Luento 5. Diskreetti Fourier muunnos (DFT)
|
|
- Julia Lahtinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 6..6 Disreetti Fourier muuos (DFT) Tarastellaa disreettiä sevessiä {v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos (DFT) iπ V( ) = ve = Kääteismuuos (IDFT) iπ v = V( ) e = 6..6
2 Parsevali teoreema v = V( ) = = DFT: omiaisuusia Todistus * * i π v = v v = v V( ) e = = = = = = = iπ * * V( ) v e V( ) V ( ) V( ) = = = = v = V( ) e = iπ DFT: omiaisuusia DFT o jasollie, jaso pituus o : i π ( ) + i i i π π π = = = V( + ) = v e = e v e = v e = V( ) Huomataa, että V() =4 jote V()=V()
3 DFT: omiaisuusia Jos {v } o reaalie, ii ( iπ ( ) ) = = * ( ) = V v e V v Jasollisuudesta seuraa * V = V + * ( ) ( ) V l = V l l =, V( + ) = V( ) * * V = V + = V + + * = V + Re{V()} Im{V()} DFT: omiaisuusia Tarastellaa disreettiä jasollista sevessiä v v v = v v - = - + = Origo siirto D{ m} Todistus F v V( ) e = m iπ iπ D{ m} = m = F v v e ' = m m ' + m ' m m iπ m iπ iπ iπ ve ' ve ' e Ve ( ) ' = m ' = m = = = m ' = m ve ' ' iπ = V ( ) = =3 = = Jasollisuudesta seuraa, että summa miä hyväsä : perättäise äyttee yli ataa sama tulose. =3 = = = =3 =
4 DFT: omiaisuusia Tarastellaa summaa : elemeti yli m i π i π m i π iπ ve = v' e + ve = ve = m = m = = = m iπ iπ ( m) iπ ( m+ ) iπ ( ) = m + m ve v e v e v e iπ ( m) iπ ( m ) iπ ( ) i π ' m m+... ' ' = m = v e + v e + + v e = v e v: jasollisuudesta seuraa v = v v = v + m m Osoittime jasollisuudesta seuraa i ( ) i i i e π ± e π π π = e = e = Origo siirto D { ( )} DFT: omiaisuusia i l F V l = v e π Todistus F V l V l e V e iπ l i π ( ' + l) D { ( )} = ( ) = ( ') = ' = l l i π ' iπ l iπ l V( ') e e ve ' = l = = DFT: jasollisuudesta seuraa, että summa miä hyväsä : perättäise äyttee yli ataa sama tulose
5 DFT Tarastella disreeti pulssi DFT:tä Pulssi (=4) v =, v =, v =, v = 3 v DFT ( ) iπ iπ iπ iπ 4 4 = V = v e = e + e = e + e ( i) ( ) = + V () = V() = i V () = + V(3) = i iπ Disreetti ovoluutio Disreetti jasollie ovoluutio (Circular covolutio) y = h u = hmu m ja se DFT m= { } Y ( ) = F h u = HU ( ) ( ) D Disreetti lieaarie ovoluutio y = h u m m m= Oletetaa, että h =, < > h u =, < > u Kovoluutio pituus tulee olemaa = h + u
6 Disreetti ovoluutio Määritellää asi yhtä pitää sevessiä lisäämällä ollia sevessie perää h =,,... h ha, = = h, h +,..., h + u u =,,... u ua, = = u, u +,..., h + u Jasollie ovoluutio: h+ u y = h u a, m a, m m= ja se DFT: 6..6 Disreetti ovoluutio Tarastellaa sigaaleita (äyteväli T=) {h(t)}={,,} h =3 {u(t)}={,,,} u =4 Augmetoidut sigaalit {h(t)}={,,,,,} h + u -=6 {u(t)}={,,,,,} h + u -=6 Kovoluutio h+ u = a, m a, m m= y h u
7 Esimeri h=[ ]; u=[ ]; ha=[h zeros(,legth(u)-)]; ua=[u zeros(,legth(h)-)]; H=fft(ha); U=fft(ua); Y=H.*U y=ifft(y) plot(:5,y,'o:',:5,ha,'x:',:5,ua,'d:') leged('y','h','u',) y h u TAI y=cov(h,u); opea Fourier-muuos (FFT) Käyttäe DFT: määritelmää =,,,,- harmoise lasemisee tarvitaa omplesia ertolasuoperaatiota ja (-) omplesia yhteelasuoperaatiota V( ) = ve = iπ Jos o suuri, o DFT: lasemie laseallisesti rasasta. DFT: lasemie sisältää redudatteja operaatioita, jote lasetaa sopivasti järjestämällä voidaa lasetauormaa pieetää. Tähä perustuu opea Fourier-muuos (FFT, Fast Fourier Trasform)
8 opea Fourier-muuos (FFT) Määritellää Osoittautuu, että =8 opea Fourier-muuos (FFT) W = e iπ =8 ( ) 5 W 8 Im ( W ) 6 8 ( ) 7 W 8 ( ) 4 W 8 ( ) W 8 Re ( ) 3 W 8 ( ) W 8 ( ) W
9 opea Fourier-muuos (FFT) Operaattori W avulla DFT-voidaa irjoittaa muotoo V( ) = vw = Oletetaa, että o parito ooaisluu ( + ) + = = V( ) = v W + v W Parillie sevessi Parito sevessi opea Fourier-muuos (FFT) yt DFT voidaa irjoittaa muotoo + = = V( ) = v W + W v W (-)/ poit DFT (-)/ poit DFT Jote, voimme rataista pistee DFT: laemalla asi / pistee DFT:tä ja summaamalla tuloset Termi W / tarvitsee lasea vai erra ja sitä voidaa äyttää seä parilliste että parittomie symbolie DFT:ssä. Samalla tavalla / pistee DFT voidaa jaaa edellee ahdesi /4 pistee DFT:si, jota puolestaa voidaa jaaa /8 DFT:si je
