SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3

Koko: px
Aloita esitys sivulta:

Download "SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3"

Transkriptio

1 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3

2 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali bandbass kanoaaloon moduloiu sanomasignaali Kun arkasellaan moduloiujen signaalien spekrejä joka on saau esim. kahden aikasignaalin kerolaskun seurauksena, kuen DSB-modulaaiolla, arviaan seuraavia Fourier-laskennan perussäänöjä: kerolasku aika-alueessa konvoluuio aajuusalueessa konvoluuio aika-alueessa kerolasku aajuusalueessa Konvoluuioinegraali kahdelle signaalille ks. Z&T, s.39 40: τ 2 τ dτ Seuraavilla kalvoilla esimerkkejä konvoluuion sovelamisesa. Mm. suodain laskee ulosignaalin ja impulssivaseen välisen konvoluuion. Lineaarisille järjeselmille sovelleavissa superposiioperiaae mm. Fourieranalyysissä. Lineaarisuua käyeään paljon mallinnusoleuksena luonnonieeissä ja ekniikassa. Epälineaarisuude hankalia ja ei-oivouja, koska aiheuava uusia esim. sekoiajan keskeismodulaaioulokse ja jopa aivan odoamaomia esim. kaaosilmiö, perhosvaikuus ilmiöiä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

3 Konvoluuion laskeminen graafisesi esieynä τ 2 τ dτ Tieoliikenneekniikka I A Kari Kärkkäinen Osa

4 Konvoluuion laskeminen graafisesi esieynä Tieoliikenneekniikka I A Kari Kärkkäinen Osa

5 Sinimuooise signaali kompleksisena osoiinesiyksenä Eulerin kaava: e ± jω 0 cos ω0 ± j sin ω0 Reaaliarvoinen sini- ai kosinisignaali voidaan Eulerin kaavan peruseella ajaella muodosuvan kahden erisuuniin samalla kulmanopeudella ω 0 pyörivien kompleksisen osoiimen vekorisummana ks. 2-osan kalvo 4 ja 3-osan kalvo 6. Analyyisissä 2-puoleisissa spekriesiyksissä esiinyvä posiiivise ja välämäömä negaiivise aajuuspari voidaan ehkä nähdä parhaien ässä valossa. Usein riiää, eä arkasellaan vain posiiivisia aajuuksia s. 1-puoleinen spekri, jolloin 2-puoleisen ampliudispekrin arvo on kerroava kahdella. Sini- ja kosinisignaalin spekri sisälävä diskreei komponeni vain posiiivisella ja negaiivisella kulmaaajuudella. Ampliudispekri samoja, mua vaihespekri eroava vaihe/viiveero näkyy vaihespekrissä; eho on aina viipeesä riippumaon. DSB ja AM-modul. spekrissä näkyy konvoluuio kanoaallon ja sanoman spekrien välillä s. infon spekri siiryy aajuuksille ±ω 0. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

6 Sinimuooise signaali kompleksisena osoiinesiyksenä e ± jω 0 cos ω0 ± j sin ω0 Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3

7 Sinin ja kosinin spekri viivaspekrejä Sini parion funkio Sinimuooisen signaalin keskimääräinen eho ½A 2 Nähdään: Viivaspekrissä vain 2 ermiä muilla periodisilla signaaleilla yleensä määrä. Ero ilmenee vain vaihespekrissä vaihe/viive-ero ei vaikua ehon jakauumiseen aajuusalueessa. Kosini parillinen funkio Tieoliikenneekniikka I A Kari Kärkkäinen Osa

8 Funkion siiro -akselilla Spekrien esiämisessä arviaan usein ns. funkionsiiroominaisuua Huom. kuvissa funkion argumenien merki. Konvoluuio sanomasignaalin spekrin ja kanoaallon spekrin välillä arkoiaa käyännössä kanaaajuisen baseband sanomasignaalin spekrin siirymisä nollaaajuuden ympärisösä posiiiviselle ja negaiiviselle kanoaajuudelle ja ampliudispekrin keromisa luvulla ½. yf 0 Negaiivinen 0 eumerkki Posiiivinen 0 eumerkki yf + 0 f 0 yf- - 0 f Tieoliikenneekniikka I A Kari Kärkkäinen Osa

9 Nyquisin näyeenooeoreema Analogisen ja digiaalisen pulssimodulaaioiden, sekä DSP:n yheydessä operoidaan näyeiseyjen signaalien kanssa. Nyquisin näyeenooeoreeman mukaan on oeava näyeiä vähinään kaksinkeraisa kaisanleveyä vasaavalla nopeudella f s 2W, W informaaion kaisanleveys laskosumisvirheen aliasing välämiseksi palaueaessa signaalia alkuperäiseen analogiseen muooonsa ideaalisella alipääsösuodaamalla. Ideaalisen LPF:n minimikaisanleveys on W. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

