Luento 5. Diskreetti Fourier muunnos (DFT)

Koko: px
Aloita esitys sivulta:

Download "Luento 5. Diskreetti Fourier muunnos (DFT)"

Transkriptio

1 Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 6..6 Disreetti Fourier muuos (DFT) Tarastellaa disreettiä sevessiä {v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos (DFT) iπ V( ) = ve = Kääteismuuos (IDFT) iπ v = V( ) e = 6..6

2 Parsevali teoreema v = V( ) = = DFT: omiaisuusia Todistus * * i π v = v v = v V( ) e = = = = = = = iπ * * V( ) v e V( ) V ( ) V( ) = = = = v = V( ) e = iπ DFT: omiaisuusia DFT o jasollie, jaso pituus o : i π ( ) + i i i π π π = = = V( + ) = v e = e v e = v e = V( ) Huomataa, että V() =4 jote V()=V()

3 DFT: omiaisuusia Jos {v } o reaalie, ii ( iπ ( ) ) = = * ( ) = V v e V v Jasollisuudesta seuraa * V = V + * ( ) ( ) V l = V l l =, V( + ) = V( ) * * V = V + = V + + * = V + Re{V()} Im{V()} DFT: omiaisuusia Tarastellaa disreettiä jasollista sevessiä v v v = v v - = - + = Origo siirto D{ m} Todistus F v V( ) e = m iπ iπ D{ m} = m = F v v e ' = m m ' + m ' m m iπ m iπ iπ iπ ve ' ve ' e Ve ( ) ' = m ' = m = = = m ' = m ve ' ' iπ = V ( ) = =3 = = Jasollisuudesta seuraa, että summa miä hyväsä : perättäise äyttee yli ataa sama tulose. =3 = = = =3 =

4 DFT: omiaisuusia Tarastellaa summaa : elemeti yli m i π i π m i π iπ ve = v' e + ve = ve = m = m = = = m iπ iπ ( m) iπ ( m+ ) iπ ( ) = m + m ve v e v e v e iπ ( m) iπ ( m ) iπ ( ) i π ' m m+... ' ' = m = v e + v e + + v e = v e v: jasollisuudesta seuraa v = v v = v + m m Osoittime jasollisuudesta seuraa i ( ) i i i e π ± e π π π = e = e = Origo siirto D { ( )} DFT: omiaisuusia i l F V l = v e π Todistus F V l V l e V e iπ l i π ( ' + l) D { ( )} = ( ) = ( ') = ' = l l i π ' iπ l iπ l V( ') e e ve ' = l = = DFT: jasollisuudesta seuraa, että summa miä hyväsä : perättäise äyttee yli ataa sama tulose

5 DFT Tarastella disreeti pulssi DFT:tä Pulssi (=4) v =, v =, v =, v = 3 v DFT ( ) iπ iπ iπ iπ 4 4 = V = v e = e + e = e + e ( i) ( ) = + V () = V() = i V () = + V(3) = i iπ Disreetti ovoluutio Disreetti jasollie ovoluutio (Circular covolutio) y = h u = hmu m ja se DFT m= { } Y ( ) = F h u = HU ( ) ( ) D Disreetti lieaarie ovoluutio y = h u m m m= Oletetaa, että h =, < > h u =, < > u Kovoluutio pituus tulee olemaa = h + u

6 Disreetti ovoluutio Määritellää asi yhtä pitää sevessiä lisäämällä ollia sevessie perää h =,,... h ha, = = h, h +,..., h + u u =,,... u ua, = = u, u +,..., h + u Jasollie ovoluutio: h+ u y = h u a, m a, m m= ja se DFT: 6..6 Disreetti ovoluutio Tarastellaa sigaaleita (äyteväli T=) {h(t)}={,,} h =3 {u(t)}={,,,} u =4 Augmetoidut sigaalit {h(t)}={,,,,,} h + u -=6 {u(t)}={,,,,,} h + u -=6 Kovoluutio h+ u = a, m a, m m= y h u