10 opea Fourier-muuos (FFT) =8 pistee sevessi =8 pistee DFT V( ) = V ( ) = V ( ) + W V ( ) 8 V ( ) = V ( ) + W V ( ) V( ) = V3( ) + W4 V4 ( ) 4 V( ) = v + W v4 V( ) = v + W v 6 V ( ) = v + W v V3( ) = v + W v opea Fourier-muuos (FFT) Esimmäie vaihe 8 pistee DFT:stä V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v W =,3,... = exp( iπ ) = =,,... Perhosoperaattori (butterfly operator) 6..6
11 opea Fourier-muuos (FFT) Perhosoperaattori avulla V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v opea Fourier-muuos (FFT) Toie vaihe 8 pistee DFT:stä V () = V () + W V () = V () + V () 4 π i = + 4 = + = V () V () W V () V () e V () V () iv () V () = V () + W V () = V () + e V () = V () V () = V () V () iπ 4 Huomataa, että V i () o pistee DFT, jote V i (+)=V i () 3 3 i π = + 4 = + = + V (3) V (3) W V (3) V (3) e V (3) V () iv () Kosa, ii V () = V () + W V () 8 V () = V () W V () 8 V () = V () + W V () 8 V (3) = V () W V ()
12 opea Fourier-muuos (FFT) Toie vaihe 8 pistee DFT:stä V () = V () + W V () 8 V () = V () + W V () 8 V () = V () W V () 8 V (3) = V () W V () opea Fourier-muuos (FFT) Kolmas vaihe 8 pistee DFT:stä V ( ) = V ( ) + W V ( ) 8 V () = V () + W V () 8 V () = V () + W V () 8 V () = V () + W V () 8 V (3) = V (3) + W V (3) 3 8 V (4) = V () W V () 8 V (5) = V () W V () 8 V (6) = V () W V () 8 V (7) = V (3) W V (3)
13 opea Fourier-muuos (FFT) 8 pistee opea Fourier-muuos V () V () V () V (3) V () V () V () V (3) opea Fourier-muuos (FFT) Laseallie omplesisuus: DFT: O( ) 7 FFT: O(log()) 6 5 Complexity 4 3 DFT FFT
14 Fourier-muuose umeerie approsimoiti Fourier-muuos Tarastellaa sigaali, joa o määritelty välille [,T ] (Euler itegral) missä =T /T Fourier-muuosta voidaa siis approsimoida DFT:llä: i ft π iπ V( f) T v( T) e = TVD ( ), f = VD ( ) = v( T) e T = = Fourier-muuose umeerie approsimoiti Poissoi summaaava ˆ( ) ( ) i π ft V f = T v T e = V f = = T Jos aluperäise sigaali sisältää yquisti rajataajutta (/ /T) suurempia taajuusia, tapahtuu äytteeotossa lasostumista. Tämä vääristää approsimoitua spetriä. V( f) B > T ˆ( ) V f B B
15 Iuoiti ja vuotoilmiö Sigaali ataisu v(t) Aluperäie sigaali T Tarasteluväli v(t) Kataistu sigaali T Tarasteluväli DFT-äee ataistu sigaali periodisea. Jos päätepisteide välillä o suuria eroja sytyy äytteistettyy sigaalii oreita taajuusia Iuoiti ja vuotoilmiö Suoraaiteemuotoise aiaiua äyttö aiheuttaa DFT: äemää jasollisee sigaalii epäjatuvuusohtia, joita selittämää Fourier-sarjassa tarvittaisii oreita taajuusia. Suoraaide pulssilla ataistu sigaali FFT voi tästä johtue erota suurestii vastaava jatuva sigaali Fourier-muuosesta. Suoraaidemuotoiste iuoide sijaa, äytetää usei iuoita, jota pieetävät tarasteluväli alu ja loppupää äytteide arvoja
16 Iuoiti ja vuotoilmiö Erilaisia iuoita o määritelty useita:.9.8 Blacma-Harris Hammig Gaussia Ha Hammig iua aia ja taajuustasossa =65;w=hammig();wvtool(w) Time domai 4 Frequecy domai Amplitude Magitude (db) Samples ormalized Frequecy ( π rad/sample)
17 Esimeri Kosiisigaali spetritiheys.5.5 T=.5= s(t) S(f) -.5 Sigal.5 Hammig widow t Frequecy (Hz).5.5 s(t) S(f) t Frequecy (Hz) Iuoiti vähetää spetrie lasottumisesta johtuvaa virhettä Fourier-muuose umeerie approsimoiti Taajuusalue äytteeoto jälee sigaali sisältää taajuusia yquisti rajataajuutee saaa DC-ompoetti yquist taajuus =3 3 4 f / ±f f / f (Hz)
18 Fourier-muuose umeerie approsimoiti Taajuusresoluutio: FFT: lasemat harmoiset taajuudet ovat äytteeottotaajuus Taajuusresoluutio Zero paddig: Lisäämällä ollia sevessi perää saadaa taajuusresoluutiota asvatettua. Tällöi FFT iterpoloi välitaajuusia aluperäise DFT: määrittämie taajuusie välii. Jos lisätää ollaa, ii taajuusresoluutiosi tulee Esimeri
