Luento 5. Diskreetti Fourier muunnos (DFT)
|
|
- Harri Aho
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 5..7 Disreetti Fourier muuos (DFT) Tarastellaa disreettiäsevessiä{v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos (DFT) iπ V( ) = ve = Kääteismuuos (IDFT) iπ v = V( ) e = 5..7
2 Parsevali teoreema v = V( ) = = DFT: omiaisuusia Todistus * * i π v = v v = v V( ) e = = = = = = = iπ * * V( ) v e V( ) V ( ) V( ) = = = = v = V( ) e = iπ DFT: omiaisuusia DFT o jasollie, jaso pituus o : i π ( ) + i i i π π π = = = V( + ) = v e = e v e = v e = V( ) Huomataa, että V() =4 jote V()=V()
3 DFT: omiaisuusia Jos {v } o reaalie, ii ( iπ ( ) ) = = * ( ) = V v e V v Jasollisuudesta seuraa * V = V + * V( l) = V ( l), l = V( + ) = V( ) = + = + + V * * V V V * = + Re{V()} Im{V()} DFT: omiaisuusia Tarastellaa disreettiä jasollista sevessiä v+ = v v = = =3 = = = = =3 v - = = = = = = =3 =3 v - = = = = = = =3 =
4 DFT: omiaisuusia Jasollise sevessi DFT voidaa lasea miä tahasa perääise äyttee yli + m = m Todistus iπ ve = V( ) + m m m+ iπ iπ iπ iπ ve = ve m + vm+ e + v e +... = m + + m i π i π i π iπ + v e + v + e v + me = ve m v v iπ v = m iπ e e v v iπ + = e =, Origo siirto D { ( )} DFT: omiaisuusia i l F V l = v e π Todistus F V l V l e V e iπ l i π ( ' + l) D { ( )} = ( ) = ( ') = ' = l l i π ' iπ l iπ l V( ') e e ve ' = l = = DFT: jasollisuudesta seuraa, että summa miä hyväsä : perättäise äyttee yli ataa sama tulose. + m iπ ve = V( ) = m
5 DFT Tarastella disreeti pulssi DFT:tä Pulssi (=4) v =, v =, v =, v = 3 v DFT ( ) iπ iπ iπ iπ 4 4 = V = v e = e + e = e + e ( i) ( ) = + V () = V() = i V () = + V(3) = i iπ Disreetti ovoluutio Disreetti jasollie ovoluutio (Circular covolutio) y = h u = hmu m ja se DFT m= { } Y ( ) = F h u = HU ( ) ( ) D Disreetti lieaarie ovoluutio y = h u m m m= Oletetaa, että h =, < > h u =, < > u Kovoluutio pituus tulee olemaa = h + u
6 Disreetti ovoluutio Määritellää asi yhtä pitää sevessiä lisäämällä ollia sevessie perää h =,,... h ha, = = h, h +,..., h + u u =,,... u ua, = = u, u +,..., h + u Jasollie ovoluutio: h+ u y = h u a, m a, m m= ja se DFT: 5..7 Disreetti ovoluutio Tarastellaa sigaaleita (äyteväli T=) {h(t)}={,,} h =3 {u(t)}={,,,} u =4 Augmetoidut sigaalit {h(t)}={,,,,,} h + u -=6 {u(t)}={,,,,,} h + u -=6 Kovoluutio h+ u = a, m a, m m= y h u
7 Esimeri h=[ ]; u=[ ]; ha=[h zeros(,legth(u)-)]; ua=[u zeros(,legth(h)-)]; H=fft(ha); U=fft(ua); Y=H.*U y=ifft(y) plot(:5,y,'o:',:5,ha,'x:',:5,ua,'d:') leged('y','h','u',) y h u TAI y=cov(h,u); Esimeri Tarastellaa sigaaleita (äyteväli T=) {h(t)}={,e -,e -,e -3,e -4 } h =5 {u(t)}={.5,.5,.75,} u =5 Augmetoidut sigaalit {h(t )}={,e -,e -,e -3,e -4,,,} h + u -=9 {u(t )}={.5,.5,.75,,,,,} h + u -=
8 Esimeri h=[ exp(-) exp(-) exp(-3) exp(-5)]; u=[ ]; h=legth(h); u=legth(u); =h+u-; ha=[h zeros(,-legth(h))]; ua=[u zeros(,-legth(u))]; H=fft(ha); U=fft(ua); Y=H.*U y=ifft(y) plot(:(-),y,'o:',:(-),ha,'x:',:(-),ua,'d:') leged('y','h','u',) y h u opea Fourier-muuos (FFT) Käyttäe DFT: määritelmää =,,,,- harmoise lasemisee tarvitaa omplesia ertolasuoperaatiota ja (-) omplesia yhteelasuoperaatiota V( ) = ve = iπ Jos o suuri, o DFT: lasemie laseallisesti rasasta. DFT: lasemie sisältää redudatteja operaatioita, jote lasetaa sopivasti järjestämällä voidaa lasetauormaa pieetää. Tähä perustuu opea Fourier-muuos (FFT, Fast Fourier Trasform)
9 opea Fourier-muuos (FFT) Määritellää Osoittautuu, että opea Fourier-muuos (FFT) Operaattori W avulla DFT-voidaa irjoittaa muotoo V( ) = vw = Oletetaa, että o parito ooaisluu ( + ) + = = V( ) = v W + v W Parillie sevessi Parito sevessi
10 opea Fourier-muuos (FFT) yt DFT voidaa irjoittaa muotoo + = = V( ) = v W + W v W (-)/ poit DFT (-)/ poit DFT Jote, voimme rataista pistee DFT: laemalla asi / pistee DFT:tä ja summaamalla tuloset Termi W / tarvitsee lasea vai erra ja sitä voidaa äyttää seä parilliste että parittomie symbolie DFT:ssä. Samalla tavalla / pistee DFT voidaa jaaa edellee ahdesi /4 pistee DFT:si, jota puolestaa voidaa jaaa /8 DFT:si je =4 4 = opea Fourier-muuos (FFT) iπ iπ 4 W = e = e iπ W = e = e iπ =4 W = = W 4 Im i W W 4 -i Im i = W W = W Re 4 - Re W W i
11 opea Fourier-muuos (FFT) =4 =4 pistee sevessi Jaetaa sevessi parillisii ja parittomii { vv,, v, v3} { vv, } { vv, 3} v v v v3 V( ) = V ( ) = V ( ) + W V ( ), =,,,3 4 V ( ) = v + W v V ( ) = v + W v opea Fourier-muuos (FFT) =4 Esimmäie vaihe: Kasi pistee DFT:tä V ( ) = v + W v V () = v + W v = v + v V () = v + W v = v v Perhos-operaattori (butterfly operator) v v v + v v v V ( ) = v + W v 3 V () = v + W v = v + v 3 3 V () = v + W v = v v 3 3 v v 3 v + v 3 v v
12 opea Fourier-muuos (FFT) =4. vaihe V( ) = V( ) = V( ) + W4V( ) V() = V() + W4 V() = V() + V() V() = V() + W4V() = V() iv() V() = V() + W4V() = V() V() = V() V() 3 V(3) = V (3) + W V (3) = V (3) + iv (3) = V () + iv () 4 V( + ) = V( ). vaihee DFT:ssä = opea Fourier-muuos (FFT) =4 =4 DFT: v V () = v + v V() = V () + W V () 4 v v V () = v v V () = v + v 3 W4 = i V() = V () + W V () 4 V() = V () W V () 4 v 3 V () = v v 3 W4 = i V(3) = V () W V ()
13 opea Fourier-muuos (FFT) =8 =8 W = e iπ =8 ( ) 5 W 8 Im ( W ) 6 8 ( ) 7 W 8 ( ) 4 W 8 ( ) W 8 Re ( ) 3 W 8 ( ) W 8 ( ) W opea Fourier-muuos (FFT) =8 =8 pistee sevessi =8 pistee DFT V( ) = V ( ) = V ( ) + W V ( ) 8 V ( ) = V ( ) + W V ( ) V( ) = V3( ) + W4 V4 ( ) 4 V( ) = v + W v4 V( ) = v + W v 6 V ( ) = v + W v V3( ) = v + W v
14 opea Fourier-muuos (FFT) =8 Esimmäie vaihe 8 pistee DFT:stä V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v W =,3,... = exp( iπ ) = =,,... Perhosoperaattori (butterfly operator) opea Fourier-muuos (FFT) =8 Perhosoperaattori avulla V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v V () = v + W v = v + v V () = v + W v = v v
15 opea Fourier-muuos (FFT) =8 Toie vaihe 8 pistee DFT:stä V () = V () + W V () = V () + V () 4 π i = + 4 = + = V () V () W V () V () e V () V () iv () V () = V () + W V () = V () + e V () = V () V () = V () V () iπ 4 Huomataa, että V i () o pistee DFT, jote V i (+)=V i () 3 3 i π = + 4 = + = + V (3) V (3) W V (3) V (3) e V (3) V () iv () Kosa, ii V () = V () + W V () 8 V () = V () W V () 8 V () = V () + W V () 8 V (3) = V () W V () opea Fourier-muuos (FFT) =8 Toie vaihe 8 pistee DFT:stä V () = V () + W V () 8 V () = V () + W V () 8 V () = V () W V () 8 V (3) = V () W V ()
16 opea Fourier-muuos (FFT) =8 Kolmas vaihe 8 pistee DFT:stä V ( ) = V ( ) + W V ( ) 8 V () = V () + W V () 8 V () = V () + W V () 8 V () = V () + W V () 8 V (3) = V (3) + W V (3) 3 8 V (4) = V () W V () 8 V (5) = V () W V () 8 V (6) = V () W V () 8 V (7) = V (3) W V (3) opea Fourier-muuos (FFT) =8 8 pistee opea Fourier-muuos V () V () V () V (3) V () V () V () V (3)
17 opea Fourier-muuos (FFT) Laseallie omplesisuus: DFT: O( ) 7 FFT: O(log()) 6 5 Complexity 4 3 DFT FFT opea ääteismuuos: IFFT Kääteismuuos voidaa irjoittaa muotoo ( + ) v = V( ) W V( ) W V( ) W = + + = = = = V( ) W + W V(+ ) W = = / pistee IDFT Eli, ute FFT: tapausessa, myös IFFT: tapausessa tehtävä voidaa jaaa osii. IFFT eroaa FFT:stä aioastaa espoeti meri ja saalausteijä / osalta
18 Fourier-muuose umeerie approsimoiti Fourier-muuos Tarastellaa sigaali, joa o määritelty välille [,T ] (Euler itegral) missä =T /T Fourier-muuosta voidaa siis approsimoida DFT:llä: i ft π iπ V( f) T v( T) e = TVD ( ), f = VD ( ) = v( T) e T = = Fourier-muuose umeerie approsimoiti Poissoi summaaava ˆ( ) ( ) i π ft V f = T v T e = V f = = T Jos aluperäise sigaali sisältää yquisti rajataajutta (/ /T) suurempia taajuusia, tapahtuu äytteeotossa lasostumista. Tämä vääristää approsimoitua spetriä. V( f) B > T ˆ( ) V f B B
19 Iuoiti ja vuotoilmiö Sigaali ataisu v(t) Aluperäie sigaali T Tarasteluväli v(t) Kataistu sigaali T Tarasteluväli DFT-äee ataistu sigaali periodisea. Jos päätepisteide välillä o suuria eroja sytyy äytteistettyy sigaalii oreita taajuusia Iuoiti ja vuotoilmiö Suoraaiteemuotoise aiaiua äyttö aiheuttaa DFT: äemää jasollisee sigaalii epäjatuvuusohtia, joita selittämää Fourier-sarjassa tarvittaisii oreita taajuusia. Suoraaide pulssilla ataistu sigaali FFT voi tästä johtue erota suurestii vastaava jatuva sigaali Fourier-muuosesta. Suoraaidemuotoiste iuoide sijaa, äytetää usei iuoita, jota pieetävät tarasteluväli alu ja loppupää äytteide arvoja
20 Iuoiti ja vuotoilmiö Erilaisia iuoita o määritelty useita:.9.8 Blacma-Harris Hammig Gaussia Ha Hammig iua aia ja taajuustasossa =65;w=hammig();wvtool(w) Time domai 4 Frequecy domai Amplitude Magitude (db) Samples ormalized Frequecy ( π rad/sample)
21 Esimeri Kosiisigaali spetritiheys T=.5=.5.5 s(t) S(f) -.5 Sigal.5 Hammig widow t Frequecy (Hz).5.5 s(t) S(f) t Frequecy (Hz) Iuoiti vähetää spetrie lasoistumisesta johtuvaa virhettä Fourier-muuose umeerie approsimoiti Taajuusalue äytteeoto jälee sigaali sisältää taajuusia yquisti rajataajuutee saaa DC-ompoetti yquist taajuus =3 3 4 f s /4 f s / -f s /4 f (Hz) 5..7 f 4 / ±f f /
22 Fourier-muuose umeerie approsimoiti Taajuusresoluutio: FFT: lasemat harmoiset taajuudet ovat äytteeottotaajuus Taajuusresoluutio Zero paddig: Lisäämällä ollia sevessi perää saadaa taajuusresoluutiota asvatettua. Tällöi FFT iterpoloi välitaajuusia aluperäise DFT: määrittämie taajuusie välii. Jos lisätää ollaa, ii taajuusresoluutiosi tulee Esimeri
23 Tarastellaa pulssia t vt () = otherwise Valitaa äyteväli T=. Esimeri äytteeottotaajuus f s = Hz ja yquisti rajataajuus f =5 Hz. Taajuusvälisi tulee = äytteellä /*f s =/* Hz= Hz Esimeri FFT löytää vai pulssi DC-ompoeti =5: f =5 Hz V() Taajuusväli = Hz/= Hz
24 Esimeri Lisätää 9 ollaa sevessi perää V() Taajuusväli = Hz/=. Hz Example Taajuude futioa saadaa V() f (Hz)
25 Esimeri Kosa pulssi sisälsi myös yquisti rajataajutta suurempia taajuusompoetteja tapahtuu lasostumista 6 x Error f (Hz) Esimeri tau=; %Pulse width T=.; %Samplig iterval f_s=/t; %Samplig frequecy f_=/*f_s; %yqyist frequecy df=f_s/; %Frequecy spacig =tau/t; %umber of samples v=oes(,); %Sampled sigal V=T*fft(v); %Approximate cotiuous Fourier trasform %Plot spectrum desity figure() plot(:(-),abs(v).^,'*-') xlabel('') ylabel(' V() ^') %Zero paddig z=9; z=zeros(z,); a=+z; va=[v; z];%zero paddig Va=T*fft(va); figure() plot(:(a-),abs(va).^,'*-') xlabel('') ylabel(' V() ^') %Frequecy axis dfa=f_s/a; %frequecy spacig after zero paddig f=-f_:dfa:(f_-dfa); figure(3) plot(f,abs(fftshift(va)).^,'*-') xlabel('f (Hz)') ylabel(' V() ^') %Effect of aliasig figure(4) plot(f,abs(fftshift(va)).^-sic(f').^,'r') xlabel('f (Hz)') ylabel('error')
26 OFDM Lähetetää s appaletta T: pituisia symboleita I riaai taajuustasossa ui omalla aavallaa. Miimoidaa aavie taajuusvälit site, että aavat säilyvät eseää ortogoaalisia. Eli, samaaiaisesti lähetettävät symbolit eivät häiritse toisiaa. I cos ( π f t) c { I } I I s IFFT D/A Re Im D/A c x x si Σ ( π f t) OFDM OFDM moduloidu sigaali spetri = 8 s Carrier 5 6
27 = 4 c s f = 4 Hz 4 3 OFDM OFDM moduloitu sigaali Aliatoaallot OFDM Vastaaoti perustuu FFT-muuosee cos ( π f t) c x ~ Re A/D I x si ( π f t) c ~ A/D Im FFT I I s { I }
Luento 5. Diskreetti Fourier muunnos (DFT)
Lueto 5 Disreetti Fourier-muuos opea Fourier-muuos (FFT) 6..6 Disreetti Fourier muuos (DFT) Tarastellaa disreettiä sevessiä {v,v,,v - } Esim. äytteistetty sigaali v =v(t), T äyteväli Disreetti Fourier-muuos
Luento 5. tietoverkkotekniikan laitos
Lueto 5 Lueto 5 Näytteeotto ja DFT 5. Näytteeotto Nyquisti äytteeottoteoreema Oppeheim 7.,7. Aliasoitumie Oppeheim 7.3 Jatuva aiaise sigaali äsittely disreetissä ajassa Oppeheim 7.4 5. DFT Disreetti F
Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )
Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 9. Lueto: Kaava apasiteetti ja ODM prof. Timo
4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutitolautauta S tudetexamesämde MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 5.9. HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastauste piirteide ja sisältöje luoehdita ei sido ylioppilastutitolautaua arvostelua.
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A
TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa
F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:
BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()
Luento 2. Jaksolliset signaalit
Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
1 Vastaa seuraaviin. b) Taajuusvasteen
Vastaa seuraaviin a) Miten määritetään digitaalisen suodattimen taajuusvaste sekä amplitudi- ja vaihespektri? Tässä riittää sanallinen kuvaus. b) Miten viivästys vaikuttaa signaalin amplitudi- ja vaihespektriin?
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0
TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä
Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.
Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.
MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
Luento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.
BM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
Ohjelmistoradio tehtävät 4. P1: Ekvalisointi ja demodulaatio. OFDM-symbolien generoiminen
Ohjelmistoradio tehtävät 4 P: Ekvalisointi ja demodulaatio Tässä tehtävässä dekoodata OFDM data joka on sijotetty synknonontisignaalin lälkeen. Synkronointisignaali on sama kuin edellisessä laskutehtävässä.
= + + 1 ( 1) + + = Paraabelit leikkaavat pisteessä ( 2, 3). ( 8) ( 8) 4 1 1
Pitkä matmatiikka YO-ko 4.9.4. a) b) ( )( 3) 6 3 + 6 6 + y + + ( ) y + + 3 + + ( ) TNS y ( ) + 3 tai Paraablit likkaavat pistssä (, 3). c) Mrkitää lukua : llä ( ). + 4 + 8 + 8 8 + ( 8) ( 8) 4 ± 8 ± 6 8
Matlab-tietokoneharjoitus
Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
Spektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
Eksponentti- ja logaritmiyhtälö
Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
Signaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Tecology Laboratory of Telecommuicatios Tecology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 4. Lueto: Kaavaorjaimet I prof. Timo Laaso Vastaaotto
Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat
Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio
Ortogonaalisuus ja projektiot
MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria
MAA10 HARJOITUSTEHTÄVIÄ
MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Luento 9. tietoverkkotekniikan laitos
Luento 9 Luento 9 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 9.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
Digitaalinen signaalinkäsittely Signaalit, jonot
Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,
A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)
ELEC-A7 Signaalit ja järjestelmät Syksy 5 Tehtävä 3. a) Suoran tapauksessa ratkaistaan kaksi tuntematonta termiä, A ja B, joten tarvitaan kaksi pistettä, jotka ovat pisteet t = ja t =.. Saadaan yhtälöpari
Mat / Mat Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 42, loppuviikko, syksy 2008
Mat-.3 / Mat-.33 Matematiikan peruskurssi C3-I / KP3-I Harjoitus 5 / vko 4, loppuviikko, syksy 8 Ennen malliratkaisuja, muistin virkistämiseksi kaikkien rakastama osittaisintegroinnin kaava: b a u(tv (t
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
Luento 5. tietoverkkotekniikan laitos
Luento 5 Luento 5 Jaksolliset signaalit epälineaarisissa muistittomissa järjestelmissä 5.1 Muistittomat epälineaariset komponentit Pruju Taylor-sarjakehitelmä ja konvoluutio taajuustasossa Särö Keskinäismodulaatio
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
Luento 3. Fourier-sarja
Fourier-muuos Rayleigh eoreema Spekriiheys Lueo 3 4..7 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I
MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja
Joulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims
75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva
Kiinteätuottoiset arvopaperit
Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät
Tämä merkitsee geometrisesti, että funktioiden f
28 2. Futiosarjat Edellä sarjat olivat luusarjoja, joide termit ovat (tässä urssissa) reaaliluuja. Jos termit ovat samasta muuttujasta riippuvia futioita, päädytää futiotermisii sarjoihi. Näide äyttö matematiiassa
811312A Tietorakenteet ja algoritmit, 2015-2016, Harjoitus 2, Ratkaisu
8111A Tietoraketeet ja algoritmit, 15-16, Harjoitus, Ratkaisu Harjoituksessa käsitellää asymptoottista merkitätapaa ja algoritmie aikakompleksisuutta. Tehtävä.1 a Oko f ( O( tai f (, ku 1 f ( f, 4 ( 5
funktiojono. Funktiosarja f k a k (x x 0 ) k
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu
Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg
Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008
1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
6 Lineaarisen ennustuksen sovelluksia
6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.
Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta
Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on
Epäyhtälöoppia matematiikkaolympialaisten tehtäviin
Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy
IIR-suodattimissa ongelmat korostuvat, koska takaisinkytkennästä seuraa virheiden kertautuminen ja joissakin tapauksissa myös vahvistuminen.
TL536DSK-algoritmit (J. Laitinen)..5 Välikoe, ratkaisut Millaisia ongelmia kvantisointi aiheuttaa signaalinkäsittelyssä? Miksi ongelmat korostuvat IIR-suodatinten tapauksessa? Tarkastellaan Hz taajuista
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
Klassisen fysiikan ja kvanttimekaniikan yhteys
Klassise fysiika ja kvattimekaiika yhteys Scrödigeri yhtälö ei statioäärisistä tiloista muodostuvie aaltopakettie aikakäyttäytymie oudattaa Newtoi lakeja. Newtoi mekaiikka voidaa johtaa Schrödigeri yhtälöstä.
i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k
1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje
[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
Luento 3. Fourier-sarja
Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla
Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:
TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus
Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)
Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa
Dynaamisen järjestelmän siirtofunktio
Dynaamisen järjestelmän siirtofunktio Nyt päästään soveltamaan matriisilaskentaa ja Laplace muunnosta. Tutkikaamme, miten lineaarista mallia voidaan käsitellä. Kuten edellä on jo nähty säätötekniikassa
Luento 4 Fourier muunnos
Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,
Lisää segmenttipuusta
Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko
Talousmatematiikan verkkokurssi. Koronkorkolaskut
Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:
termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen
SIGNAALITEORIAN KERTAUSTA OSA 1
1 SIGNAALITEORIAN KERTAUSTA OSA 1 Millainen on signaalin spektri ja miten se lasketaan? SIGNAALIEN JA SPEKTRIN PERUSKÄSITTEITÄ 2 Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka graafinen
Helsinki University of Technology
Helsiki Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaalikäsittely tietoliiketeessä I Sigal Processig i Commuicatios ( ov) Syksy 997 9. Lueto: Kaava kapasiteetti ja ODM prof.
Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.
Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.
Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt
SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,
MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku
AALTO-OPAS H-BEND VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Juhana Kankainen j82081 Teemu Lahti l82636 Henrik Tarkkanen l84319
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Juhana Kanainen j8081 Teemu Lahti l8636 Henri Taranen l84319 SATE010 Dynaaminen enttäteoria AALTO-OPAS H-BEND Sivumäärä: 1 Jätetty tarastettavasi:
802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................
Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä
DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015
BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin
3. Markovin prosessit ja vahva Markovin ominaisuus
30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin
S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006
S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan
l s, c p T = l v = l l s c p. Z L + Z 0
1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona
VALIKOITUJA KOHTIA LUKUTEORIASTA
VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q
S Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov. Kurssin aihealue
S-108.180 Elektroiset mittaukset ja elektroiika häiriökysymykset ov Kurssi aihealue Kurssi suorittamie Hyväksytty tetti (määrää arvosaa), 5 tehtävää Hyväksytysti suoritetut labrat, 4 kpl Mittausvahvistimet
M y. u w r zi. M x. F z. F x. M z. F y
36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
RATKAISUT: 10. Lämpötila ja paine
Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset
Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)
MS-A0004 - Matriisilaskenta Laskuharjoitus 3
MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+
( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y