Helsinki University of Technology Laboratory of Telecommunications Technology
|
|
- Pauliina Auvinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy Lueto: Kaava apasiteetti ja ODM prof. Timo Laaso Vastaaotto torstaisi lo - Huoe, puh Sähöposti: timo.laaso@hut.fi otaatiosta Meritää ei-egatiivise reaaliarvoise futio aritmeettista esiarvoa: f f ( x) dx (. ), 3 missä itseisarvo o jouo ooaismitta (yl. itegroitiväli pituus). Vastaavasti määritellää geometrie esiarvo: f exp log e[ f ( x) ] dx (. ), 4 Voidaa osoittaa, että aia pätee f f (. 7 ),,..998 Teleteiia laboratorio Sivu ISI ja aava apasiteetti (LM.5) iaaa todettii jatuva-aiaise aistarajoitetu aussi aava apasiteetisi C Wlog ( + SR) bit/s missä W o (ysipuolie) aistaleveys ja SR o esimääräise sigaaliteho ja ohiateho suhde. Tulos pätee uitei vai olettae, että ohia o taajuussisällöltää valoista (aistalla W) aava ei aiheuta taajuusseletiivistä vaimeusta (josta seuraa ISIä!) Seuraavasi tarastellaa yleistä lieaarista aavaa värillisessä aussi ohiassa. Tämä tulos o täreä, sillä se ertoo rajat adaptiiviste orjaimie suoritusyvylle Teleteiia laboratorio Sivu 3 Vedeaatoteoreema (LM.5.) Tarastellaa Kuva -9 lieaarista jatuva-aiaista aavamallia: x(t) H(jπf) Otetaa aavasta apea taajuussiivu f taajuudelta f. Meritää: S x (jπ f ) sigaali tehospetri taajuudella f..998 Teleteiia laboratorio Sivu 4 Σ (t) S (jπ f ) ohia tehospetri taajuudella f H(jπ f ) aava vaste taajuudella f y(t)
2 ...Vedeaatoteoreema Oletetaa lisäsi että ooaisteho P s o rajoitettu. Lähetyssigaali x(t) spetri S x (jπ f ) halutaa valita ii että saavutetaa masimiapasiteetti. Kosa apea taajuussiivu voidaa olettaa valoise aussi ohia aavasi, siivu apasiteetisi saadaa Sx ( j f ) H( j f ) f C( j f ) f log π π π + S ( jπf ) f Sx ( jπf) H( jπf) f log + ( 6. ) S ( jπf)..998 Teleteiia laboratorio Sivu 5...Vedeaatoteoreema Raja-arvoprosessilla ja itegroimalla oo taajuusaluee yli saadaa ooaisapasiteetti: Sx ( jπf ) H( jπf ) C log + df S ( jπf ) Sx H log + df ( 7. ) S Määritetää yt optimaalie sigaali tehospetri site että apasiteetti masimoituu. Kooaisteho o rajoitettu (ja positiivie!): Ps Sxdf, Sx > ( 8. )..998 Teleteiia laboratorio Sivu Vedeaatoteoreema Rajoitettu optimoitiprobleema voidaa muotoilla Lagrage ertoja avulla seuraavasti: Masimoidaa futio ( ) gs ( x, λ) log + Sx H / S df+ λ Ps Sdf x log + S H / S S df + λp ( 9. ) [ ( ) λ ] x x s Optimi löytyy derivaattoje ollaohdasta: g S l + S H / S H S x x g Ps Sxdf λ λ df..998 Teleteiia laboratorio Sivu 7...Vedeaatoteoreema Rataisu saadaa muotoo S L, f Sx H, muutoi (. ) missä L /lλ (irjassa paiovirhe!) valitaa ooaisteho P s muaa ja o se taajuusalue jossa saatu S x o positiivie. Tätä tulosta havaiollistaa Kuva -: rea P s S ( jπf ) H( jπf ) f..998 Teleteiia laboratorio Sivu 8 L 4
3 ...Vedeaatoteoreema Kuvassa o esitetty aava amplitudivasteella ormalisoitu ohia tehospetri Kuvasta ähdää että lähetystehoa aattaa äyttää eite taajuusilla joissa ohiatehotiheys o piei aava vaste o suuri (piei vaimeus) Kooaisteho saadaa itegroimalla L: ja ormalisoidu spetri välie alue: S P S df L H df s x Kapasiteetti ja esiarvot (LM.5.3) Edellä johdetuissa aavoissa jäi rataisematta Lagrage ertoja λ (tai siitä riippuva parametri L) jota riippuvat ooaistehosta. Se rataistaa seuraavasi. äi apasiteetti saadaa pelästää aavaparametreista riippuvaa muotoo. Kaavasta (.) saadaa itegroimalla Ps S Sdf L H df x S L S / H ( 9. ) x L S / H S ( 9. ') x..998 Teleteiia laboratorio Sivu Teleteiia laboratorio Sivu 5...Kapasiteetti ja esiarvot Sijoittamalla (.9) ap. lauseeesee (.9) saadaa S H C + L log df H S LH log df ( 3. ) S ja edellee äyttämällä geometrise esiarvo omiaisuutta log H log ( Hdf ) ( 5. )..998 Teleteiia laboratorio Sivu...Kapasiteetti ja esiarvot Saadaa LH L C log log S S H / Kaavasta (.9 ) saadaa L ja sijoitetaa: Ps / + S / H C log S / H..998 Teleteiia laboratorio Sivu ( 3. ) bit / s ( 3. ) Tämä o yleie lieaarise aava apasiteetti joa sisältää siis myös ISI vaiutuse. Se ertoo, mihi asti adaptiivisilla orjaimilla, aavaoodausella yms. osteilla voidaa aava apasiteettia oreitaa ostaa. 6
4 Esimeri -6 Ku ohia S o valoista, apasiteetisi saadaa missä SR + H C log bit / s (.33) H ( ) SR P / S Edellee, jos aava o H, aava redusoituu Shaoi perusmuotoo SR C + log Wlog( + SR) bit / s missä W o asipuolie aistaleveys Teleteiia laboratorio Sivu 3 Esimeri: IR- ja IIR-aava apasiteetti. Tarastellaa. astee disreettiä aavamallia joa sisältää joo yhde olla tai ava joa säde o c.99. Vastaava aava apasiteetti eri sigaaliohiasuhteilla (valoista aussi ohiaa) äyy Kuvissa -4 ja -5. Miltäs äyttää? Mistä erot johtuvat? Capacity 5 Ideal ISI Capacity SR (db) SR (db) Kuva -4: IR-aava Kuva -5: IIR-aava..998 Teleteiia laboratorio Sivu 4 5 Ideal ISI 7 ODM-järjestelmät Ysi tapa äyttää tehoaasti lieaarista aavaa o s. ODM-teiia (Orthogoal requecy Divisio Multiplex) joa o moiatoaaltojärjestelmä. Seuraavassa johdetaa esi yleie orrelaattorivastaaotiraee ortogoaalisille moipulssijärjestelmille ja sitte tarastellaa ODM: toteutusta erioistapausea. Sovitettu suodi ja orrelaattori Vastaaottosuotime ja äytteeoto lähtösigaali: q y( τ) f ( t τ) dτ y( τ) f ( τ) dτ ( 69. ) t Ku vastaaottosuodi o sovitettu, f(t) h(-t), saadaa q y( τ) h( τ) dτ joa voidaa toteuttaa orrelaatioraeteella. Tätä orrelaatiovastaaottime ideaa voidaa soveltaa moissa äytäö järjestelmissä jota perustuvat usea lähetyspulssi äyttöö (mm. hajaspetri- ja moiatoaaltojärjestelmät) Teleteiia laboratorio Sivu Teleteiia laboratorio Sivu 6 8
5 Ortogoaalie moipulssimodulaatio Pulssiamplitudimodulaatiossa symbolit errotaa yhdellä valitulla pulssimuodolla g(t) ja lähetetää aavaa ysi errallaa: st () agt ( T) (. 6) Tämä voidaa yleistää tapausee jossa utai symbolia vastaa oma pulssimuoto, g (t),,,.., -:...Ortogoaalie moipulssimodulaatio Jotta pulssit ovat erotettavissa vastaaottimessa, vaaditaa ortogoaalisuus (+ ormalisoidaa tehot): saadaa ortogoaalie moipulssimodulaatio: gi() t gj *() t dt σδ g i j (. 64) st () ga ( t T) (. 63)..998 Teleteiia laboratorio Sivu Teleteiia laboratorio Sivu 8 9 Korrelaatiovastaaoti moipulssimodulaatiolle Kuva 6-35: r(t) h (t) h (t) h - (t) hi() t hj *() t dt σδ h i j (. 68)..998 Teleteiia laboratorio Sivu 9 K K K - Tarastellaa järjestelmää jossa lähetetää ysi pulssista, h (t),,, -, jota ovat ortogoaalisia, eli Select largest ^...Korrelaatiovastaaoti moipulssimodulaatiolle Vastaaotettu sigaali o siis muotoa yt () h() t + t () (. 69) Korrelaatiovastaaoti muodostaa ristiorrelaatiotermiä K h() tytdt () h() th() tdt+ h() ttdt () (. 6) i i i i Ortogoaalisuusehdo muaa vai K poieaa ohiasta Teleteiia laboratorio Sivu
6 CDM-järjestelmä Code Divisio Multiple ccess (CDM) eli oodijaomoiäyttöjärjestelmä Perustuu ortogoaalisii (tai lähes) biäärisevesseihi Eri äyttäjät äyttävät samaa taajuusaluetta (esim. oasiaaliaapelia, radio- tai optista aavaa - jopa siirtoa sähöverossa o tutittu!) Lähettime periaate (Kuva 6-56): Bits Bits Coder Coder a, a, Bits a,- Coder g - (t)..998 Teleteiia laboratorio Sivu g (t) g (t) Σ s(t) Moiatoaaltojärjestelmät Orthogoal requecy Divisio Multiplex (ODM), Discrete Multitoe (DMT) Valitaa pulssimuodot seuraavasti: g t T e j t w t () ω c () (. 667) missä w(t) o symboli mittaie suoraaide ja taajuudet valitaa π ωc,,,..., ( 668. ) T..998 Teleteiia laboratorio Sivu...Moiatoaaltojärjestelmät Disreettiaiaie toteutus: g e π w,,,..., ( 67. ) ( ) j /...Moiatoaaltojärjestelmät Lähettime toteutus IT: avulla (Kuva 6-54) a, s K Tässä ysi symboli o äyttee pituie. Ysi pulssi saadaa symboliarvoilla paiotettua ombiaatioa: IT T s ( ) jπ/ a e w, (. 67) a,- s - K - a, s p Σ r q a ^..998 Teleteiia laboratorio Sivu Teleteiia laboratorio Sivu 4
7 ...Moiatoaaltojärjestelmät Vastaaoti: Korrelaatiopai T:llä Vastaaotetut äytteet muotoa r s + z ( 673. ) Yhde orrelaattori laseta: jπ i/ K r e, i,,..., ( 674. ) i Moiatoaaltojärjestelmä etuja Kullei atoaallolle voidaa valita oma aaosto Sigaali tehospetri säädettävissä atoaalloittai aava muaa (apasiteeti masimoiti!) Moiäyttö: aavia voidaa jaaa joustavasti eri äyttäjille esim. radiojärjestelmissä Kaava evalisoiti helppoa..998 Teleteiia laboratorio Sivu Teleteiia laboratorio Sivu 6 3
Helsinki University of Technology
Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Tecology Laboratory of Telecommuicatios Tecology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 4. Lueto: Kaavaorjaimet I prof. Timo Laaso Vastaaotto
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015
BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat
Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio
Ortogonaalisuus ja projektiot
MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria
Helsinki University of Technology
Helsiki Uiversity of Tecology Laboratory of Telecommuicatios Tecology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 4. Lueto: Kaavakorjaimet I prof. Timo Laakso
Luku 11. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Tämä merkitsee geometrisesti, että funktioiden f
28 2. Futiosarjat Edellä sarjat olivat luusarjoja, joide termit ovat (tässä urssissa) reaaliluuja. Jos termit ovat samasta muuttujasta riippuvia futioita, päädytää futiotermisii sarjoihi. Näide äyttö matematiiassa
8. Ortogonaaliprojektiot
44 8 Ortogoaaliprojetiot Avaruus R o eemmäi ui pelä vetoriavaruus, osa siiä o mahdollisuus määritellä vetoreide pituus, välie ulma ja erityisesti ohtisuoruus ähä päästää ottamalla äyttöö vetoreide välie
Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg
Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin
S-445 FYSIIKKA III (Sf) Sysy 4, LH, Rataisut LHSf-* Kaasusäiliö o jaettu ahtee osaa, joide välisee eristävää seiämää o tehty iei ymyrämuotoie auo, joa halaisija o D Säiliö molemmissa osissa o helium aasua
MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN
SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan
9. Ominaisarvot. Diagonalisointi
55 9 Omiaisarvot Diagoalisoiti Joaisee matriisii liittyy jouo sille omiaisia luuja, s omiaisarvoja, joista oostuu matriisi "spetri" ämä vaatii uitei luualuee laajetamista omplesiluuihi Jatossa matriisit
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa
Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa
Kiinteätuottoiset arvopaperit
Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät
funktiojono. Funktiosarja f k a k (x x 0 ) k
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.
Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.
Digitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
1. Ominaisarvot. Diagonalisointi
MA-45 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 8 Kertaamme Lama :ssa esitettyä omiaisarvoteoriaa, erityisesti - ulotteisissa avaruusissa ulemme tarvitsemaa äitä Lama 5:ssa differetiaaliyhtälöitä
Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali
Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien
Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1
Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden
xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)
BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset
dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
LAPPEENRANNAN TEKNILLINEN YLIOPISTO
LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,
Aukkopalkin kestävyys
simeri 3 Auopain estävyys 1.0 Kuormitus Auopain ominaisuormat on esitetty aa oevassa uvassa. Tarasteaan paia ysiauoisena nivepäisenä paina. Seuraamusuoa on CC K FI 1,0 (ei esitetä asemassa). Tässä asemassa
Noora Nieminen. Hölderin epäyhtälö
Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise
4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on
4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.
i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k
1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:
TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus
ELEC-C7230 Tietoliikenteen siirtomenetelmät
ELEC-C7230 Tietoliikenteen siirtomenetelmät Laskuharjoitus 8 - ratkaisut 1. Tehtävässä on taustalla ajatus kantoaaltomodulaatiosta, jossa on I- ja Q-haarat, ja joka voidaan kuvata kompleksiarvoisena kantataajuussignaalina.
Joulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
y + 4y = 0 (1) λ = 0
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 6 mallit Kevät 2019 Tehtävä 1. Ratkaise yhtälöt a) y + 4y = x 2, b) y + 4y = 3e x. Ratkaisu: a) Differentiaaliyhtälön yleinen
Harjoitus 1. Tehtävä 1. Malliratkaisut. f(t) = e (t α) cos(ω 0 t + β) L[f(t)] = f(t)e st dt = e st t+α cos(ω 0 t + β)dt.
Harjoitus Malliratkaisut Tehtävä L[f(t)] ˆ f(t) e (t α) cos(ω t + β) f(t)e st dt ˆ e st t+α cos(ω t + β)dt cos(ω t + β) 2 (ej(ωt+β) + e j(ωt+β) ) L[f(t)] 2 eα 2 ˆ ˆ e st t+α (e j(ω t+β) + e j(ω t+β) )
Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )
Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat
F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:
BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()
Tehtävä 11 : 1. Tehtävä 11 : 2
Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista
7. Menetysjärjestelmät
lueto7.ppt S-38.45 Leeteora perusteet Kevät 25 Ssältö Kertausta: ysertae leeteoreette mall Posso-mall asaata, palvelota Sovellus vrtaava dataletee malltamsee vuotasolla Erlag-mall asaata, palvelota < Sovellus
1 Eksponenttifunktion määritelmä
Ekspoettifuktio määritelmä Selvitimme aikaisemmi tällä kurssilla, millaie potessisarja säilyy derivoiissa muuttumattomaa. Se perusteella määritellää: Määritelmä. Ekspoettifuktio exp : R R määritellää lausekkeella
Sattuman matematiikkaa III
Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université
Luento 5. tietoverkkotekniikan laitos
Lueto 5 Lueto 5 Näytteeotto ja DFT 5. Näytteeotto Nyquisti äytteeottoteoreema Oppeheim 7.,7. Aliasoitumie Oppeheim 7.3 Jatuva aiaise sigaali äsittely disreetissä ajassa Oppeheim 7.4 5. DFT Disreetti F
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
Laplace-muunnos: määritelmä
Laplace-muunnos: määritelmä Olkoon f : [, [ R funktio. Funktion f Laplacen muunnos määritellään yhtälöllä F(s) = L(f) := f(t)e st dt edellyttäen, että integraali f(t)e st dt suppenee. Riittävä ehto integraalin
j = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
Helsinki University of Technology
Helsinki University of Technology Laboratory of Telecommunications Technology S-38.11 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications ( ov) Syksy 1997. Luento: Pulssinmuokkaussuodatus
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
STOKASTISET DIFFERENTIAALIYHTÄLÖT 7
STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsini University of Technology Laboratory of Telecommunications Technology Kertausta: AWGN-anava n(t) S-38.211 Signaalinäsittely tietoliienteessä I Signal Processing in Communications (2 ov) Sysy 1998
Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa
3. Markovin prosessit ja vahva Markovin ominaisuus
30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin
Epäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
Matematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
S Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat
TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3
51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi
VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi
02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin
S Signaalit ja järjestelmät
dsfsdfs S-72.1110 Työ 2 Ryhmä 123: Tiina Teekkari EST 12345A Teemu Teekkari TLT 56789B Selostus laadittu 1.1.2007 Laboratoriotyön suoritusaika 31.12.2007 klo 08:15 11:00 Esiselostuksen laadintaohje Täytä
Mat Tilastollisen analyysin perusteet, kevät 2007
Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie
1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1
Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +
J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6
MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato
TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut
TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Välipohjan kestävyys. CrossLam Kuhmo CLT. Esimerkki Kuormitus. 2.0 Poikkileikkaus
simeri Välipohjan estävyys.0 Kuormitus Asuinraennusen välipohjan ominaisuormat on esitetty alla olevassa uvassa. Seuraamusluoa on CC K FI,0 (ei esitetä laselmassa. Tässä laselmassa tarastetaan vain ysi
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset
Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)
Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Aalyysi I Harjoitus 5. 0. 2009 alkavalle viikolle Ratkaisuehdotuksia ( sivua) (Rami Luisto) Laskuharjoituksista saa pistettä, jos laskettu vähitää 50 tehtävää; 3 pistettä,
2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI
37 INTEGRAALILASKENTAA.1 MÄÄRÄTTY INTEGRAALI Trstell ploitti jtuv j rjoitettu (siis ei ääretötä) futiot f ( ) välillä [, ] (s. uv) Jet väli [, ] :ää h-levyisee os h j meritää h, missä 0,1,,..., Joo liittyvä
Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.
Luento 0 odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset
Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3
Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi
6 Lineaarisen ennustuksen sovelluksia
6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
2.3.1. Aritmeettinen jono
.3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo
5. Lineaarisen optimoinnin perusprobleemat
2 5. Lieaarise optimoii perusprobleemat Optimoitiprobleema o lieaarise optimoii tehtävä, jos kohdefuktio o lieaarie fuktio ja rajoitusehdot ovat lieaarisia yhtälöitä tai lieaarisia epäyhtälöitä. Yleisessä
e ax, kun x > 0 f(x) = 0, kun x < 0, 0, kun x > 0 e ax, kun x < 0 e (a iω)x dx = a+iω = 1 a 2 +ω 2. e ax, x > 0 e ax, x < 0,
Harjoitus 5 1. Olkoot a > 0. Laske vaimenevan pulssin e ax, kun x > 0 fx) = 0, kun x < 0, ja voimistuvan pulssin gx) = konvoluution g f Fourier-muunnos. 0, kun x > 0 e ax, kun x < 0 apa 1: Konvoluution