Luento 3. Fourier-sarja
|
|
- Helena Auvinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Fourier muuos Rayleigh eoreema Spekriiheys Lueo Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla jaksoaika? 4..6
2 Fourier-muuos Esieää sigaali Fourier-sarjaa: Raja-arvo k, d, i k = i V() Euler iegral Fourier-muuos Fourier-muuos Kääeismuuos Dirichle ehdo Fourier muuuvalle eergiasigaalille I: Sigaali o iseisesi iegroiuva v () d< II: Sigaali maksimi- ja miimiarvo ova äärellisiä jokaisella äärellisellä aikavälillä ( a, b) sup {(, )} s( ) ( ), i i i s i a i i b + + < < + i III: Sigaali epäjakuvuuskohia o rajallie määrä lim äärellisessä määrässä ε s ( + ε) v ( ε) piseiä välillä (-,)
3 Symmeria omiaisuude Jos v (), V() o hermiiie: oisi saoe Parillie Asia o helppo odeaa: iπ ( ) iπ ( ) = ( ) = ( ) * * iπ iπ V v e d v e d V ( ) = v ( ) e d = v( ) e d = V( ) v v v * () () = () Vasaavasi, jos v() o imagiäärie, V() o aihermiiie: V V * ( ) = ( ) Pario Symmeria omiaisuude arkasellaa apausa, jossa v () Jos v() o parillie v(-)=v() o reaalie. ällöi * V( ) = V ( ) = V( ) eli V() o reaalie ja parillie Jos v() o pario v(-)=-v() o imagiäärie. ällöi * V( ) = V ( ) = V( ) eli V() o imagiäärie ja pario
4 Symmeria omiaisuude arkasellaa apausa v () = ivq(), Im v () = vq() Jos v Q () o parillie v Q (-)=v Q () ( π ) V( ) = i vq ( )cos d o imagiäärie. ällöi V( ) = V( ) eli V() o reaalie ja pario Jos v Q () o pario v Q (-)=-v Q () ( π ) V( ) = vq ( )si d o reaalie. ällöi V( ) = V( ) eli V() o reaalie ja pario { } ( x) cos = cos( x) ( x) si = si( x) Symmeria omiaisuude arkasellaa y apausa yleisä apausa v () Fourier-muuos o lieaarie operaaio, joe Re{v()} Parillie Pario Reaalie Parillie Parillie Pario { ()} = { Re { ()}} + { Im { ()}} F v F v i F v Im{v()} Parillie Pario Imagiaarie Parillie Pario Parillie Re{V()} Parillie Hermiiie Pario Ai-hermiiie Parillie Reaalie Im{V()} Pario Parillie Parillie Imagiaarie Pario Pario Pario Pario
5 Kausaalise sigaali Sigaali o kausaalie, jos v()=, <. Kausaalise sigaali Fourier-muuos Verraaa yksipuolisee Laplace-muuoksee Jos σ= ja ω=π, Laplace-muuoksesa ulee Fourier-muuos Laplace-muuos o olemassa laajemmalle joukolle sigaaleia kui Fourier muuos Esimerkki arkasellaa expoeiaalisa sigaalia v () = e a, Fourier muuos: Dirichle eho I: a a, a v () d= e d= e a =, a < eli Fourier-muuos o olemassa ku a< (myöhemmi osoiauuu, eä myös apaus a= o muueavissa) a iπ F{ v() } = e e d =, a< a+ iπ Laplace muuos: a s a e e d = e d =, Re{} s < a a+ s Laplace muuos löyyy myös apaukselle a>
6 Ampliudi spekriiheys Bode diagrammi Vaihespekriiheys Bode diagrammi: Ampliudi (db) ja vaihe aajuude ukioa l 4..6 Esimerkki: Bode diagrammi Fourier-muuos Ampliudi ja vaihe: V( ) = V( ) e V( ) = iarg { V( )} ( π ) + π arg ( ) arca arca { V } = = ( π ) Im V( ) e { V )} i ( arg Re
7 Bode diagram Bode Diagram Magiude (db) Phase (deg) Frequecy (rad/sec) 3 Rayleigh Eergia eoreema * * Ev = v() v () d = V( ) V ( ) d Spekriiheys * * Ev = v() v () d = v() V ( )exp( iπ ) d d = ( π ) = ( π ) * * v() V ( )exp i d d v()exp i dv ( ) d V( ) * ulkia: V( ) = V( ) V ( ) keroo mie sigaali eergia o jakauuu eri aajuuksille (J/Hz)