19 Tarastellaa pulssia t vt () = otherwise Valitaa äyteväli T=. Esimeri äytteeottotaajuus f s = Hz ja yquisti rajataajuus f =5 Hz. Taajuusvälisi tulee = äytteellä /*f s =/* Hz= Hz Esimeri FFT löytää vai pulssi DC-ompoeti =5: f =5 Hz V() Taajuusväli = Hz/= Hz
20 Esimeri Lisätää 9 ollaa sevessi perää V() Taajuusväli = Hz/=. Hz Example Taajuude futioa saadaa V() f (Hz)
21 Esimeri Kosa pulssi sisälsi myös yquisti rajataajutta suurempia taajuusompoetteja tapahtuu lasostumista 6 x Error f (Hz) Esimeri tau=; %Pulse width T=.; %Samplig iterval f_s=/t; %Samplig frequecy f_=/*f_s; %yqyist frequecy df=f_s/; %Frequecy spacig =tau/t; %umber of samples v=oes(,); %Sampled sigal V=T*fft(v); %Approximate cotiuous Fourier trasform %Plot spectrum desity figure() plot(:(-),abs(v).^,'*-') xlabel('') ylabel(' V() ^') %Zero paddig z=9; z=zeros(z,); a=+z; va=[v; z];%zero paddig Va=T*fft(va); figure() plot(:(a-),abs(va).^,'*-') xlabel('') ylabel(' V() ^') %Frequecy axis dfa=f_s/a; %frequecy spacig after zero paddig f=-f_:dfa:(f_-dfa); figure(3) plot(f,abs(fftshift(va)).^,'*-') xlabel('f (Hz)') ylabel(' V() ^') %Effect of aliasig figure(4) plot(f,abs(fftshift(va)).^-sic(f').^,'r') xlabel('f (Hz)') ylabel('error')
Luento 5. Diskreetti Fourier muunnos (DFT)
Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 5..7 Disreetti Fourier muuos (DFT) Tarastellaa disreettiäsevessiä{v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos
Luento 5. tietoverkkotekniikan laitos
Lueto 5 Lueto 5 Näytteeotto ja DFT 5. Näytteeotto Nyquisti äytteeottoteoreema Oppeheim 7.,7. Aliasoitumie Oppeheim 7.3 Jatuva aiaise sigaali äsittely disreetissä ajassa Oppeheim 7.4 5. DFT Disreetti F
Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )
Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutitolautauta S tudetexamesämde MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 5.9. HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastauste piirteide ja sisältöje luoehdita ei sido ylioppilastutitolautaua arvostelua.
TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A
TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 9. Lueto: Kaava apasiteetti ja ODM prof. Timo
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
Luento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:
BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()
Luento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
Matlab-tietokoneharjoitus
Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.
Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0
TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
BM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
Luento 9. tietoverkkotekniikan laitos
Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
MAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1
Pitkä matmatiikka YO-ko 4.9.4. a) b) ( )( 3) 6 3 + 6 6 + y + + ( ) y + + 3 + + ( ) TNS y ( ) + 3 tai Paraablit likkaavat pistssä (, 3). c) Mrkitää lukua : llä ( ). + 4 + 8 + 8 8 + ( 8) ( 8) 4 ± 8 ± 6 8
Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:
TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus
Spektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Tecology Laboratory of Telecommuicatios Tecology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 4. Lueto: Kaavaorjaimet I prof. Timo Laaso Vastaaotto
Signaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
Luento 5. tietoverkkotekniikan laitos
Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y
Eksponentti- ja logaritmiyhtälö
Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue
S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet
Digitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I
MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja
Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat
Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
1 PID-taajuusvastesuunnittelun esimerkki
Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )
Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt
SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,
Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on
EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana
1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
Dynaamisen järjestelmän siirtofunktio
Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa
Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.
Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.
RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20
Kiinteätuottoiset arvopaperit
Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:
1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +
1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
Luento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
MS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
Lisää segmenttipuusta
Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko
Laskuharjoitus 4 ( ): Tehtävien vastauksia
TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.
S Piirianalyysi 2 1. Välikoe
S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Taajuus-, Fourier- ja spektraalianalyysi
Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin
Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a
paperi nro 0 a b ± b 2 4ac b b ± b 2 + 4ac c b ± b 4ac d b ± b 2 4ac 2. Ratkaise toisen asteen yhtälö x 2 + 7x 12 = 0. 3. Ratkaise epäyhtälö 3x 2 30x > 0 4. Ratkaise epäyhtälö 5x 2 + 5 < 0 paperi nro 1
2.2 Täydellinen yhtälö. Ratkaisukaava
. Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.
Diskreetit rakenteet
Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja
3. Markovin prosessit ja vahva Markovin ominaisuus
30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin
Epäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri
Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I
MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O
Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö
Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty
Ortogonaalisuus ja projektiot
MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria
i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k
1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot
Funktion raja-arvo 1/6 Sisältö Esimerkki funktion raja-arvosta Lauseke f() = 1 cos määrittelee reaauuttujan reaaliarvoisen funktion f, jonka lähtöjoukko muodostuu nollasta eroavista reaaliluvuista. Periaatteessa
ELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.
Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.
6 Lineaarisen ennustuksen sovelluksia
6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.
Kompleksiluvut signaalin taajuusjakauman arvioinnissa
Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos
Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg
Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou
Luento 4 Fourier muunnos
Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,
Helsinki University of Technology
Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.
811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu
8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5
Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali
Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen
9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen
SIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen