom. edellisen kalvon kaavoissa oleeu, eä kuvan 5.12 mieliv. alkuvaihe θ 0 Tieoliikenneekniikka I A Kari Kärkkäinen Osa
30 Tieoliikenneekniikka I A Kari Kärkkäinen Osa Kapeakaisaisen kaisanpääösignaalin esiysava Kompleksien alipääsöluoneisen baseband-signaalin LP vase y LP impulssivaseen h LP omaavalle järjeselmälle noudaaa ao. lainalaisuuksia arviaan mm.ieokonesimuloinneissa: [ ] [ ] [ ], 2 Re 0 2 f X f H f Y f X f H f Y h h y h h y j h j h y e h h h j h h j y j y y h y h y LP LP LP I Q Q I Q Q Q I I I Q I Q I LP f j LP Q I LP Q I LP Q I LP LP LP LP π Kaisanpääsösuodaime voidaan siis mallinaa kompleksisina baseband-vasineinaan
SIGNAALITEORIAN KERTAUSTA OSA 2
1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman
LisätiedotYKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
Lisätiedot( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
Lisätiedot( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
LisätiedotS Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
LisätiedotYKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotKYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
LisätiedotEPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)
1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015
LisätiedotSilloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
Lisätiedotx v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
LisätiedotLuento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
LisätiedotLuento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
LisätiedotTietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
LisätiedotSIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
LisätiedotKonvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
LisätiedotTKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
LisätiedotSIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen
LisätiedotW dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Lisätiedota) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
LisätiedotLuento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA
ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään
LisätiedotLUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015
1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotTaustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka
IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotELEC-A7200 Signaalit ja järjestelmät 5 op
Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu
LisätiedotMittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
LisätiedotKULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
LisätiedotBINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
LisätiedotS Signaalit ja järjestelmät (5 op) Prof. Sven-Gustav Häggman
S-7.1110 Signaali ja järjeselmä (5 op) Prof. Sven-Gusav Häggman S-7.1110 Signaali ja järjeselmä (5 op) Sven-Gusav Häggman Sisällyslueelo sivu 1 Johdano 7 Signaali ja signaalien esiäminen 13.1 Signaalien
LisätiedotLuento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
LisätiedotELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija
ELEC-A7 LASKUHARJOIUS Sivu /8 Hyvä opiskelija ässä opeusmoniseessa esieään kurssiin ELEC-A7 liiyviä laskuharjoiusehäviä rakaisuineen. Kaikkia ehäviä ei välämää käsiellä laskuharjoiuksissa, joen voi jouua
LisätiedotLuento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
LisätiedotDiskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Lisätiedota) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
Lisätiedot2. Systeemi- ja signaalimallit
2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia
Lisätiedot12. Luento. Modulaatio
Analoginen modulaaio Digiaalinen modulaaio. Lueno 5..6 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri moduloidun signaalin aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,
LisätiedotKANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT
KANOAALOMODULOIDUN KAISANPÄÄSÖSINAALIN BANDPASS JA KANAAAJUISEN BASEBAND SINAALIN AMPLIUDISPEKRI 536A ieoliienneeniia II Osa 5 Kari Käräinen Sysy 05 EHOIHEYSSPEKRI & KAISANLEVEYS Edellä arasellu modulaaio
LisätiedotMAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
Lisätiedot>LTI-järjestelmä. >vaihespektri. >ryhmäviive
TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,
Lisätiedotf x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
LisätiedotANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA
1 ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Miä oiinoja & lohkoja elevisiojärjeselä sisälää? 521357A Tieoliikenneekniikka I Osa 11 Kari Kärkkäinen Kevä 2015 VIDEOSIGNAALIN VSB-MODULAATIO 2 Analogisen
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
Lisätiedot5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Lisätiedot7. Luento. Luento 7 Modulaatio Oppenheim luku 8 soveltuvin Koherentti ja epäkoherentti analoginen modulaatio
7. Lueno Lueno 7 Modulaaio Oppenheim luku 8 soveluvin Kohereni ja epäkohereni analoginen modulaaio osin Digiaalinen modulaaio Konsillaio (Lueno & ) Modulaaio Modulaaiossa siirreään moduloivan signaalin
Lisätiedotspektri taajuus f c f c W f c f c + W
Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla
LisätiedotTasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN
Lisätiedot12. Luento. Modulaatio
Analoginen modulaaio Digiaalinen modulaaio. Lueno..7 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri kanoaallon aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,
LisätiedotA B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
Lisätiedot2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotOsa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
Lisätiedot1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
LisätiedotKapeakaistainen signaali
Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi
Lisätiedot3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
LisätiedotLuento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
LisätiedotJaksollisen signaalin spektri
Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta
Lisätiedotb) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
LisätiedotTehtävä I. Vaihtoehtotehtävät.
Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus
LisätiedotSATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen
SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.
LisätiedotTietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
LisätiedotSignaaliavaruuden kantoja äärellisessä ajassa a
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden
LisätiedotTiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus
Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen
LisätiedotHuomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
LisätiedotTL5231, Signaaliteoria (S2004) Matlab-harjoituksia
1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista
Lisätiedot1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
LisätiedotMonisilmukkainen vaihtovirtapiiri
Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin
LisätiedotA-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!
MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)
LisätiedotDEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee
LisätiedotSÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
Lisätiedotẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
LisätiedotMittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
LisätiedotDynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
LisätiedotLUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015
1 LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS 51357A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 015 Kantatajuisen järjestelmän lähdön (SNR) D = P T /(N 0 W) käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita
LisätiedotMallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
LisätiedotMONITILAISET DIGITAALISET TIEDONSIIRTOJÄRJESTELMÄT
ONITILAIST DIGITAALIST TIDONSIIRTOJÄRJSTLÄT iä moderneja modulaaioperiaaeia nykyään käyeään? 536A Tieoliikenneekniikka II Osa Kari Kärkkäinen Syksy 05 ONITILAIST TIDONSIIRTONTLÄT SISÄLTÖ -ilaisen modulaaioiden
LisätiedotJLP:n käyttämättömät mahdollisuudet. Juha Lappi
JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
LisätiedotXII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
Lisätiedotu = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
Lisätiedot521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
Lisätiedota) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )
LisätiedotDEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
Lisätiedota) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
LisätiedotKompleksiluvut. JYM, Syksy /99
Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotJuuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotSGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
LisätiedotTfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Lisätiedotjärjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
Lisätiedot