2. Systeemi- ja signaalimallit
|
|
- Paavo Ahonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia kuvaaan nuolin u S y u subsysem1 subsysem2 y simulaaiomalli: malli ehkä olemassa vain ieokoneohjelmana joka on ehkä jäsenney maemaaisesa ai lohkokaaviomallisa
2 Sisäänmeno, ulosulo ja häiriö Mallin vakio: syseemiparameri suunnieluparameri Mallin muuuja: ulosulo oupu y=[y 1,..., y p ] T sisäänmeno inpu, ohjaus u=[u 1,...,u m ] T voidaan valia häiriö w=[w 1,...,w r ] T ei voida valia Sisäänmenoja ja häiriöiä kusuaan ulkoisiksi muuujiksi, muia mallin muuujia sisäisiksi Dynaamisessa järjeselmässä y riippuu paisi u:sä ja w:sä myös kaikisa us, s<
3 Inpu-oupu -kuvaus ja ilayhälömalli Yleinen jakuvan ajan inpu-oupu-kuvaus on muooa gy n, y n-1,...,y, u m,...,u=0, missä a viiaa a:neen derivaaaan ja g on jokin epälineaarinen funkio SISO Muunneaan 1. keraluvun differeniaaliyhälösyseemiksi aseamalla x i :=y i, i=1,...,n Saadaan ilayhälömalli x& = y f x, u = h x, u jossa dim x=n, dim u=m, dim y=p x on mallin ila, n on mallin keraluku
4 Tila Aiemmin odeiin, eä syseemin ulosuloon y vaikuava us ja ws, s< Olisi kovin kömpelöä alleaa us ja ws kokonaisuudessaan Syseemin ai mallin ila x on sellainen informaaio, jonka uneminen yhdessä u:n ja w:n kanssa mahdollisaa syseemin ulosulon yτ laskemisen jollekin τ> Käyännössä ilalla on ärkeä merkiys esim. simuloinnissa: se on suoraan kullakin aika-askelella alleeava informaaio u y u x& = f x, u y S inpu-oupu-kuvaus exernal model y = h x, u ilamalli inernal model
5 Esiysen ero Inpu-oupu -kuvaus ei oa kanaa syseemin sisäiseen rakeneeseen Klassisen sääöeorian perusa siirofunkiolla ilmaisun lineaarisen inpu-oupu -kuvauksen analyysi aajuusasossa Tilayhälöesiys moderni lähesymisapa OR:n syny 1950-luvulla mahdollisi mm. ilaakaisinkykennän, opimisäädön, monimuuuujasäädön ja epälineaarisen mallien käsielyn sekä laajensi lineaarisen järjeselmien eoriaa merkiäväsi
6 g lineaarinen kun g. on y:n ja u:n derivaaojen painoeu summa, saadaan y u:n funkiona Laplace-muunnoksella SISO: n n 1 n 2 ans + an 1s an 2s a0 Y s = U s m m 1 b s + b s m Osamäärää kusuaan syseemin siirofunkioksi Gs Toisaala, oimimalla kuen edellä saadaan lineaarinen ilayhälömalli x& = Ax + Bu m 1 y = Cx + Du ässä dim A=nxn, dim B=nxm, dim C=pxn, dim D=pxm
7 Tasapainoilan rakaisu Valiaan u=u 0 vakio; mihin x ja y aseuva? x 0 : fx 0,u 0 =0 yksi, useia ai ei yhään rakaisua x 0,u 0 on asapainopise saionary poin usein oivoavaa saada syseemi asapainoilaan Vasaavasi asapainoilan ulosulo on y 0 =hx 0,u 0 Jos asapainoilan rakaisu on asympooisesi sabiili, y konvergoi y 0 :aan Konvergenssinopeua kuvaa aikavakio usein mielenkiinnon kannala nopea ila voidaan korvaa saaisilla approksimaaioilla Saainen vahvisus = y 0 :n herkkyys muuokselle u 0 :ssa eli g u 0 ; y 0 =hx 0 u 0,u 0 =gu 0
8 Lineaarisen syseemin sabiilisuus Asympooinen sabiilisuus: lokaali, globaali Sabiilisuus Siirofunkion Gs väliämä inpu-oupu -kuvaus on globaalisi asympooisesi sabiili joss nimiäjäpolynomin nollakohda so. siirofunkion nava sijaiseva aidosi kompleksiason vasemmassa puoliskossa kuvaus on sabiili jos jokin nava ova im-akselilla ja ne ova yksinkeraisia Huom. Laplace-muunamalla ilayhälö saadaan Gs=CsI-A -1 B+D eli nava yhyvä A:n ominaisarvoihin