8 Pulssi spekriiheys Pulssi s () = Π Fourier muuos S( ) = g( )exp( iπ ) d = exp( iπ ) d. Π () = > = exp iπ exp iπ iπ = π ( exp( iπ ) exp( iπ ) ) ( π ) i si = = sic π ( ) S( ) = sic ( ) sic ( x) = si ( π x) π x Power Specrum o a Pulse log S( ) 5 Pulse = = =3 Specral desiy (db/hz) Frequecy (Hz)
9 Fourier muuokse omiaisuuksia Lieaarisuus (superposiio) { } F av () + a v () = av ( ) + av ( ) Aikasiiro i { ( τ )} = V( ) e F v Aikaskaalaus F{ v( α) } = V α α Kojugaai { } * * F v = V () ( ) Duaalisuus F V () = v( ) { } π τ Derivaaa d F v() ( ) ( ) = i π V d Iegraali τ τ F... v( τ) dτ... dτ = V( ) ( iπ ) Kovoluuio F h( τ) v( τ) dτ = H( ) V( ) Kerolasku { () ()} = ( ) ( ) F hv Hφ V φ dφ Superposiio Fourier muuos o lieaarie operaaori, joe osisa koosuva sigaali voidaa Fourier muuaa osissa { () + ()} = { ()} + { ()} F v u F v F u Esimerkki s() + τ = + τ s () = Π + τ Π τ F Π = sic( ) S( ) = sic( ) + τ sic( τ )
10 Aikasiiro arkasellaa sigaalia s(), joka Fourier muuos o S() Sigaalia viiväseää τ: verra. s() s(-τ) τ Rakaisaa viiväsey sigaali Fourier-muuos iπ ehdää muuuja vaihdos F{ s( τ) } = s( τ) e d ' = τ = ' + τ, d ' = d i π ( ' + τ) iπ τ i π ' = s(') e d' = e s(') e d' S( ) Aikasiirrey sigaali Fourier-muuos: i { τ } = π τ F s( ) e S( ) aajuussiro arkasellaa sigaalia s(), joka Fourier muuos o S() aajuussiiro S(- ) S() S(- ) Kääeismuuos iπ { ( ) } = ( ) F S S e d = iπ i π ' e S e d ( ') ' aajuussiirrey sigaali muuospari: iπ iπ { ( )} = { ( )} = ( ) F S F S e s e { } F s() e = S( ) ehdää muuuja vaihdos ' = = ' +, d ' = d iπ 4..6
11 Lieaarie modulaaio Moduloiu sigaali x() = s()cos ( π c) Voidaa kirjoiaa muooo x () = s () ( e + e ) = se () + se () iπ c iπ c iπ c iπ c Fourier muuos X( ) S( c) S( c) F s() e = S( ) iπ = + + { } Modulaaio siirää sigaali aajuuskaisa c ympärisöö: S() X() - c c 4..6 Kaisaleveys Kaisaleveys B määriää millä aajuusalueella merkiävä osa (esim. 95%) sigaali ehosa/eergiasa o. Kaisaleveyde määriämisessä huomioidaa vai posiiivise aajuude. S() X() 95% B s 95% B x Moduloidu sigaali kaisaleveys o kaksikeraie kaaaajuisee sigaalii ähde: B x =B s 4..6
12 Kaisaleveys Yksikeraie määrielmä o puoleeho (eergia) kaisaleveys. S() max S( ) max S ( b ) b -3 db B s S( b) = b > max S( ) B B s x = b = b b Kaaaajuie sigaali Moduloiu sigaali Kaisaleveys Pulssi puole-eho kaisaleveys S( b) = sic ( b ) =.9 max S( b) sic( b ) = b Bs = b.. Moduloidu pulssi Bx = b aajuuskaisa o käääe verraollie pulssi piuuee sic()
13 Kaisaleveys Pulse db -6 S() /max( S() ) = -8 = = Frequecy (Hz) Aika- ja aajuusskaalaus Aikaskaalaus aajuusskaalaus a F{ s( a) } = S F { S( a) } = s a a a a a odisus { } iπ F s( a) = s( a) e d ' d ' = a =, d = a a sg( a) i π ' F{ s( a) } = s( ') e d a sg( a) { ( )} F s a = S a a Muuuja vaiho Jos sg(a)=- iegroii raja vaihuva, ällöi arviaa kaavaa b a ( xdx ) = ( xdx ) a b
14 Duaalisuus Jos muuospari Fs (()) = S( ) ueaa, päee sigaalille y = S() F S() = s( ) { } odisus ( ) ( ( )) ( ) i π ( ) i π = = FS Se d Se d = S e d = s = s i π' ( ') ' ( ') ( ) S(): kääeismuuokse määrielmä = = Ideaalie alipääsösuodai Ideaalie kaisapääsösuodai joka aajuuskaisa o B S() S( ) =Π B B Π () = > Vasaava aikaaso sigaali Fourier-muuos o F Π = sic ( ) Duaalisuudesa seuraa, eä F { S( ) } = F B Π = Bsic( B ) B B ja koska sic o parillie saadaa s() = Bsic( B)