10 Laskosumisen aliasing synyminen Alias näyeenoosa johuvaa, suodaus ok Alias LP-suodaimen epäideaalisuudesa johuvaa, näyeisys ok Tieoliikenneekniikka I A Kari Kärkkäinen Osa

11 Spekrin kaisanleveyden määrielmiä Aikarajoieun signaalin kaisanleveys on aina, vaikka suurin osa läheysehosa onkin keskiyny kanoaaloaajuuden lähisölle. Asia hankaloiaa kaisanleveyden määrielyä. Spekrin kaisanleveyden määrielyapoja jakuvalle ai diskreeille spekrille: Huom. sama määrielyperiaaee sopiiva myös viivaspekreille. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

12 Fourier-muunnoksen ominaisuuksia Spekrin laskennassa on usein ärkeää lineaarisuusoleuksen voimassaolo, muuen laskena vaikeuuu oleellisesi Tieoliikenneekniikka I A Kari Kärkkäinen Osa

13 Fourier-muunnoksen ominaisuuksia Tieoliikenneekniikka I A Kari Kärkkäinen Osa

14 Fourier-muunnospareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa

15 Fourier-muunnospareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa

16 Rec- ja Sinc-funkio eri muunnosalueissa Muuamia esimerkkejä spekrien muodosumisesa: Opeus: Signaali ei voi olla samanaikaisesi sekä aikarajoieu eä aajuus- Rajoieu. Pyriäessä äärellisen kaisanleveyden signaaleihin jouduaan käyämään ääreömän kesoisia signaaleja. Vr. Heisenbergin epäarkkuusperiaae fysiikassa, joka ilmaisee, eei hiukkasen paikkaa ja nopeua impulssimomenia voida miaa samanaikaisesi mielivalaisen arkasi, s. v h/2π 2π. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

17 Muuamia Fourier-muunnospareja graafisesi esieynä Esim. AWGN-kohina ACF ja PSD ova Fourier-muunnos pareja Tieoliikenneekniikka I A Kari Kärkkäinen Osa

18 Askelfunkion spekri Tieoliikenneekniikka I A Kari Kärkkäinen Osa

19 Periodisen ja näyeiseyn signaalin spekri Tieoliikenneekniikka I A Kari Kärkkäinen Osa

20 Kerolasku ja konvoluuio spekrin laskennassa Opeus: Aikakakaisun kosinin spekri levenee, eli oheisessa kuvassa impulssifunkio muuuu kapeaksi sinc-funkioksi. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

21 Gibbsin ilmiö Signaalin kakaisun aikaikkunoinnin vaikuus spekriin näkyy ns. Gibbsin oskillaaioilmiönä johuu Fourier-sarjan epäasaisesa konvergenssisa epäjakuvuuskohdassa. Asiaan örmäään mm. signaalinkäsielyssä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

22 Kompleksiarvoinen 3D-spekri sin c100 cos2π θ Spekri DSB-moduloidulle signaalille: Alkuvaihekulma θ kosinin sisällä näkyy vain näiden reunajämien pyörähämisenä oiseen asenoon, s. se vaikuaa vain vaihespekriin, eikä ampliudispekriin. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

23 Ampliudispekri 3D-spekrin iseisarvo Huomaa FFT:n laskennassa kakaisun vuoksi synyvä Gibbsin ilmiö Bamanin korva. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

24 Vaihespekri 3D-spekrin vaihekulma-arvo Tieoliikenneekniikka I A Kari Kärkkäinen Osa

25 KAPEAKAISTAISEN KAISTANPÄÄSTÖ-SIGNAALIN ESITYSTAVAT KOMPLEKSINEN VERHOKÄYRÄ & KANTATAAJUUSMALLI Tieoliikenneekniikka I A Kari Kärkkäinen Osa 3

26 Kapeakaisaisen kaisanpääsösignaalin esiysava Kapeakaisaiselle signaalille BW < 10% kanoaallon keskiaajuudesa, esim. BW< 100 MHz, kun f c 1GHz on olemassa käevä maemaainen esiysapa anal. & digi. modulaaio- ja simulaaioarkaseluissa kosini ja sini signaaliavaruuden kanafunkioina: Re Re Re R Re Θ an j2πfc [ e ], [ + j cos2πf + j sin2πf ] cos2πf R cos R cos 2 Re LP 1 Re [ Θ ], Im R sin[ Θ ] [ 2πf + Θ ] + Im Re C 2 Im C Im LP Im Re + C sin2πf C j R e 1 Re kapeakaisaisa kaisanpääsömoduloiua signaalia kuvaavan kompleksisen verhokäyrän LP kanaaajuinen reaaliosa I-akselin Direc ais, In-phase ais suunaan. Im kapeakaisaisa kaisanpääsömoduloiua signaalia kuvaavan kompleksisen verhokäyrän LP kanaaajuinen imaginääriosa Q-akselin Quadraure ais suunaan. R on kanaaajuisen kompleksisen verhokäyrävekorin iseisarvofunkio ja Θ on vasaava vaihefunkio, joka määriävä jokaisella ajanhekellä moduloidun ampliudi- & vaiheinformaaion arvon I/Q-asossa. Aika-akseli kohisuorassa I/Q-asoa vasaan. Kompleksisa I/Q-asoesiysä käyeään ampliudi- ja vaihemodulaaioiden havainnolliseen esiämiseen informaaion näkyessä kompleksisen verhokäyrän LP omaavana alipääsöluoneisena kanaaajuisena signaalina 3D-käyränä. Tieoliikenneekniikka I A Kari Kärkkäinen Osa Im C, jθ j 2 Vekorin kärki piirää ajan funkiona kanaaajuisen kompleksinen verhokäyräsignaalin LP

27 Kapeakaisaisen kaisanpääsösignaalin esiysava Esim. Simuloinneissa esiinyvä I & Q-kanaaajuus -komponeni, joka kuvaava siiryvää informaaioa kompleksisen verhokäyrän LP Re & Im-osa. R 2 ai + a 2 Q Kanoaalomoduloiu kapeakaisainen kaisanpääsösignaali muodosuu näiden sinimuooisen komponenien summasa. Tieoliikenneekniikka I A Kari Kärkkäinen Osa

28 Tieoliikenneekniikka I A Kari Kärkkäinen Osa Kapeakaisaisen kaisanpääsösignaalin esiysava Kompleksisa verhokäyräesiysä hyödynneään järjeselmäanalyyseissa ja ieokonesimuloinien ns. kanaaajuisessa baseband-mallissa riiää eä näyeiseään kaisanleveyeen eikä kanoaaloaajuueen verrannollisesi. Samaa kapeakaisaisaisen kaisanpääsösignaalien kanaaajuusmallia voidaan sovelaa myös kohinan ns. kapeakaisaiselle kohinamallille. n LP kapeakaisaisen kohinaprosessin alipääsöluoneisen kanaaajuusmallin kompleksinen verhokäyrä. c ja s ova kvadrauurise kohinaprosessi. [ ] [ ] Φ + + Φ Φ Φ + Φ an 2 cos sin cos sin2 cos2 Re R f R n R n R n e R n j n n f n f n e n n c s s c s c j s c LP s c f j LP π π π π Huom! Näiä signaali- ja kohinamalleja arviaan mm. kursseissa: langaon ieoliikenne I-III, ieoliikeneen simuloinni ja yökalu.

29 Kapeakaisaisen kaisanpääösignaalin esiysava Huom! NBNW-signaalissa apahuu saunnaisia ampliudi- ja vaihemuuoksia, koska R ja Φ sokokasisia saunnaismuuujia. Huom. edellisen kalvon kaavoissa oleeu, eä kuvan 5.12 mieliv. alkuvaihe θ 0 Tieoliikenneekniikka I A Kari Kärkkäinen Osa

30 Tieoliikenneekniikka I A Kari Kärkkäinen Osa Kapeakaisaisen kaisanpääösignaalin esiysava Kompleksien alipääsöluoneisen baseband-signaalin LP vase y LP impulssivaseen h LP omaavalle järjeselmälle noudaaa ao. lainalaisuuksia arviaan mm.ieokonesimuloinneissa: [ ] [ ] [ ], 2 Re 0 2 f X f H f Y f X f H f Y h h y h h y j h j h y e h h h j h h j y j y y h y h y LP LP LP I Q Q I Q Q Q I I I Q I Q I LP f j LP Q I LP Q I LP Q I LP LP LP LP π Kaisanpääsösuodaime voidaan siis mallinaa kompleksisina baseband-vasineinaan

SIGNAALITEORIAN KERTAUSTA OSA 2

SIGNAALITEORIAN KERTAUSTA OSA 2 1 SIGNAALITEORIAN KERTAUSTA OSA 2 Miten spektri lasketaan moduloiduille ja näytteistetyille tietoliikennesignaaleille? KONVOLUUTIO JA KERTOLASKU 2 Kantataajuussignaali (baseband) = sanomasignaali ilman

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri. ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKISTODULTIO SSB Tieoliikenneekniikka I 5359 Kari Kärkkäinen Osa 6 0 Yksisivukaisamodulaaion idea DSB:ssa inormaaio on redundanisesi kaheen keraan, s. LSB & USB. Toisen kaisan läheys riiää, olloin

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM)

EPÄLINEAARISET KULMAMODULAATIOT VAIHEMODULAATIO (PM) JA TAAJUUSMODULAATIO (FM) 1 EPÄLINERISET KULMMODULTIOT VIHEMODULTIO PM J TJUUSMODULTIO FM Mien PM a FM eroava oisisaan? Millainen on kapeakaisainen kulmamodulaaori? 521357 Tieoliikenneekniikka I Osa 14 Kari Kärkkäinen Kevä 2015

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos

Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään

Lisätiedot

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015 1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät 5 op

ELEC-A7200 Signaalit ja järjestelmät 5 op Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu

Lisätiedot

Mittaustekniikan perusteet, piirianalyysin kertausta

Mittaustekniikan perusteet, piirianalyysin kertausta Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA 1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

S Signaalit ja järjestelmät (5 op) Prof. Sven-Gustav Häggman

S Signaalit ja järjestelmät (5 op) Prof. Sven-Gustav Häggman S-7.1110 Signaali ja järjeselmä (5 op) Prof. Sven-Gusav Häggman S-7.1110 Signaali ja järjeselmä (5 op) Sven-Gusav Häggman Sisällyslueelo sivu 1 Johdano 7 Signaali ja signaalien esiäminen 13.1 Signaalien

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija

ELEC-A7200 Signaalit ja järjestelmät Laskuharjoitukset. LASKUHARJOITUS 1 Sivu 1/18. Hyvä opiskelija ELEC-A7 LASKUHARJOIUS Sivu /8 Hyvä opiskelija ässä opeusmoniseessa esieään kurssiin ELEC-A7 liiyviä laskuharjoiusehäviä rakaisuineen. Kaikkia ehäviä ei välämää käsiellä laskuharjoiuksissa, joen voi jouua

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön? L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

12. Luento. Modulaatio

12. Luento. Modulaatio Analoginen modulaaio Digiaalinen modulaaio. Lueno 5..6 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri moduloidun signaalin aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,

Lisätiedot

KANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT

KANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT KANOAALOMODULOIDUN KAISANPÄÄSÖSINAALIN BANDPASS JA KANAAAJUISEN BASEBAND SINAALIN AMPLIUDISPEKRI 536A ieoliienneeniia II Osa 5 Kari Käräinen Sysy 05 EHOIHEYSSPEKRI & KAISANLEVEYS Edellä arasellu modulaaio

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

>LTI-järjestelmä. >vaihespektri. >ryhmäviive

>LTI-järjestelmä. >vaihespektri. >ryhmäviive TL53, Signaalioria (J. Laiinn) 9..4 TTESN, TTESN5X, TTESN5Z Väliko, rakaisu Täydnnä ohisn kuvaan > - ai < -mrkiy kohda. Miä arkoiaan idonsiirokanavan kvalisoinnilla? Esiä lausk kvalisaaorin siirofunkioll,

Lisätiedot

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)

f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d) Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)

Lisätiedot

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA

ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA 1 ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Miä oiinoja & lohkoja elevisiojärjeselä sisälää? 521357A Tieoliikenneekniikka I Osa 11 Kari Kärkkäinen Kevä 2015 VIDEOSIGNAALIN VSB-MODULAATIO 2 Analogisen

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

7. Luento. Luento 7 Modulaatio Oppenheim luku 8 soveltuvin Koherentti ja epäkoherentti analoginen modulaatio

7. Luento. Luento 7 Modulaatio Oppenheim luku 8 soveltuvin Koherentti ja epäkoherentti analoginen modulaatio 7. Lueno Lueno 7 Modulaaio Oppenheim luku 8 soveluvin Kohereni ja epäkohereni analoginen modulaaio osin Digiaalinen modulaaio Konsillaio (Lueno & ) Modulaaio Modulaaiossa siirreään moduloivan signaalin