9 Diskreeiaikainen lineaarinen järjeselmä Inpu-oupu -kuvauksen siirofunkioesiys Tilayhälöesiys Asympooinen sabiilisuus: siirofunkion nava A:n ominaisarvo yksikköympyrän sisäpuolella sabiilisuus: napoja yksikköympyrällä 1 k k k k k k Du Cx y Bu Ax x + = + = z U z b z b a z a z a z a z Y m m m m n n n n n n =
10 Sananen p:sä, s:sä, z:sa, q:sa ja q -1 :sä s on Laplace-ason muuuja - p on derivoinioperaaori aikaasossa sfs=l{f }, pf=f Gs on Laplace-ason olio - Gp on operaaoripolynomi Gs operoi Us:ään, Gp u:hen z on z-ason muuuja q on eeenpäinsiiro-operaaori q -1 on aaksepäinsiiro-operaaori aikaasossa z -1 Yz=Z{y k-1 }, qy=y k+1, q -1 y=y k-1 Gz on z-ason olio joka operoi Uz:aan Gq ja Gq -1 ova aikaason operaaoripolynomeja joka operoiva u:hen Huomaa eriyisesi, eä ed.kalvon sabiilisuusulos koskee z:n ai q:n polynomeja usein käyeään myös merkinää G*z -1 ai G*q -1!
11 Linearisoini Tarkasellaan epälineaarisa järjeselmää asapainopiseessä x 0,u 0 sekä poikkeamia x=x-x 0, y=y-y 0 ja u=u-u 0 päee: missä laskeuna x 0,u 0 :ssa ' ' ' ' D u x C y u B x A x d d + = + = u h D x h C u f B x f A = = = = ', ', ', '
12 ...linearisoini Enä jos järjeselmä ei ole asapainoilassa? Myös diskreeiaikainen syseemi voidaan linearisoida samaan apaan, lue app. B Linearisoini soveluu hyvin esim. sääösuunnieluun, koska akaisinkykenä vähenää mallinnusvirheiden vaikuusa Linearisoinnin pohjala voidaan ehdä johopääöksiä vain varovasi
13 Diskreoinnisa.. Tyypillinen ongelma: mikä diskreeiaikainen malli vasaa anneua jakuvan ajan mallia ai päinvasoin mahdollisimman hyvin? y k y u DT
14 ..Diskreoinnisa Malli epälineaarinen => approksimoidaan ilaa :n ympärillä kehieyllä Taylorin polynomilla => Euler, Runge-Kua jne. Malli lineaarinen: oleeaan ohjaus aika-askelella vakioksi/lineaariseksi ja rakaisaan ilayhälö => diskreein mallin syseemi- ja ohjausmariisi jouduaan laskemaan mariisieksponeni ja sen inegraali Harjoiusyö 1 lue kpl 3.9 ja app. A
15 Häiriöiden kuvaus 3 häiriöyyppiä: 1. miaavissa oleva häiriö häiriöä voidaan käsiellään kuin ohjausa esim. aurinkolämmiys: säeilyinensieei ajaellaan häiriöksi 2. ei-miaavissa oleva häiriö, jonka lähde unneaan häiriö voidaan oaa huomioon mallia konsruoiaessa esim. lenokoneen liikeyhälö vaihelu ilmavirauksissa 3. ei-miaavissa oleva häiriö esim. ulosuloon summauuva kohina
16 Signaalien kuvaus aikaasossa... Vaikka häiriö olisi miaavissa, on se pysyävä rekonsruoimaan oleellisila osilaan esim. simuloinia varen Deerminisise häiriömalli: oleeaan eä häiriö w on jonkin prosessin ulosulo: x& w = w = h f w w x x w w, u, u u w on jokin sopiva ohjaus, esim. impulssi δ sopivin syklein saadaan aikaan jakso ulosuloon Eriyisen hyvä lähesymisapa jos häiriön synymekanismi unneaan =>mallinnusongelma! Lineaarisessa apauksessa voidaan kuvaa myös siirofunkion ai operaaoripolynomin avulla w w
17 ... Sokasise malli aikaasossa Tyypillisesi häiriösignaalia ei voida ennusaa äydellisesi signaalin kuvauksessa arviaan sokasinen komponeni Yksinkerainen valina: aseeaan u w =e, missä e on valkoisa kohinaa so. auokorreloimaon saunnaismuuuja: w+d 1 w-t+...+d n w-nt=c 0 e+c 1 e-t+...+c n ent, e ja es riippumaomia kun s=/= yllä T=näyeenooväli 2π/T=näyeenooaajuus, π/t= Nyquisaajuus e:n ei välämää arvise olla normaalijakauunu