15 Derivoimiskeio Lausuaa sigaali kääeismuuokse avulla s() = F { s() } = S( ) e i π d Sigaali aikaderivaaa d d = d iπ s() = S( ) e d d d iπ S( ) e d d iπ ( π ) = S( ) i e d d F s() d Muuoskaavaksi saadaa Koska iegraali ei ole muuuja suhee, voidaa derivaaa operaaori viedä iegraali sisälle Derivoidu sigaali Fourier-muuos d F s() = ( i π ) S( ) d arkasellaa sigaalia τ y ( )... s( τ) dτ... dτ = kpl Iegroimiskeio ällöi d s() = y() d Derivoimiskeiosa seuraa d S( ) = F s( ) = i π Y( ) = ( π ) { } ( ) Joe Y( ) = S( ) iπ ( ) Muuoskaavaksi saadaa: F s() i S( ) d τ F... s( τ) dτ... dτ = S( ) ( iπ ) kpl
16 Kolmiopulssi Kolmiopulssi A - ( ) A s () = > Kolmiopulssi aikaderivaaa A d + s () A A = Π Π d - -A Π () = > Kolmiopulssi Fourier muueaa aikaderivaaa d + s () A A = Π Π d F AΠ = Asic( ) i { τ } = π τ F s ( ) e S( ) d F s( ) = Asic( ) e Asic( ) e d = iasic si ( ) ( ) i i s(): Fourier-muuos saadaa y iegroimiskeio avulla τ τ τ τ = kpl d iasic( ) si( ) S( ) = F s( ) = = Asic ( ) π π i d i F... s( ) d... d S( ) ( iπ )
17 Gaussi pulssi Gaussi pulssi s () = Aexp π Rakaisaa derivaaa s() d π s() = Aπ exp π = s() d (*) Gaussi pulssi Derivaaa Fourier-muuos d F s () = ( i π ) S( ) d Fourier-muuokse derivaaa saadaa laskeua käyämällä hyväksi duaalisuua F { S ()} = s( ) d F s() = i π S( ) d d F s( ) = i πs( ) d d ( ) F S( ) = i πs( ) = i πs( ) = iπ Aexp π d (**) s() o parillie
18 Gaussi pulssi arkasellaa lausekkeia d π s() = s() (*) d d F S( ) = ( i π) s( ) (**) d Havaiaa, eä d π d F s () = F s () F = {( i π) s ()} = S( ) d i i d oisaala d F s () = i π S( ) d Joe d S ( ) = ( i π ) S ( ) i d (***) Gaussi pulssi Saaii diereiaali yhälö S(): suhee i d S ( ) = ( i π ) S ( ) d (***) d S = π S d ( ) ( ) ds( ) = π S( ) d l ( ) = π + S C S = π + C = k π ( ) exp( ) exp( ) Iegroidaa molemma puole C=l(k) vakio
19 Gaussi pulssi Vakio k määräyyy Rayleigh eergia ereemasa S( ) d = s( ) d k exp( ) d A exp d ' π = π = ' =, d = d' Muuuja vaiho ' ' exp d k π A exp π = d k = A Gaussi pulssi Gaussi pulssi Fourier-muuos s () = Aexp π S( ) = Aexp( π ( ) ) =. Pulssi muoo säilyy Fourier-muuoksessa s().5 S()
20 Yksikköpulssi vs Gaussi pulssi s().5 S() Kovoluuio iegraali Kovoluuio y () x () = y( τ ) x ( τ) dτ ulkia x() y () x() peilaaa y-akseli suhee ja liueaa y(): yli τ
21 hp:// Kovoluuio iegraali Esimerkki: x() y () x () = muuoi e y () = <
22 Kovoluuio iegraali y () = - < > τ τ τ τ τ y() = e d τ = ( + e ) y() e d τ τ = τ ( ) ( e ) e = + y () x () = y( τ ) x ( τ) dτ.4 Kovoluuio iegraali y()
23 Kovoluuio iegraali arkasellaa kaha eergia sigaalia u() ja h(), joide Fourier-muuokse ova U() ja H(). Sigaalie välie kovoluuio o y(): Sigaali y() Fourier muuos Kerolasku arkasellaa kaha eergia sigaalia u() ja h(), joide Fourier-muuokse ova U() ja H(). Sigaalie ulo y () = uh () () Sigaalie ulo Fourier-muuos: iπ iπφ iπ F { uh () ()} = uhe () () d= U( φ) e dφ he () d H( φ ) Muuos o kovoluuio iegraali u () iπ( φ) = U( φ) h( ) e d dφ = U( φ) H( φ) dφ { } F u() h() = U( φ) H( φ) dφ 3
24 Kakaisu sigaali arkasellaa sigaalia s(), joka Fourier-muuos o S(). Kakaisaa sigaalisa jakso (-/,/). Kakaisu sigaali y () =Π s () Kakaisu sigaali Fourier-muuos ( ) Y( ) = S( φ) sic ( φ) dφ o sigaali Fourier-muuokse ja sic-ukio kovoluuio Kakaisu siisigaali Siimuooie sigaali s () = cos π [, ] ( ) c S( ) Kakaisu sigaali cos( π c ) y () = > Y( )
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Lisätiedot( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
LisätiedotLuento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
Lisätiedot( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
LisätiedotS Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
LisätiedotLuento 4 Fourier muunnos
Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,
LisätiedotJuuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
LisätiedotKonvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
LisätiedotTKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
LisätiedotKULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN
LisätiedotKojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotSilloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
LisätiedotLuento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
LisätiedotLuento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
LisätiedotLuento 7. LTI-järjestelmät
Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =
LisätiedotLUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015
1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie
LisätiedotSIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3
SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali
LisätiedotLuento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )
Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat
Lisätiedot5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
LisätiedotTietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
LisätiedotLuento 11. tietoverkkotekniikan laitos
Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3
Lisätiedotz = Amplitudi = itseisarvo ja vaihe = argumentti (arg). arg Piirretään vielä amplitudi- ja vaihespektri:
Määriä suraavi komplksiluku/siaali ampliudi- a vaiharvo. Piirrä b-kohdassa ampliudi a vaih aauud fukioa ampliudi- a vaihspkri. 6p 8 a z 7, z 8 a z. { } b z cos. Ampliudi isisarvo a vaih arumi ar. a z 7
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
LisätiedotKANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA
KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja
Lisätiedot1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1
KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,
LisätiedotHuomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
LisätiedotKompleksilukujen alkeet
Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi
Lisätiedot2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
Lisätiedotb) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
LisätiedotAluksi.1. Integrointia
TT/TV Iegraalimuuokse Meropolia/. Koivumäki Tässä iedosossa ova kaikki uilla esille ullee ehävä. (Tosi iha kaikkia ehäviä ei välämää ole uilla mey läpi kovi arkasi, jos ollekaa.) Esimmäisellä uilla ollee
LisätiedotLuento 7. Järjestelmien kokoaminen osista
Luento 7 Lineaaristen järjestelmien analyysi Järjestelmä yhdistelmät, takaisinkytkentä Taajuusvaste Stabiilisuus analyysi taajuustasossa 8..6 Järjestelmien kokoaminen osista Lineaaristen järjestelmien
Lisätiedot4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
LisätiedotTasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
LisätiedotDynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
LisätiedotÄlä tee mitään merkintöjä kaavakokoelmaan!
AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()
LisätiedotDiskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
LisätiedotW dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
LisätiedotPuolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017
OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1
LisätiedotLUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN
LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
LisätiedotHarjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Lisätiedot2. Systeemi- ja signaalimallit
2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia
LisätiedotKOHINA KULMAMODULAATIOISSA
OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.
Lisätiedotẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
Lisätiedot9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
Lisätiedota) Ortogonaalinen, koska kantafunktioiden energia 1
S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä
LisätiedotDEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
LisätiedotKYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
LisätiedotELEC-A7200 Signaalit ja järjestelmät 5 op
Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu
LisätiedotDigitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet
LisätiedotS Ä H K Ö - J A T I E T O T E K N I I K A N O S A S T O
S Ä H K Ö J A T I E T O T E K N I I K A N O S A S T O 2.0.2007 Piirieria II (Graafise laskime salliuja). Laske kuvan piirille siirfunki U u (s)/u in (s) ja piirrä nllanapakara. Laske myös Laplacekääneismuunns
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotSignaalit aika- ja taajuustasossa
Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
Lisätiedot6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
Lisätiedot3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
Lisätiedotx v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
LisätiedotLUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
Lisätiedotjoka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
LisätiedotAineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat
Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotMallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
LisätiedotT Signaalinkäsittelyjärjestelmät Kevät 2004
T-6. KJ Esimerkkitehtäviä ivu / 7 Tehtäviä alkae sivulta. Vastauksia alkae sivulta 9. Kaavakokoelma alkae sivulta 7. T-6. igaalikäsittelyjärjestelmät Kevät Esimerkkejä laskutehtävistä Virheistä ja parausehtotuksista
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotLuento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
LisätiedotS Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue
S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet
LisätiedotOsittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Lisätiedot= vakio = λ. V (x) V (0) = V (l) = 0.
6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän
LisätiedotKotitehtävät 1-6: Vastauksia
/V Integraalimuunnokset Metropolia/. Koivumäki Kotitehtävät -6: Vastauksia. Merkitse kompleksitasoon näiden kompleksilukujen sijainti: a = 3 j b = 3 35 (3 kulmassa 35 ) jπ / c = d = 3 e j 9.448 e cos(
LisätiedotX(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,
Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
Lisätiedot5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE
Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa
Lisätiedotf x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
LisätiedotYKSISIVUKAISTAMODULAATIO (SSB)
YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio
Lisätiedot3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
LisätiedotOsa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
Lisätiedot(x) (tasaisesti suppeneva sarja)
6.3 MATEMAATTISET OPERAATIOT SARJOIE Jos srjss o äärellie äärä erejä, void derivoii i iegroii suori huole ereiäi. Ääreöä srj puksess ereiäi operoii o slliu, jos srj suppeee sisesi. Esi. Trksell ääreöä
Lisätiedot3 Derivoituvan funktion ominaisuuksia
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
Lisätiedot8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY
Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora
LisätiedotKompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
LisätiedotRatkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
LisätiedotT Signaalinkäsittelyjärjestelmät Kevät 2005
T-6. KJ Esimerkkitehtäviä ivu / 7 T-6. igaalikäsittelyjärjestelmät Kevät HUOM! Kurssi lueoidaa todeäköisesti viimeistä kertaa keväällä! Kurssi tettejä järjestetää toukokuuhu 6 asti. Korvaava kurssi T-6.XXXX
LisätiedotBINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA
BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka
LisätiedotLineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
Lisätiedotu = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
LisätiedotTietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Lisätiedot