7 Esimeri h=[ ]; u=[ ]; ha=[h zeros(,legth(u)-)]; ua=[u zeros(,legth(h)-)]; H=fft(ha); U=fft(ua); Y=H.*U y=ifft(y) plot(:5,y,'o:',:5,ha,'x:',:5,ua,'d:') leged('y','h','u',) y h u TAI y=cov(h,u); opea Fourier-muuos (FFT) Käyttäe DFT: määritelmää =,,,,- harmoise lasemisee tarvitaa omplesia ertolasuoperaatiota ja (-) omplesia yhteelasuoperaatiota V( ) = ve = iπ Jos o suuri, o DFT: lasemie laseallisesti rasasta. DFT: lasemie sisältää redudatteja operaatioita, jote lasetaa sopivasti järjestämällä voidaa lasetauormaa pieetää. Tähä perustuu opea Fourier-muuos (FFT, Fast Fourier Trasform)

8 opea Fourier-muuos (FFT) Määritellää Osoittautuu, että =8 opea Fourier-muuos (FFT) W = e iπ =8 ( ) 5 W 8 Im ( W ) 6 8 ( ) 7 W 8 ( ) 4 W 8 ( ) W 8 Re ( ) 3 W 8 ( ) W 8 ( ) W

9 opea Fourier-muuos (FFT) Operaattori W avulla DFT-voidaa irjoittaa muotoo V( ) = vw = Oletetaa, että o parito ooaisluu ( + ) + = = V( ) = v W + v W Parillie sevessi Parito sevessi opea Fourier-muuos (FFT) yt DFT voidaa irjoittaa muotoo + = = V( ) = v W + W v W (-)/ poit DFT (-)/ poit DFT Jote, voimme rataista pistee DFT: laemalla asi / pistee DFT:tä ja summaamalla tuloset Termi W / tarvitsee lasea vai erra ja sitä voidaa äyttää seä parilliste että parittomie symbolie DFT:ssä. Samalla tavalla / pistee DFT voidaa jaaa edellee ahdesi /4 pistee DFT:si, jota puolestaa voidaa jaaa /8 DFT:si je

10 opea Fourier-muuos (FFT) =8 pistee sevessi =8 pistee DFT V( ) = V ( ) = V ( ) + W V ( ) 8 V ( ) = V ( ) + W V ( ) V( ) = V3( ) + W4 V4 ( ) 4 V( ) = v + W v4 V( ) = v + W v 6 V ( ) = v + W v V3( ) = v + W v opea Fourier-muuos (FFT) Esimmäie vaihe 8 pistee DFT:stä V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v W =,3,... = exp( iπ ) = =,,... Perhosoperaattori (butterfly operator) 6..6

11 opea Fourier-muuos (FFT) Perhosoperaattori avulla V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v opea Fourier-muuos (FFT) Toie vaihe 8 pistee DFT:stä V () = V () + W V () = V () + V () 4 π i = + 4 = + = V () V () W V () V () e V () V () iv () V () = V () + W V () = V () + e V () = V () V () = V () V () iπ 4 Huomataa, että V i () o pistee DFT, jote V i (+)=V i () 3 3 i π = + 4 = + = + V (3) V (3) W V (3) V (3) e V (3) V () iv () Kosa, ii V () = V () + W V () 8 V () = V () W V () 8 V () = V () + W V () 8 V (3) = V () W V ()

12 opea Fourier-muuos (FFT) Toie vaihe 8 pistee DFT:stä V () = V () + W V () 8 V () = V () + W V () 8 V () = V () W V () 8 V (3) = V () W V () opea Fourier-muuos (FFT) Kolmas vaihe 8 pistee DFT:stä V ( ) = V ( ) + W V ( ) 8 V () = V () + W V () 8 V () = V () + W V () 8 V () = V () + W V () 8 V (3) = V (3) + W V (3) 3 8 V (4) = V () W V () 8 V (5) = V () W V () 8 V (6) = V () W V () 8 V (7) = V (3) W V (3)

13 opea Fourier-muuos (FFT) 8 pistee opea Fourier-muuos V () V () V () V (3) V () V () V () V (3) opea Fourier-muuos (FFT) Laseallie omplesisuus: DFT: O( ) 7 FFT: O(log()) 6 5 Complexity 4 3 DFT FFT

14 Fourier-muuose umeerie approsimoiti Fourier-muuos Tarastellaa sigaali, joa o määritelty välille [,T ] (Euler itegral) missä =T /T Fourier-muuosta voidaa siis approsimoida DFT:llä: i ft π iπ V( f) T v( T) e = TVD ( ), f = VD ( ) = v( T) e T = = Fourier-muuose umeerie approsimoiti Poissoi summaaava ˆ( ) ( ) i π ft V f = T v T e = V f = = T Jos aluperäise sigaali sisältää yquisti rajataajutta (/ /T) suurempia taajuusia, tapahtuu äytteeotossa lasostumista. Tämä vääristää approsimoitua spetriä. V( f) B > T ˆ( ) V f B B

15 Iuoiti ja vuotoilmiö Sigaali ataisu v(t) Aluperäie sigaali T Tarasteluväli v(t) Kataistu sigaali T Tarasteluväli DFT-äee ataistu sigaali periodisea. Jos päätepisteide välillä o suuria eroja sytyy äytteistettyy sigaalii oreita taajuusia Iuoiti ja vuotoilmiö Suoraaiteemuotoise aiaiua äyttö aiheuttaa DFT: äemää jasollisee sigaalii epäjatuvuusohtia, joita selittämää Fourier-sarjassa tarvittaisii oreita taajuusia. Suoraaide pulssilla ataistu sigaali FFT voi tästä johtue erota suurestii vastaava jatuva sigaali Fourier-muuosesta. Suoraaidemuotoiste iuoide sijaa, äytetää usei iuoita, jota pieetävät tarasteluväli alu ja loppupää äytteide arvoja

16 Iuoiti ja vuotoilmiö Erilaisia iuoita o määritelty useita:.9.8 Blacma-Harris Hammig Gaussia Ha Hammig iua aia ja taajuustasossa =65;w=hammig();wvtool(w) Time domai 4 Frequecy domai Amplitude Magitude (db) Samples ormalized Frequecy ( π rad/sample)

17 Esimeri Kosiisigaali spetritiheys.5.5 T=.5= s(t) S(f) -.5 Sigal.5 Hammig widow t Frequecy (Hz).5.5 s(t) S(f) t Frequecy (Hz) Iuoiti vähetää spetrie lasottumisesta johtuvaa virhettä Fourier-muuose umeerie approsimoiti Taajuusalue äytteeoto jälee sigaali sisältää taajuusia yquisti rajataajuutee saaa DC-ompoetti yquist taajuus =3 3 4 f / ±f f / f (Hz)

18 Fourier-muuose umeerie approsimoiti Taajuusresoluutio: FFT: lasemat harmoiset taajuudet ovat äytteeottotaajuus Taajuusresoluutio Zero paddig: Lisäämällä ollia sevessi perää saadaa taajuusresoluutiota asvatettua. Tällöi FFT iterpoloi välitaajuusia aluperäise DFT: määrittämie taajuusie välii. Jos lisätää ollaa, ii taajuusresoluutiosi tulee Esimeri

19 Tarastellaa pulssia t vt () = otherwise Valitaa äyteväli T=. Esimeri äytteeottotaajuus f s = Hz ja yquisti rajataajuus f =5 Hz. Taajuusvälisi tulee = äytteellä /*f s =/* Hz= Hz Esimeri FFT löytää vai pulssi DC-ompoeti =5: f =5 Hz V() Taajuusväli = Hz/= Hz

20 Esimeri Lisätää 9 ollaa sevessi perää V() Taajuusväli = Hz/=. Hz Example Taajuude futioa saadaa V() f (Hz)

21 Esimeri Kosa pulssi sisälsi myös yquisti rajataajutta suurempia taajuusompoetteja tapahtuu lasostumista 6 x Error f (Hz) Esimeri tau=; %Pulse width T=.; %Samplig iterval f_s=/t; %Samplig frequecy f_=/*f_s; %yqyist frequecy df=f_s/; %Frequecy spacig =tau/t; %umber of samples v=oes(,); %Sampled sigal V=T*fft(v); %Approximate cotiuous Fourier trasform %Plot spectrum desity figure() plot(:(-),abs(v).^,'*-') xlabel('') ylabel(' V() ^') %Zero paddig z=9; z=zeros(z,); a=+z; va=[v; z];%zero paddig Va=T*fft(va); figure() plot(:(a-),abs(va).^,'*-') xlabel('') ylabel(' V() ^') %Frequecy axis dfa=f_s/a; %frequecy spacig after zero paddig f=-f_:dfa:(f_-dfa); figure(3) plot(f,abs(fftshift(va)).^,'*-') xlabel('f (Hz)') ylabel(' V() ^') %Effect of aliasig figure(4) plot(f,abs(fftshift(va)).^-sic(f').^,'r') xlabel('f (Hz)') ylabel('error')

Luento 5. Diskreetti Fourier muunnos (DFT)

Luento 5. Diskreetti Fourier muunnos (DFT) Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 5..7 Disreetti Fourier muuos (DFT) Tarastellaa disreettiäsevessiä{v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos

Lisätiedot

Luento 5. tietoverkkotekniikan laitos

Luento 5. tietoverkkotekniikan laitos Lueto 5 Lueto 5 Näytteeotto ja DFT 5. Näytteeotto Nyquisti äytteeottoteoreema Oppeheim 7.,7. Aliasoitumie Oppeheim 7.3 Jatuva aiaise sigaali äsittely disreetissä ajassa Oppeheim 7.4 5. DFT Disreetti F

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

1 Vastaa seuraaviin. b) Taajuusvasteen

1 Vastaa seuraaviin. b) Taajuusvasteen Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutitolautauta S tudetexamesämde MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 5.9. HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastauste piirteide ja sisältöje luoehdita ei sido ylioppilastutitolautaua arvostelua.

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

Helsinki University of Technology Laboratory of Telecommunications Technology

Helsinki University of Technology Laboratory of Telecommunications Technology Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 9. Lueto: Kaava apasiteetti ja ODM prof. Timo

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Luento 8. Suodattimien käyttötarkoitus

Luento 8. Suodattimien käyttötarkoitus Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89. 5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava): TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a

Lisätiedot

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2. Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

BM20A Integraalimuunnokset Harjoitus 8

BM20A Integraalimuunnokset Harjoitus 8 (b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 1

SIGNAALITEORIAN KERTAUSTA 1 SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä

Lisätiedot

Luento 9. tietoverkkotekniikan laitos

Luento 9. tietoverkkotekniikan laitos Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1

= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1 Pitkä matmatiikka YO-ko 4.9.4. a) b) ( )( 3) 6 3 + 6 6 + y + + ( ) y + + 3 + + ( ) TNS y ( ) + 3 tai Paraablit likkaavat pistssä (, 3). c) Mrkitää lukua : llä ( ). + 4 + 8 + 8 8 + ( 8) ( 8) 4 ± 8 ± 6 8

Lisätiedot

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja: TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus

Lisätiedot

Spektri- ja signaalianalysaattorit

Spektri- ja signaalianalysaattorit Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden

Lisätiedot

Tietoliikennesignaalit & spektri

Tietoliikennesignaalit & spektri Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia

Lisätiedot

Helsinki University of Technology Laboratory of Telecommunications Technology

Helsinki University of Technology Laboratory of Telecommunications Technology Helsii Uiversity of Tecology Laboratory of Telecommuicatios Tecology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 4. Lueto: Kaavaorjaimet I prof. Timo Laaso Vastaaotto

Lisätiedot

Signaalit ja järjestelmät aika- ja taajuusalueissa

Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)

Lisätiedot

Luento 5. tietoverkkotekniikan laitos

Luento 5. tietoverkkotekniikan laitos Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue

S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet

Lisätiedot

Digitaalinen signaalinkäsittely Signaalit, jonot

Digitaalinen signaalinkäsittely Signaalit, jonot Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.

IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen. TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df) ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari

Lisätiedot

1 PID-taajuusvastesuunnittelun esimerkki

1 PID-taajuusvastesuunnittelun esimerkki Enso Ikonen, Oulun yliopisto, systeemitekniikan laboratorio 2/23 Säätöjärjestelmien suunnittelu 23 PID-taajuusvastesuunnittelun esimerkki Tehtävänä on suunnitella säätö prosessille ( ) = = ( +)( 2 + )

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

1 Olkoon suodattimen vaatimusmäärittely seuraava:

1 Olkoon suodattimen vaatimusmäärittely seuraava: Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus

Lisätiedot

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Dynaamisen järjestelmän siirtofunktio

Dynaamisen järjestelmän siirtofunktio Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

Kiinteätuottoiset arvopaperit

Kiinteätuottoiset arvopaperit Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät

Lisätiedot

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille:

1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: 1. Määritä pienin näytelauseen ehdon mukainen näytetaajuus taajuus seuraaville signaaleille: a) x 1 (t) = cos(πt) + sin(6πt) + 1cos(1πt) ja b) x (t) = cos(1πt)cos(πt). a) x 1 (t) = cos(πt) + sin(6πt) +

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

MS-A0004 - Matriisilaskenta Laskuharjoitus 3

MS-A0004 - Matriisilaskenta Laskuharjoitus 3 MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

Laskuharjoitus 4 ( ): Tehtävien vastauksia

Laskuharjoitus 4 ( ): Tehtävien vastauksia TT12S1E Tietoliikenteen perusteet Metropolia/A. Koivumäki Laskuharjoitus 4 (2.10.2013): Tehtävien vastauksia 1. Tutkitaan signaalista näytteenotolla muodostettua PAM (Pulse Amplitude Modulation) -signaalia.

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe 9.3.007 ae tehtävät eri paperille uin tehtävät 3 5. Muita irjoittaa joaieen paperiin elväti nimi, opielijanumero, urin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Muita

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

Taajuus-, Fourier- ja spektraalianalyysi

Taajuus-, Fourier- ja spektraalianalyysi Taajuus-, Fourier- ja spektraalianalyysi Impulssi- ja askelvastetekniikat sekä korrelaatioanalyysi tähtäävät impulssivasteen mallintamiseen aikataso Taajuus- Fourier- ja spektraalianalyysi tähtäävät systeemin

Lisätiedot

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a paperi nro 0 a b ± b 2 4ac b b ± b 2 + 4ac c b ± b 4ac d b ± b 2 4ac 2. Ratkaise toisen asteen yhtälö x 2 + 7x 12 = 0. 3. Ratkaise epäyhtälö 3x 2 30x > 0 4. Ratkaise epäyhtälö 5x 2 + 5 < 0 paperi nro 1

Lisätiedot

2.2 Täydellinen yhtälö. Ratkaisukaava

2.2 Täydellinen yhtälö. Ratkaisukaava . Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri

Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 4.1 Fourier-sarja 4.2 Viivaspektri, tehospektri Luento 4 Luento 4 Jaksollisten signaalien Fourier-sarjaesitys 9 Oppenheim 3.3, 3.4 4.1 Fourier-sarja Kompleksi F-sarja F-sinisarja Sinc-funktio 4. Viivaspektri, tehospektri Viivaspektri Parsevalin teoreema

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O

Lisätiedot

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty

Lisätiedot

Ortogonaalisuus ja projektiot

Ortogonaalisuus ja projektiot MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria

Lisätiedot

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje

Lisätiedot

Luku 2. Jatkuvuus ja kompaktisuus

Luku 2. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot Funktion raja-arvo 1/6 Sisältö Esimerkki funktion raja-arvosta Lauseke f() = 1 cos määrittelee reaauuttujan reaaliarvoisen funktion f, jonka lähtöjoukko muodostuu nollasta eroavista reaaliluvuista. Periaatteessa

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.

Lisätiedot

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008

Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008 Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

Kompleksiluvut signaalin taajuusjakauman arvioinnissa

Kompleksiluvut signaalin taajuusjakauman arvioinnissa Kompleksiluvut signaalin taajuusjakauman arvioinnissa Vierailuluento IMA-kurssilla Heikki Huttunen Lehtori, TkT Signaalinkäsittely, TTY heikki.huttunen@tut.fi Department of Signal Processing Fourier-muunnos

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu

811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu 8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

SIGNAALITEORIAN KERTAUSTA OSA 1

SIGNAALITEORIAN KERTAUSTA OSA 1 1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen

Lisätiedot