18 ...Sokasise malli aikaasossa Edellinen määriely spesifioi {w}:n sokasisena prosessina, ja kulloisekin w:n arvo ova ämän prosessin realisaaio Kyseessä on ARMA-prosessi ulosulo eli siis häiriö on lineaarisesi suodaeua valkoisa kohinaa lähesymisapa unneaan myös kohinanmuooiluna [noise shaping] Prosessin odousarvofunkio on m w = Ew ja kovarianssifunkio R w,s=ew-m w ws-m w s Prosessi on saionaarinen, jos sen ilasollise ominaisuude eivä riipu :sä ässä päee, jos e:n jakauma ei riipu ajasa
19 Signaali aajuusasossa Karakerisoidaan signaaleja niiden aajuussisällön avulla Spekri ehospekri, spekraaliieys: merk. w:n spekriä Φ w ω:llä, missä ω on kulmaaajuus yksikkönä energia/aajuus eho = energian aikajakauma, ehospekri = energian aajuusjakauma 3 määrielmää lue app. C! Signaaleille, joilla on äärellinen energia, spekri määriellään signaalin fourier-muunnoksen modulin neliönä Signaaleille, joilla on ääreön energia, spekri määriellään kakaisulle signaalille, normeeraaan kakaisun piuudella Saionaarisille sokasisille prosesseille spekri määriellään realisaaion spekrin odousarvona:
20 ...Signaali aajuusasossa merk. saionaarisen sokasisen prosessin {wkt} kovarianssifunkioa R w kt=ew+ktw Ny spekri määriellään: w k= Φ ω = T R kt e k= iωkt eli spekri kuvaa prosessin keskimääräisä aajuussisälöä Diskreeiaikaiselle signaalille spekri määriellään vain nollan ja Nyquis-aajuuden välillä syy: laskosuminen w
21 ...Signaali aajuusasossa Risispekri risiehoiheysspekri Φ yu ω: määriellään y:n Fourier-muunnoksen ja u:n Fouriermuunnoksen kompleksikonjugaain ulona saionaarisille sokasisille prosesseille se on risikorrelaaion DFT eli kuvaa keskimääriä kompleksiarvoinen Inuiiivinen ulkina: arkasellaan kaha signaalia y ja u: jos u:ssä on aajuuskomponeni cosω, on y:ssä sama komponeni Φ yu ω keraa suurempana ja vaiheelaan arg Φ yu ω jäljessä
22 Yheys aika-ja aajuusasojen välillä Olk. y=gpu+w, u ja w riippumaomia Fourier-muunneaan: Yω=GiωUω+Wω Koroeaan puoliain neliöön, normeeraaan aikavälin piuudella ja oeaan odousarvo => Φ y ω= Giω 2 Φuω+Φ w ω vasaavasi keromalla puoliain conjuω:llä ja eenemällä samoin saadaan Φ yu ω=giωφuω keroo mien prosessi G vaikuaa u:n aajuussisälöön keroo mien prosessi G liiää y:n ja u:n aajuusominaisuude
23 Diskreeiaikainen syseemi Olk. y=gqu+w, u ja w romia => ja Φ y ω= G T e iωτ 2 Φ u ω+φ w ω Φ yu ω=g T e iωτ Φ u ω Näyeenooväliä T vasaava siirofunkio ARMA-prosessin Cq/Dq spekraaliiheys on näinollen Ce iωτ 2 / De iωτ 2 Φ e ω vasaavasi jakuva aika Φ e ω on valkoiselle kohinalle var e 2 Specral Facorizaion: jos anneu spekri on ω 2 :n raionaalifunkio, voidaan aina löyää siä vasaava sabiili syseemi Gp eräs idenifioinilähesymisapa
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
Luento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
Signaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
Lineaaristen järjestelmien teoriaa
Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä
Dynaamisten systeemien teoriaa. Systeemianalyysilaboratorio II
Dynaamisten systeemien teoriaa Systeemianalyysilaboratorio II 15.11.2017 Vakiot, sisäänmenot, ulostulot ja häiriöt Mallin vakiot Systeemiparametrit annettuja vakioita, joita ei muuteta; esim. painovoiman
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Lineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
Tasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
Tehtävä I. Vaihtoehtotehtävät.
Kem-9.7 Prosessiauomaaion perusee Teni 5.9.5 TÄMÄ PAPERI TÄYTYY EHDOTTOMASTI PALAUTTAA TENTIN MUKANA NIMI: (OS: ) OPINTOKIRJA: VIERAILULUENNOT KUUNNELTU: VALV. LASK: Tehävä I. Vaihoehoehävä. Oikea vasaus
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
Diskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
a. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
järjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
9. Parametriset mallit, estimointi
9. Paramerise malli, esimoini Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin diskreeiaikaisia malleja 3. harjoiusyössä
Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan
87 5. Eliminoinimeneely Tarkaellaan -kokoia vakiokeroimia yeemiä + x a a x a x + a x b() x = = = +. a a x a x a x b () (3) b() x + Derivoimalla enimmäinen komponeni, ijoiamalla jälkimmäien derivaaa iihen
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
ELEC-C1230 Säätötekniikka (5 op)
ELEC-C1230 Sääöekniikka (5 op) Kevä 2016 hps://mycourses.aalo.fi/course/view.php?id=5073 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)
Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
ELEC-C1230 Säätötekniikka (5 op)
ELEC-C1230 Sääöekniikka (5 op) Kevä 2017 hps://mycourses.aalo.fi/course/view.php?id=13390 Luku 1: Esiely, johdano, dynaamise malli ja rakenee, lohkokaavio, säädön periaaee ELEC-C1230 Sääöekniikka (5 op)
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1
KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13
4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt
Mittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
Luento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Luento 7 Järjestelmien ylläpito
Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan
2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3
SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali
Dynaamisten systeemien identifiointi 1/2
Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion
a) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002
Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty
Missä mennään. systeemi. identifiointi. mallikandidaatti. validointi. malli. (fysikaalinen) mallintaminen. mallin mallin käyttötarkoitus, reunaehdot
Missä mennään systeemi mallin mallin käyttötarkoitus, reunaehdot käyttö- (fysikaalinen) mallintaminen luonnonlait yms. yms. identifiointi kokeita kokeita + päättely päättely vertailu mallikandidaatti validointi
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi
Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
a) Esitä piirtämällä oheisen kaksoissymmetrisen ulokepalkkina toimivan kotelopalkin kaksi täysin erityyppistä plastista rajatilamekanismia (2p).
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II: 9.9.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Osa 11. Differen-aaliyhtälöt
Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa
Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa
Työ 2: 1) Sähkönkulutuksen ennustaminen SARIMAX-mallin avulla 2) Sähkön hankinnan optimointi
Ma-2.3132 Syseemianalyysilaboraorio I Työ 2: 1) Sähkönkuluuksen ennusaminen SARIMAX-mallin avulla 2) Sähkön hankinnan opimoini 1 yö 2 Aikasarjamalli erään yriyksen sähkönkuluukselle SARIMAX-malli: kausivaihelu,
1 Excel-sovelluksen ohje
1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen
Parametriset mallit. parametreillä a priori tulkinta & merkitys. parametrit vain laskennan/sovituksen apuvälineitä
Paramerise malli Rakeneellise malli paramereillä a priori ulkina & merkiys Black box-malli parameri vain laskennan/soviuksen apuvälineiä Tarkasellaan pääosin lineaarisia diskreeiaikaisia blackbox-malleja
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!
MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)
Asuntojen huomiointi varallisuusportfolion valinnassa ja hinnoittelussa
TAMPEREEN YLIOPISTO Johamiskorkeakoulu Asunojen huomioini varallisuusporfolion valinnassa ja hinnoielussa Kansanalousiede Pro gradu -ukielma Elokuu 2012 Ohjaaja: Hannu Laurila Tuomo Sola TIIVISTELMÄ Tampereen
Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus
Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen
ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA
ANALOGISEN VÄRITELEVISION RAKENNE JA TOIMINTA Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 8 1 23 Videosignaalin VSB-odulaaio analogisessa TV-järj. Värielevision videosignaalin siirrossa käyeään
ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
Harjoitus 5: Simulink
Harjoitus 5: Simulink Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Simulinkiin Differentiaaliyhtälöiden
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka
IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado
(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa
Takaperäiset stokastiset dierentiaaliyhtälöt, niiden rahoitusteoreettisia sovelluskohteita ja johdatus Itô-analyysiin
Takaperäise sokasise diereniaaliyhälö, niiden rahoiuseoreeisia sovelluskoheia ja johdaus Iô-analyysiin Topias Tolonen 13. joulukuua 217 Pro gradu -ukielma Maemaiikan ja ilasoieeen laios Ohjaaja: Dario
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen
/ VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä
Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu
Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova
Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde
Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden
ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET
TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL
Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä
KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI
Y (z) = z-muunnos on lineaarinen kuten Laplace-muunnoskin
Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.429 Systeemien Identifiointi 3. harjoituksen ratkaisut. Vapaan vasteen löytämiseksi asetetaan ohjaukseksi u(t)
Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla
BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen
joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
Numeeriset menetelmät
Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys
b) Esitä kilpaileva myötöviivamekanismi a-kohdassa esittämällesi mekanismille ja vertaile näillä mekanismeilla määritettyjä kuormitettavuuksia (2p)
LUT / Teräsrakenee/Timo Björk BK80A30: Teräsrakenee II:.5.016 Oheismaeriaalin käyö EI salliua, laskimen käyö on salliua, lausekkeia ehäväosion lopussa Vasaukse laadiaan ehäväpaperille, joka palaueava,
Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa
Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen
ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT
ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina
Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005
Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen
DEE Lineaariset järjestelmät Harjoitus 3, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- ineaarise järjeselmä Harjoius 3, harjoiusenpiäjille arkoieu rakaisuehdoukse Ennen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu Piirianalyysin juuri suorianee
SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTKNIIKKA JA LKTONIIKKA X-2 2017, Kimmo Silvonen Osa II, 25.9.2017 1 Muuosilmiö ja differeniaaliyhälö Tässä luvussa rajoiuaan pääasiassa asajännieläheisiin liiyviin muuosilmiöihin, vaikka samanlainen
YKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
Lectio Praecursoria: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit
: Epälokaali epälineaarinen potentiaaliteoria ja fraktionaaliset integraalioperaattorit Janne Korvenpää Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Lokaali ja lineaarinen:
Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus
Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen