i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k
|
|
- Katriina Tiina Turunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje ooaisluuäärä o 84. Määritä todeäöisi partitio. sitä yös eergiatasoje esiääräiset iehitysluvut. Rataisu ): Laaditaa tauluo oistee esieri.1. tapaa ( j j P Alialla rivillä olevat partitioide todeäöisyydet saadaa yhtälöstä 1 P! i N gi, i i! issä idesi i ueroi eergiatasot. Nyt g i 1 joaiselle eergiatasolle. Site saadaa esierisi 4! 4! P1 4, P 1, je.!1!!1!1! Mirotiloje ooaisluuäärä o 9 P 84. Todeäöisi partitio o partitio 6, 1 jolle P6 4 eli partitio sisältää 4 irotilaa. Ruuduo oiealla puolella ovat eergiatasoje esiääräiset iehitysluvut. Voidaa todeta, että iide sua o hiuaste ooaisluuäärä 4. p: partitiot oiei ja irotiloje ooaisluuäärä 1p: todeäöisi partitio p: eergiatasoje esiääräiset iehitysluvut
2 . Säiliö, joa tilavuus o 5,00 d, sisältää eoaasua 7,0 C läpötilassa ja 04 Pa paieessa. Määritä (a) aasu ooaiseergia (aasu oletetaa ideaaliaasusi), (b) eoatoi esiääräie liie-eergia, (c) eoatoi rs-opeus. Neoatoi assa o 0,180 u (1 u 1, g; atoiassaysiö). Rataisu : V 5,00 d, t 7,0 C, p 04 Pa. Ne, 0,180 u. (a) Kieettise aasuteoria uaa N pv U U pv ,00 10,8 J. Tai uistaalla, että utai vapausastetta ohde sisäeergia o T ja äyttäällä ideaaliaasu tilayhtälöä (aiiaa N appaletta atoeita) U N T NT, pv NT U pv. (b) Neoatoi esiääräie liie-eergia o U J -1 K, ave T 1, ( 7,15 + 7, 0 ) K 6, J 8,8 ev N K (c) Moleyyli eliöllie esiopeus saadaa yhtälöstä 1 T K, ave vr s T vr s J 1, ( 7,15 + 7, 0 ) K K 609. v rs -7 0,180 1,66 10 g s p: (a) aasu ooaiseergia p: (b) eoatoi esiääräie liie-eergia p: (c) eoatoi rs-opeus. Miä o evipartitioperiaattee uaa hyvi oreissa läpötiloissa (a) aoiaioleyyli NH (ei-lieaarie oleyyli) ja (b) hiilidiosidioleyyli CO (tiedetää lieaarisesi) esiääräie eergia. Hyvi orealla läpötilalla taroitetaa sitä, että aii äille oleyyleille ahdolliset liiee vapausasteet (eletroista virittyistä luuu ottaatta) osallistuvat läpöeergia jaaisee.
3 NH o ei lieaarie oleyyli. Atoie paia ilaiseisee tarvitaa x4 1 oordiaattia. Näistä assaesipistee liieelle (ei potetiaalieergiaa) siis eteeisliiee eergia esiääri (/) T. Pyöriisee tarvitaa ole ulaoordiaattia, jällee potetiaalieergia o 0, jote esiääräie pyöriiseergia (/) T. Loput 6 oordiaattia uvaavat värähtelyä. Niihi liittyy seä liie että potetiaalieergiaa. Siis värähtelyeergiaa yhteesä 6 T ja yhde aoiaioleyyli esiääräie ooaiseergia o ((/)+(/)+6) T 9T. Hiilidiosidissa o ole atoia ja siis x 9 oordiaattia. teeisliie saoi ui yllä (/) T, lieaarie oleyyli, jote pyöriie vai asi oordiaattia siis eergiaa 1 x T ja loput 4 oordiaattia värähtelyy 4 T yhteesä saadaa siis ((/)+(/)+4) T 6,5T. Seä (a)- että (b)-ohdat: 1p: traslaatio 1p: rotaatio 1p: vibraatio 4. Systeeissä hiuaste ahdolliset tilat ovat 1 0, ε ja ε. Oletetaa, että gi 1, i 1,,. Miehitysluvut ovat 1 000, 800 ja 00. (a) Miä o jaaua todeäöisyyde uutos, u yliältä ja alialta tilalta siirretää ysi hiuae esiäiselle tilalle? (b) oo yllä aettu jaaua a) ohda tulose perusteella lähellä tasapaiotilaa? (c) Lase systeei todeäöisi jaaua aetulle ooaishiuasäärälle ja sisäeergialle. Opastus: ooaishiuasäärä ja sisäeergia säilyie ataa asi side-ehtoa tuteattoille suureille 1, ja. (a) Systeeissä o yhteesä N 000 hiuasta. Aluperäise partitio todeäöisyys o P ! 800! 00! Hiuaste siirtäise jälee partitio todeäöisyys o 1p P. 1999! 80! 199! Jaauie todeäöisyysie suhde o P1 1999! 80! 199! P 000! 800! 00! ,6. 1p. Siis aluperäie partitio oli 1,6 ertaa todeäöisepi. (b) Kosa pieellä iehitysluvu uutosella saadaa suuri irotiloje luuäärä uutos, systeei o ileisesti hyvi auaa terodyaaisesta tasapaiosta. 1p. (c) Todeäöisiä partitio äärääie. Maxwell-Boltza -jaaua o N 0/ T N ε / T N ε / T 1 e, e, e 1p. issä o partitiofutio. Systeeissä o 000 hiuasta joide ooaiseergia o 100 ε.
4 Meritää tällöi irjoittaa / T e ε x, jolloi x1 ja x x + 1 x 000 ja eergia säilyie ( 1 x) ε + ( 1 x )( ε ) 100ε. Supistaalla ε jäliäisestä yhtälöstä saae yhtälöpari 1. Hiuasäärä säilyie voidaa 1 (1 + x + x ) p. (1) ( x + x ) 100 Jaaalla (1) puolittai ja supistaalla 1 saadaa 8x + x 0, josta x 0, 465 (vai positiivie juuri elpaa). Sijoittaalla yhtälöö (1) saae 1 046, Tulos o pyöristetty lähipii ooaisluuihi. 1p. Huoaa, että jos äihi iehitysluuihi tehdää uutos ja 1 o partitio todeäöisyyde uutos varsi piei. (Periaatteessa äärettöä piei jos hiuasia o tarpeesi). 5. Lase aliui erieergia olettaalla että joaie atoi luovuttaa yhde eletroi johtovyöhö. Johtavuuseletroit uodostavat vapaa vuorovaiuttaattoa eletroiaasu. Kaliui tiheys o 8,51 g/c ja yhde aliu atoi paio o 6, g. letroie tilatiheys etallissa o g( ) 1/ / Tehtäväaossa aettu tilatiheyde lausee ei ota huoioo eletroi spiiä, jote tilatiheys o vielä errottava ahdella. Kosa aava oli vääri tehtävässä, ei virhettä tule vaia ei olisiaa tehyt äi. V 1/. erieergialla taroitetaa eergiaa, joho saaa etalli johtovyö tilat ovat täyä läpötilassa T 0 ja joa yläpuolella tilat ovat tyhjiä. Absoluuttisessa ollapisteessä D-jaauafutio ( µ )/ T fd( ) e + 1 o 1 ferieergiaa saaa ja 0 se yläpuolella, jote eletroie luuäärä tilavuudessa V o yhtä suuri ui tilatiheyde itegraali erieergiaa saaa. 1 p. Itegroialla ja rataisealla ferieergia eletroie tiheyde avulla saadaa 1/ / V 1/ N g( ) f ( ) d d D 0 0 1/ / N V / 4 / / p.. (1)
5 9 Kaliui tiheys o ρ / 1,1 10 atoia /. Kosa ui atoi luovuttaa yhde eletroi johtovyöhö, tää o saalla johtovyö eletroie tiheys yhtälössä (1) 1p. Sijoittaalla saae erieergiasi 9, 41eV. 1p. Jos tilatiheyde lauseetta ei ole ertout ahdella saadaa erieergiasi: / 4/ / 1/ 14,9eV
Laskennallisen kombinatoriikan perusongelmia
Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti
tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin
S-445 FYSIIKKA III (Sf) Sysy 4, LH, Rataisut LHSf-* Kaasusäiliö o jaettu ahtee osaa, joide välisee eristävää seiämää o tehty iei ymyrämuotoie auo, joa halaisija o D Säiliö molemmissa osissa o helium aasua
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3
LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
F e. R kertaa ioniparien lukumäärä N. Kun laskemme tämän yhteen Coulombin attraktioenergian kanssa saamme kiteen kokonaisenergiaksi.
S-436, FYSIIKKA IV (EST) Kevät 5, LH Rtisut LH- Lse liui Ferieergi olettll että joie toi luovutt yhde eletroi johtovyöhö Johtvuuseletroit uodostvt vp vuoroviutttto eletroisu Kliui tiheys o 8,5 g / c 3
S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk
S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.
Tehtävä 11 : 1. Tehtävä 11 : 2
Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista
Kiinteätuottoiset arvopaperit
Mat-.34 Ivestoititeoria Kiiteätuottoiset arvopaperit 6..05 Lähtöohtia Lueolla tarasteltii tilateita, joissa yyarvo laseassa äytettävä oro oli aettua ja riippuato aiaperiodista Käytäössä orot äärittyvät
λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.
S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä
Ekvipartitioperiaatteen mukaisesti jokaiseen efektiiviseen vapausasteeseen liittyy (1 / 2)kT energiaa molekyyliä kohden.
. Hiilidioksidiolekyyli CO tiedetään lineaariseksi a) Mitkä ovat eteneisliikkeen, pyöriisliikkeen ja värähtelyn suuriat ekvipartitioperiaatteen ukaiset läpöenergiat olekyyliä kohden, kun kaikki vapausasteet
Koska elektronin oletetaan olevan perustilassa sen ionisaatioenergia on 13,6 ev:
LH0- H vetyioi perustila eergia (ytimie välimata, 06 Å) eergia verrattua systeemii, jossa perustilassa oleva vetyatomi ja H -ioi ovat äärettömä auaa toisistaa o,65 ev Lase a) H : eergia verrattua systeemii
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
ν = S Fysiikka III (ES) Tentti Ratkaisut
S-45 Fysiikka III (ES) etti 8500 Ratkaisut Ideaalikaasu suorittaa oheise kua esittämä kiertoprosessi abca Pisteessä a lämpötila o 0 K a) Kuika mota moolia kaasua o? b) Määritä kaasu lämpötila pisteissä
Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1
Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
n = = RT S Tentti
S-5 Tetti 500 a) Kuika suuri o molekyylie traslaatioliikkee kieettie eergia kuutiometrissä ilmaa jos ilma lämpötila o 00 K ja paie 0 bar? b) Mikä o kieettise eergia kokoaismäärä ku myös muut liikelajit
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset
Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)
j = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
Matematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
S , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä
DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen
Ortogonaalisuus ja projektiot
MA-3450 LAAJA MAEMAIIKKA 5 amperee teillie yliopisto Risto Silveoie Kevät 2007 äydeämme Lama 2: lieaarialgebraa oheisella Ortogoaalisuus ja projetiot Olemme aiaisemmi jo määritelleet, että asi vetoria
Luku 11. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg
Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =
S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan
3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa
Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, 60909-1, 60909-2, 60781, 60865-1 ja 60865-2.
Luu 7: Oiosulusuojaus 7. OIKOLKOJA 7.. Yleistä Vero laitteide mitoittamisessa, oiosulusuojause suuittelussa ja turvallise äytö suuittelussa o tuettava oiosuluvirrat eri tilateissa ja eri osissa veroa.
VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen
9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike
15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio
VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi
02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin
2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************
.. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää
1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.
a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa
Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.
Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.
1. Oletetaan, että protonin ja elektronin välinen vetovoima on verrannollinen suureeseen r eikä etäisyyden neliön käänteisarvoon
S-.6 Fysiikka IV (Sf) Tetti 6.5.5 I välikokee alue. Oletetaa, että protoi ja elektroi välie vetovoima o verraollie suureesee r ( F kr) eikä etäisyyde eliö kääteisarvoo ( F k/ r ). Käytä kulmaliikemäärä
VÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
Joulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström
Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella
Talousmatematiikan verkkokurssi. Koronkorkolaskut
Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:
b 4i j k ovat yhdensuuntaiset.
MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä
M y. u w r zi. M x. F z. F x. M z. F y
36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien
η = = = 1, S , Fysiikka III (Sf) 2. välikoe
S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon
VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen
/ ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai
= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
8. Ortogonaaliprojektiot
44 8 Ortogoaaliprojetiot Avaruus R o eemmäi ui pelä vetoriavaruus, osa siiä o mahdollisuus määritellä vetoreide pituus, välie ulma ja erityisesti ohtisuoruus ähä päästää ottamalla äyttöö vetoreide välie
Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',
3. Markovin prosessit ja vahva Markovin ominaisuus
30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin
Mat Tilastollisen analyysin perusteet, kevät 2007
Usea selittää lieaarie regressiomalli Mat-.04 Tilastollise aalyysi perusteet, evät 007 8. lueto: Usea selittää lieaarie regressiomalli Selitettävä muuttua havaittue arvoe vaihtelu halutaa selittää selittävie
ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.
/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,
1 4πε. S , FYSIIKKA IV (Sf) Kevät 2005, LHSf5. Ratkaisut
S-4.46, YSIIKKA IV (Sf Kvät 005, LHSf5. Rataisut LHSf5- (a Litiufluoridilla, Li, on NaCl-rann. Lähinaapuritäisyys on 0,04 n. Las Li:n ohsionrgia olttan, ttä rpulsiosponntti on n = 9. (b Li:n ohsionrgian
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I
MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto 0. syysuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Prediaattilogiia Idutioperiaate Relaatiot ja
[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24
Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa
Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,
Tämä merkitsee geometrisesti, että funktioiden f
28 2. Futiosarjat Edellä sarjat olivat luusarjoja, joide termit ovat (tässä urssissa) reaaliluuja. Jos termit ovat samasta muuttujasta riippuvia futioita, päädytää futiotermisii sarjoihi. Näide äyttö matematiiassa
MAOL ry 1/2 Lukion kemiakilpailu/perussarja. Lukion kemiakilpailu
AL ry 1/ Lukio keiakilpailu/perussarja Lukio keiakilpailu 8.11.007 Perussarja Kaikkii tehtävii vastataa. Aikaa o 100 iuuttia. Sallitut apuvälieet ovat laski ja taulukot. Tehtävät suoritetaa erilliselle
Luku kahden alkuluvun summana
Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun
2 = +. Osoita, että palauttava voima, joka. 4πε. or r
S-4.46 Fysii IV (Sf), II Välioe 7.5.4. Ioiiteessä potetilieergi o uot V ( r ) α e b +. Osoit, että pluttv voi, jo r r viutt ioii, jo o siirtyyt x: verr tspisest, o uot F -x, u x o hyvi piei. Voivio o uot
6 JÄYKÄN KAPPALEEN TASOKINETIIKKA
Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa
Keskijännitejohdon jännitteenalenema
LTE 4/1 Kesijännitejodon jännitteenalenea Jännitteenalenea lasetaan aaalla 1 r + x tanϕ 1 P l (1 Tauluossa 1 on esitetty joaisen aapelin pituudet seä niiden resistanssi ja reatanssiarot, joita taritaan
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6
MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-0402 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg 1 Jouo-oppi ja logiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O alto-yliopisto 12. maalisuuta 2015 3 Kombiatoriia ym. Summa-,
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-0401 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg alto-yliopisto 30. syysuuta 2015 1 Jouo-oppi ja logiia Prediaattilogiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O 3 Kombiatoriia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy 08 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var
ESIM. ESIM.
1 Vierintäita f r lasetaan samannäöisellä aavalla uin liuuitain: Ihmisunnan erästä suurimmista esinnöistä eli pyörää äytetään sen taia, että vierintäitaerroin µ r on paljon pienempi uin liuuitaerroin:
0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.
LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista
TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista
9. Ominaisarvot. Diagonalisointi
55 9 Omiaisarvot Diagoalisoiti Joaisee matriisii liittyy jouo sille omiaisia luuja, s omiaisarvoja, joista oostuu matriisi "spetri" ämä vaatii uitei luualuee laajetamista omplesiluuihi Jatossa matriisit
EX1 EX 2 EX =
HY, MTL / Matemaattiste tieteide kadiohjelma Todeäköisyyslasketa IIb, syksy Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Olkoot X ja X riippumattomia satuaismuuttujia, joille ja olkoo X EX, EX, var X,
3.6 Todennäköisyyden laskusääntöjä Onneksi ennalta arvaamaton todennäköisyys noudattaa täsmällisiä sääntöjä. Tutustutaan niistä keskeisimpiin.
3.6 Todeäöisyyde lasusäätöjä 3.6 Todeäöisyyde lasusäätöjä Oesi ealta arvaamato todeäöisyys oudattaa täsmällisiä säätöjä. Tutustutaa iistä eseisimpii. Kertolasusäätö Tarastellaa esi tilaetta, jossa o asi
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt HARMONINEN VÄRÄHELIJÄ yön taoitteet ässä työssä tutustut asolliseen, äärätyin aiaälein toistuaan edestaaiseen ärähdysliieeseen. Värähdysliie
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
:n perustilaan energiasta. e) Elektronien ja ytimien välinen vuorovaikutusenergia H 2
S-11446 Fysiikka IV (Sf), II Välikoe 15 1 H vetyioi perustila eergia (ytimie välimatka 1,6 Å) verrattua systeemii, jossa perustilassa oleva vetyatomi ja H -ioi ovat äärettömä kaukaa toisistaa o,65 ev Laske
Tehtäviä neliöiden ei-negatiivisuudesta
Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:
DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään
MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I
MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O
Sattuman matematiikkaa III
Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université
LAPPEENRANNAN TEKNILLINEN YLIOPISTO
LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim
Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz
M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon
Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali
S Fysiikka IV (Sf) tentti
S-11446 Fysii IV (Sf) tetti 9114 1 Oletet, että protoi j eletroi välie vetovoim o verrollie suureesee r ( F r) eiä etäisyyde eliö ääteisrvoo ( F / r ) Käytä ulmliiemäärä vtittumissäätöä j osoit, että sttioääriste
Helsinki University of Technology Laboratory of Telecommunications Technology
Helsii Uiversity of Techology Laboratory of Telecommuicatios Techology S-38. Sigaaliäsittely tietoliieteessä I Sigal Processig i Commuicatios ( ov) Sysy 998 9. Lueto: Kaava apasiteetti ja ODM prof. Timo
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia
VALIKOITUJA KOHTIA LUKUTEORIASTA
VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q
1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)
. Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.
RATKAISUT: Kertaustehtäviä
Phyica 1 uuditettu paino OPETTAJAN OPAS 1(9) Kertautehtäiä RATKAISUT: Kertautehtäiä LUKU 3. Luua on a) 4 eriteää nueroa b) 3 eriteää nueroa c) 7 eriteää nueroa. 4. Selitetään erieen yhtälön olepien puolien
Puolijohteet II. luku 2 ja 4
Puolijohteet II luku 2 ja 4 Satuaisliike Varauksekuljettaja siroaa kitee epäideaalisuuksista. Termie ettoopeus o olla. Törmäyste välie aika m ~ 0,1 ps 2 Keskimääräie eergia o E 3kT 2 m v 2 mistä saadaa