Lisätiedot

spektri taajuus f c f c W f c f c + W

spektri taajuus f c f c W f c f c + W Kaistanpäästösignaalit Monet digitaaliset tiedonsiirtosignaalit ovat keskittyneet jonkin tietyn kantoaaltotaajuuden f c ympäristöön siten, että signaali omaa merkittäviä taajuuskomponetteja vain kaistalla

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN 1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN

Lisätiedot

12. Luento. Modulaatio

12. Luento. Modulaatio Analoginen modulaaio Digiaalinen modulaaio. Lueno..7 Modulaaio Modulaaiossa siirreään moduloivan signaalin spekri kanoaallon aajuusalueelle, joko sien eä spekrin muoo säilyy lineaarisessa modulaaiossa,

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

Kapeakaistainen signaali

Kapeakaistainen signaali Tiedonsiirrossa sellaiset signaalit ovat tyypillisiä, joilla informaatio jakautuu kapealle taajuusalueelle jonkun keskitaajuuden ympäristöön. Tällaisia signaaleja kutustaan kapeakaistaisiksi signaaleiksi

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Jaksollisen signaalin spektri

Jaksollisen signaalin spektri Jaksollisen signaalin spektri LuK-tutkielma Topi Suviaro 2257699 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 215 Sisältö Johdanto 2 1 Jaksollisuudesta 2 2 Spektristä 3 2.1 Symmetrian vaikutuksesta

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

Tehtävä I. Vaihtoehtotehtävät.

Tehtävä I. Vaihtoehtotehtävät. Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen

SATE2140 Dynaaminen kenttäteoria syksy /7 Laskuharjoitus 4 / Sähkömagneettiset aaltojen polarisoituminen SATE14 Dnaainen kenäeoia sks 16 1 /7 Laskuhajoius 4 / Sähköagneeise aalojen polaisoiuinen Tehävä 1. Vapaassa ilassa väähelevän piseläheen aiheuaan palloaallon sähkökenän voiakkuus on A V E, sincos k e.

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Signaaliavaruuden kantoja äärellisessä ajassa a

Signaaliavaruuden kantoja äärellisessä ajassa a ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 3: Kompleksiarvoiset signaalit, taajuus, kantoaaltomodulaatio Olav Tirkkonen, Jari Lietzen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos Signaaliavaruuden

Lisätiedot

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia

TL5231, Signaaliteoria (S2004) Matlab-harjoituksia 1. a) Muodosta Matlab-ohjelmistossa kosinisignaali x(t) = Acos(2πft+θ), jonka amplitudi on 1V, taajuus hertseinä sama kuin ikäsi vuosina (esim. 2 v = 2 Hz) ja vaihekulma +π/2. Piirrä signaali ja tarkista

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat! MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee

Lisätiedot

SÄHKÖMAGNETISMI: kevät 2017

SÄHKÖMAGNETISMI: kevät 2017 SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M

Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015

LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 2015 1 LUKU 7 TÄRKEIMPIEN ASIOIDEN KERTAUS 51357A Tietoliikennetekniikka I Osa 30 Kari Kärkkäinen Kevät 015 Kantatajuisen järjestelmän lähdön (SNR) D = P T /(N 0 W) käytetään referenssinä verrattaessa eri kantoaaltomodulaatioita

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

MONITILAISET DIGITAALISET TIEDONSIIRTOJÄRJESTELMÄT

MONITILAISET DIGITAALISET TIEDONSIIRTOJÄRJESTELMÄT ONITILAIST DIGITAALIST TIDONSIIRTOJÄRJSTLÄT iä moderneja modulaaioperiaaeia nykyään käyeään? 536A Tieoliikenneekniikka II Osa Kari Kärkkäinen Syksy 05 ONITILAIST TIDONSIIRTONTLÄT SISÄLTÖ -ilaisen modulaaioiden

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti

SGN-1200 Signaalinkäsittelyn menetelmät, Tentti SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1)

a) z 1 + z 2, b) z 1 z 2, c) z 1 z 2, d) z 1 z 2 = 4+10i 4 = 10i 5 = 2i. 4 ( 1) Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Osoita, että kompleksilukujen yhteenlasku määriteltynä tasopisteiden kautta koordinaateittain on liitännäinen, so. z + (z + z ) = (z + z )

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).

a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p). LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,

Lisätiedot

Sinin muotoinen signaali

Sinin muotoinen signaali Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

Kompleksiluvut. JYM, Syksy /99

Kompleksiluvut. JYM, Syksy /99 Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-100 Signaalinkäsittelyn menetelmät Välikoe 6.4.010 Sivuilla 1- on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe

SGN-1200 Signaalinkäsittelyn menetelmät Välikoe SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot