Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa."

Transkriptio

1 Resonanssiantennit Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. E sim erk k ejä: S u orat lank ad ip olit V -d ip olit T aittod ip olit (folded dipole) Y ag i-u d a-antenni Isot silm u k k a-antennit M ik roliu sk a-antennit (p atch -antennit)

2 Suorat lankadipolit Tarkastellaan nyt mielivaltaisen mittaista suoraa keskeltä syötettyä lankadipolia (kuva 5-1 ). O letetaan, että virtajakauma on sinimuotoinen, [ ( ) ] L I(z) = I m sin β 2 z L, z 2. (1 9 9 ) Tämä on hyvä approksimaatio ohuille antenneille, tarkat virtajakaumat saadaan mittaamalla tai laskemalla numeerisesti. Tilanne vastaa avointa siirtolinjaa, jonka päät ovat käännetty ulospäin, ja virtajakauman oletetaan säilyvän samana kuin siirtolinjalla.

3 Suorat lankadipolit Kuvassa 5-2 on esitetty virtajakauma, kun L < λ/2. N yt I m ei ole virran maksimiarvo, vaan se on I m sin(βl/2) syöttöpisteessä. Kuvassa 5-3 on virtajakauma suuntineen eri pituisille dipoleille (L λ/2). Virroista on esitetty maksimiarvot, hetkellinen virta on I(z) cos ω t. D ipolin säteilykuvio saadaan integroitua samalla tapaa kuin λ 2 -dipolille. Saadaan f u n = L 2 L 2 = 2I m β I m sin [ β ( )] L 2 z e j β z co s θ dz cos[(βl/2) cos θ] cos(βl/2) sin 2. (20 0 ) θ

4 Suorat lankadipolit Sähkökenttä kaukokentässä on E θ = jη ejβr 2πr I cos[(βl/2) cos θ] cos(βl/2) m sin θ Kun L = λ/2, normalisoiduksi säteilykuvioksi saadaan ennestään tuttu (kuva 5-4 ) (201) F (θ) = Kun L = λ, F (θ) = cos[(π/2) cos θ] sin θ cos(π cos θ) sin θ, H P = 7 8. (202), H P = 4 7. (203)

5 Suorat lankadipolit Kun L = 3 2 λ, F (θ) = cos( 3 2π cos θ). (204) 2 sin θ Kun L > λ, kaikki antennin virrat eivät kulje samaan suuntaan (kuva 5-3). Tällöin säteilykuvio jakautuu useisiin keiloihin (kuva 5-4c ja d), koska eri osista antennia lähtevät aallot kumoavat toisensa joissain suunnissa. Kun L/λ menee hyvin pieneksi, (201):n säteilykuvio lähestyy sin θ:tä, kuten olemme jo aiemmin todenneet lyhyen dipolin tapauksessa.

6 Suorat lankadipolit Antennin säteilyteho saadaan laskemalla P = 1 2η 2π 0 π 0 E θ 2 r 2 sin θ dθdφ, (205) Yleisessä tapauksessa päädytään erikoisfunktioihin, mutta harjoitustehtävässä päädyttiin λ 2 -dipolin tapauksessa tulokseen P = η 8π I2 m(2.44), jolloin säteilyresistanssi on R r = 2P Im 2 = 73 Ω. (206 ) Muun pituisille ja äärellisen paksuisille dipoleille syöttöresistanssi ja -reaktanssi saadaan laskettua numeerisesti. Tällöin virtajakauman muotoa ei tarvitse olettaa etukäteen.

7 Suorat lankadipolit Kuvissa 5-5 ja 5-6 on esitetty numeerisesti laskettu ohuen keskeltä syötetyn dipolin syöttöresistanssi ja -reaktanssi, dipolin pituuden funktiona. R esonanssissa reaktanssi menee nollaksi, lyhyillä dipoleilla reaktanssi on kapasitiivinen, ja yleisesti X A riippuu dipolin pituudesta. Säteilyresistanssi voidaan määritellä usealla eri tapaa käyttäen eri virran referenssipisteitä. Käytännössä tärkein on antennin kytkentäpisteen virtaan I A liittyvä resistanssi R ri. J os ohmisia häviöitä ei ole, R ri on sama kuin antennin syöttöresistanssi R A.

8 Suorat lankadipolit Myös antennin virtajakauman maksimiin I m liittyvää resistanssia R rm käytetään. Virtaa I m ei esiinny missään kohtaa antennia, jos L < λ/2 (kuva 5-2). Edellä mainitulle resistanssille saadaan suhde, sillä säteilyteho on sama molemmilla resistansseilla ilmaistuna, P = 1 2 I2 mr rm = 1 2 I2 AR ri R ri = I2 m I 2 A R rm = R rm sin 2 (βl/2) Kun antennin pituus on aallonpituuden monikerta, R ri menee edellisen mukaan äärettömäksi.

9 Suorat lankadipolit Todellisilla antenneilla syöttöresistanssi on tällöin iso mutta äärellinen (kuva 5-5). Kuvan 5-3 mukaan syöttöpisteen virta on nolla näillä pituuksilla, todellisuudessa virta ei ole täysin sinimuotoinen ja syötössä esiintyy pieni virta. Muilla pituuksilla sinimuotoinen virtajakauma on hyvä approksimaatio. L isäksi kuvasta 5-5 huomataan, että reaktanssi menee nollaksi hieman alle λ/2-pituiselle dipolille. Taulukossa 5-2 on resonanssipituuksia eri paksuisille antenneille; resonanssipituus lyhenee johdon paksuuntuessa.

10 Suorat lankadipolit Koska dipolit ovat resonanssityyppisiä rakenteita, niiden kaistanleveys on matala. Kaistanleveys kasvaa johtimien paksuuntuessa (kuva 5-7). Harjoituksissa laskettiin myös, että λ 2 -dipolin suuntaavuus on D = 1.64, eli hieman parempi kuin lyhyen dipolin 1.5. Dipolia pidennettäessä suuntaavuus edelleen kasvaa, ollen λ-pituiselle Yli 5λ/4-pituisille säteilykuvio hajoaa kuvan 5-4 mukaisesti, jolloin suuntaavuus putoaa jyrkästi.

11 V-dipoli Lanka-antennin ei tarvitse olla suora, esimerkkkinä kuvan 5-9 V-dipoli. Siinä avoimen siirtolinjan päitä taitetaan ulospäin kulman γ verran. V-dipolin suuntaavuus voidaan saada suuremmaksi kuin saman mittaisen suoran dipolin. Kuvassa 5-10 (päiden pituus h = 0.75λ) V-dipolin säteilykuvio. Säteilykeila on 2 db suurempi φ = 90 -suuntaan kuin 270 -suuntaan, samoin sivukeilojen taso on pudonnut merkittävästi suoraan dipoliin verrattuna (kuva 5-4d). Suuntaavuus on D = 5.26 db, kun samanpituisen suoran dipolin on 3.4 db. V-dipolin syöttöimpedanssi on yleisesti pienempi kuin samanmittaisen suoran dipolin.

12 Taittodipoli Taittodipoli koostuu kahdesta samansuuntaisesta lähekkäisestä (d L, d λ) dipolista, jotka on yhdistetty päistään, jolloin ne muodostavat kapean silmukan (kuva 5-11). Syöttö on toisen sivun keskellä. Taittodipolin toiminnan voi ymmärtää, kun tarkastellaan erikseen sen toimintaa siirtolinjatilassa ja antennitilassa kuvien 5-12 ja 5-13 mukaisesti. Antennin kokonaisvirta saadaan näiden kahden moodin virtojen summana. Antennimoodissa syöttö on kuvan 5-13b mukaisesti symmetrinen, jolloin taittodipolia voi mallintaa kahdella lähekkäisellä dipolilla, joissa V 2 = (Z Z 1 2 ) I a 2.

13 Taittodipoli Pienillä d:n arvoilla Z 12 Z 11 Z d, eli sama kuin yksittäisen dipolin syöttöimpedanssi. Siirtolinjamoodissa syöttö on epäsymmetrinen (kuva 5-13a), jolloin kumpikin pää muodostaa L/2-mittaisen oikosuljetun siirtolinjan, jonka syöttöimpedanssi on Z t = Z 0 tan(βl/2). Jos L = λ/2, kyseisen tapauksen Z t = Z 0 tan(π/2) =, jolloin I t = 0. Kokonaisuudessaan λ/2-mittaisessa taittodipolissa kulkee virta I a /2 + I t = I a /2, jolloin sen syöttöimpedanssi on Z A = V I A /2 = 4Z d, (207) eli nelinkertainen suoraan λ 2 -dipoliin verrattuna.

14 Taittodipoli λ 2 -taittodipolin syöttöimpedanssi on siten Z A = 4(70) = 280 Ω, joka on hyvin lähellä kaksijohtimisen nauhajohdon (twin-lead, parijohto, lapamato ) ominaisimpedanssia (300 Ω). Kuvan 5-15 mukaisesti λ 2 -taittodipolin molemmissa johtimissa kulkee sama virta. Jos syöttöteho on sama, taittodipolin johtimissa kulkee yhteensä sama virta kuin suorassa λ 2 -dipolissa. Siten myös säteilykuvio on sama kuin dipolilla. Kuvassa 5-16 on yleisen mittaisen taittodipolin syöttöresistanssi ja -reaktanssi pituuden L funktiona.

15 Taittodipoli Taittodipoli on hyvin suosittu antenni, koska sen syöttöimpedanssi on lähellä parijohdon ominaisimpedanssia sen taajuuskaista on leveämpi kuin suoran dipolin ne ovat rakenteeltaan helppoja ja tukevia Taittodipolia käytetään F M-vastaanottoantennina ja Yagi-Uda-antenniryhmän syöttöantennina.

16 Yagi-Uda-antenni Antenniryhmien ideana on, että elementtiantenneja lisäämällä saadaan lisättyä suuntaavuutta. Ryhmien yhteydessä oletimme, että kaikkia elementtiantenneja syötetään, jolloin tarvitaan joka elementille kytkentä syöttöpiiriin. Antennin syöttöpiiri yksinkertaistuu huomattavasti, jos vain yhtä tai muutamaan elementtiä syötetään suoraan. Tällöin kyseessä on parasiittinen ryhmä. Elementtejä, joita ei suoraan syötetä, saavat virtansa lähikenttien kytkeytymisen kautta syötetyiltä elementeiltä. Niitä kutsutaan parasiiteik si.

17 Yagi-Uda-antenni Parasiittistä lineaarista ryhmää, joka koostuu rinnakkaisista dipoleista, kutsutaan Yagi-Uda-antenniksi, lyhyesti Yagi-antenniksi. Tarkastellaan λ 2 -dipolia ja hyvin lähelle sitä sijoitettua saman mittaista parasiittiä. Koska parasiitti on lähellä, sille tulevan aallon sähkökenttä on karkeasti arvioiden sama kuin säteilijän pinnassa oleva kenttä, E incid ent = E d riv er. Koska rajapintaehtojen mukaan parasiitin pinnalla sähkökentän tangentiaalikomponentin pitää olla nolla, parasiitin säteilykentän pitää kumota tulevan aallon kenttä, E p a ra site = E incid ent = E d riv er.

18 Yagi-Uda-antenni Kyseessä on siis kahden sama-amplitudisen, mutta vastakkaisvaiheisen elementin ryhmä päätysäteilijä (kuva 5-30). Kun tätä parasiittiä pidennetään hiukan, säteilijän puoleinen päätykeila kasvaa ja parasiitin puoleinen vastaavasti pienenee yksi pääkeila (kuva 5-31). Tällöin parasiittiä kutsutaan heijastajaksi. Jos parasiitti on lyhyempi kuin säteilijä ja toisella puolella säteilijää kuin edellä, pääkeila kasvaa parasiitin suuntaan, eli se toimii su u ntaajana (kuva 5-32).

19 Yagi-Uda-antenni Kolmielementtinen Yagi sisältää säteilijän lisäksi heijastajan ja suuntaajan sen vastakkaisilla puolilla (kuva 5-33). Suuntaavuusominaisuudet paranevat entisestään kaksielementtisiin tapauksiin nähden. Kuvassa 5-34 on yleinen useampielementtinen Yagi-Uda. Tyypilliset arvot parasiittien etäisyyksille ovat S R = ( )λ heijastajalle (kuva 5-35) ja S D = ( )λ suuntaajalle. Heijastajan pituus L R = 0.5λ, säteilijän pituus on resonanssipituus ilman parasiittejä, ja suuntaaja 80-90% resonanssipituudesta.

20 Yagi-Uda-antenni Heijastajia tavallisesti vain yksi, suuntaajiakaan ei kannata käyttää liikaa, koska niiden lisääminen ei enää kasvata merkittävästi vahvistusta kuvan 5-36 mukaisesti. Kuvassa 5-39 mitatut elementtivirrat Yagi-Uda:sta. Taulukossa 5-4 ja kuvassa 5-37 tarkemmat mittauksien kautta saadut optimaaliset mitat erikokoisille Yagi-Uda-antenneille. Kuvassa 5-41 numeerisesti laskettu optimaalisesti mitoitetun 12-elementtisen Yagi-Uda-antennin säteilykuvio sekä E- että H-tasoissa.

21 Yagi-Uda-antenni Yagi-Uda on yksi yleisimmistä HF-VHF-UHF alueen (3 MHz 3 G Hz) antenneista. Sillä on suhteellisen hyvä vahvistus sekä se on kevyt ja halpa. Yagi-Uda:n suurin haittapuoli on sen kapea kaistanleveys. Säteilijänä käytetään usein taittodipolia nostamaan syöttöimpedanssia ja parantamaan kaistanleveyttä. Jos sovelluskohteessa ei tarvita isoa kaistanleveyttä, Yagi-Udalla saavutetaan 9-12 db vahvistus pienillä kustannuksilla.

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n

Lisätiedot

Kulmaheijastinantenni

Kulmaheijastinantenni Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia

Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia kahdessa eri m oodissa: norm aalim oodi ja aksiaalim

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri. Kä y tä n n ö n sä h k ö ise sti p ie n e t d ip o lit Säh k ö isesti pien en an ten n in k o k o o n alle λ/1 0. Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

Desibeli. Desibeliasteikko. Desibelilaskentaa. Desibeliyksiköitä. Peukalosääntöjä. Desibeli Siirtojohdot, SWR Antennien ominaisuuksia

Desibeli. Desibeliasteikko. Desibelilaskentaa. Desibeliyksiköitä. Peukalosääntöjä. Desibeli Siirtojohdot, SWR Antennien ominaisuuksia Desibeli Siirtojohdot, SWR Antennien ominaisuuksia Desibeli Tiiti Kellomäki, OH3HNY Yleisiä antenneja Desibeliasteikko Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P i = 100000 B = P o /P

Lisätiedot

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia.

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Desibeli Tiiti Kellomäki, Yleisiä antenneja Desibeliasteikko Desibelilaskentaa Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 11.11.2014 Juha, OH2EAN 1 / 42 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 42 Siirtojohto Mikä

Lisätiedot

Ideaalinen dipoliantenni

Ideaalinen dipoliantenni Ideaalinen dipoliantenni Ideaalinen dipoli on säh k öisesti p ieni lank a-antenni ( z λ), jossa v irralla v ak io am p litu d i ja v aih e. Id eaalinen d ip oliantenni on k äy tännön antennina h arv inainen.

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Antennit ja syöttöjohdot. OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja syöttöjohdot. OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja syöttöjohdot OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja Aallonpituus Aallonpituus = valon

Lisätiedot

AALTOLIIKEOPPIA FYSIIKASSA

AALTOLIIKEOPPIA FYSIIKASSA 1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä

Lisätiedot

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia i i Tiiti Kellomäki, OH3HNY Yleisiä antenneja ylikurssia! ylikurssia! ylikurssia! ylikurssia! ylikurssia! Desibeli ylikurssia! i ylikurssia!

Lisätiedot

Radioamatöörikurssi 2014

Radioamatöörikurssi 2014 Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Siirtojohdot, Antennit ja Eteneminen 10.11.2015 Otto, OH2EMQ 1 / 44 Illan aiheet Siirtojohdot Antennit Radioaaltojen eteneminen 2 / 44 Siirtojohto Mikä

Lisätiedot

Antenni ja säteilykuvio

Antenni ja säteilykuvio POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Häiriöt, siirtojohdot, antennit, eteneminen

Häiriöt, siirtojohdot, antennit, eteneminen Radioamatöörikurssi PRK OH2TI Häiriöt, siirtojohdot, antennit, eteneminen 2.11.2011 Teemu, OH2FXN 1 / 44 Häiriöt Radioamatööri on vastuussa aiheuttamistaan häiriöistä. Kaikissa häiriötapauksissa amatööri

Lisätiedot

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT 5. Sähkömagnetismi: Sähkömagneettinen säteily ja antennit 5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT Olemme tarkastelleet sähkömagneettisten aaltojen etenemistä tasoaaltoina tyhjössä ja homogeenisessa materiassa

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:

20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan: SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot

Lisätiedot

TASAVIRTAPIIRI - VASTAUSLOMAKE

TASAVIRTAPIIRI - VASTAUSLOMAKE TASAVIRTAPIIRI - VASTAUSLOMAKE Ryhmä Tekijä 1 Pari Tekijä 2 Päiväys Assistentti Täytä mittauslomake lyijykynällä. Muista erityisesti virhearviot ja suureiden yksiköt! 4 Esitehtävät 1. Mitä tarkoitetaan

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V. TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde

Lisätiedot

T2-Kurssimateriaalia 1.0 Janne Strang OH6LSL 27.9.2002

T2-Kurssimateriaalia 1.0 Janne Strang OH6LSL 27.9.2002 1. ANTENNITYYPPEJÄ Koska radiotaajuusalue kattaa oktaaveissa ajatellen erittäin laajan kaistan satojen kilometrien pituisista aalloista millimetrien pituisiin, on saman antennityypin käyttäminen mahdotonta

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja Desibeliasteikko Desibeli Kaikki piirit

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja Desibeliasteikko Desibeli Kaikki piirit

Lisätiedot

S /142 Piirianalyysi 2 2. Välikoe

S /142 Piirianalyysi 2 2. Välikoe S-55.0/4 Piirianalyysi. Välikoe.5.006 Laske tehtävät eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan osaston

Lisätiedot

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7

Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7 Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput

Lisätiedot

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni. Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET

LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET LABORATORIOTYÖ 2 (8 h) LIITE 2/2 1 TYÖN KUVAUS Työssä tutustutaan antennien ominaisuuksiin rakentamalla ja mittaamalla

Lisätiedot

Siirtolinjat - Sisältö

Siirtolinjat - Sisältö Siirtolinjat - Sisältö Siirtolinjatyypit Symmetriset siirtolinjat Epäsymmetriset siirtolinjat Ominaisimpedanssi SWR, sovitus Siirtolinjojen ominaisuuksia Syöttöjohtotyyppejä: Koaksiaalikaapeli (koksi)

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m

RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m 1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan

Lisätiedot

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla

Esimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

SMG-5450 Antennit ja ohjatut aallot

SMG-5450 Antennit ja ohjatut aallot Luennot SMG-5450 Antennit ja ohjatut aallot ti 10-12 SC105B pe 11-13 SC105B Luennoijat Tuomas Kovanen, SC307, tuomas.kovanen@tut.fi Jukka Uusitalo, SC305b, jukka-pekka.uusitalo@tut.fi (Luentokalvot: Janne

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

TEKNIIKAN JA LIIKENTEEN TOIMIALA. Tietotekniikka. Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ

TEKNIIKAN JA LIIKENTEEN TOIMIALA. Tietotekniikka. Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ TEKNIIKAN JA LIIKENTEEN TOIMIALA Tietotekniikka Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ Työn tekijä: Soile Sallinen Työn valvoja: Antti Koivumäki Työn ohjaaja: Antti

Lisätiedot

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:

1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: 521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

ELEC-E8419 syksy 2016 Jännitteensäätö

ELEC-E8419 syksy 2016 Jännitteensäätö ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

7. Resistanssi ja Ohmin laki

7. Resistanssi ja Ohmin laki Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi

Lisätiedot

Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet

Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset

Lisätiedot

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön

Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön Sivu 1/24 Tupla 5/8-aallon antenni APRS-tukiasemakäyttöön Minkälainen antenni APRS-käyttöön? APRS-käyttöä ajatellen ympärisäteilevä vertikaalipolarisoitu antenni on toimiva ratkaisu. Kyseistä antennityyppiähän

Lisätiedot

df4sa dipl.-ing cornelius paul liebigstrasse 2-20 d-22113 hamburg info@spiderbeam.net www.spiderbeam.net

df4sa dipl.-ing cornelius paul liebigstrasse 2-20 d-22113 hamburg info@spiderbeam.net www.spiderbeam.net Spiderbeam kehitettiin Dxpeditioihmisten unelma-antenniksi. Se on täysikokoinen, kevyt, kolmen taajuusalueen yagi joka on valmistettu lasikuidusta ja langasta. Koko antenni painaa ainoastaan kg, mikä tekee

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1

R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1 Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN

PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN PAKOPUTKEN PÄÄN MUODON VAIKUTUS ÄÄNENSÄTEILYYN Seppo Uosukainen 1, Virpi Hankaniemi 2, Mikko Matalamäki 2 1 Teknologian tutkimuskeskus VTT Oy Rakennedynamiikka ja vibroakustiikka PL 1000 02044 VTT etunimi.sukunimi@vtt.fi

Lisätiedot

EMC:n perusteet. EMC:n määritelmä

EMC:n perusteet. EMC:n määritelmä EMC:n perusteet EMC:n määritelmä Järjestelmän tai laitteen kyky toimia tyydyttävästi sähkömagneettisessa ympäristössään tuottamatta muille laitteille tai järjestelmille niille sietämätöntä häiriötä tässä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Antennit ja syöttöjohdot. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja syöttöjohdot. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja ylikurssia! ylikurssia! ylikurssia!

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

FYS206/5 Vaihtovirtakomponentit

FYS206/5 Vaihtovirtakomponentit FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Omnia AMMATTIOPISTO Pynnönen

Omnia AMMATTIOPISTO Pynnönen MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen

Lisätiedot

80m antenneista kotimaan työskentelyssä

80m antenneista kotimaan työskentelyssä 80m antenneista kotimaan työskentelyssä Pekka Ketonen, OH1TV 16.11.2016 OH1TV 1 Vertailua 80m kotimaan antenneista 1. Yleistä 2. λ luuppi 3. Magneettinen luuppi 4x4m 4. λ/2 dipoli 5. Yhteenvweto ja johtopäätökset

Lisätiedot

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä. Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

HARJOITUS 7 SEISOVAT AALLOT TAVOITE

HARJOITUS 7 SEISOVAT AALLOT TAVOITE SEISOVAT AALLOT TAVOITE Tässä harjoituksessa opit käyttämään rakolinjaa. Toteat myös seisovan aallon kuvion kolmella eri kuormalla: oikosuljetulla, sovittamattomalla ja sovitetulla kuormalla. Tämän lisäksi

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

Jukka Kinkamo, OH2JIN Kaukopäästä avoin ja oikosuljettu syöttöjohto

Jukka Kinkamo, OH2JIN Kaukopäästä avoin ja oikosuljettu syöttöjohto Kaukopäästä avoin ja oikosuljettu syöttöjohto Jos lähtötilanteessamme on lähettimen ulostuloimpedanssi 50 Ω, syöttöjohdon impedanssi samoin 50 Ω ja kuorman eli antennin impedanssi 50 Ω, on tehonsiirto

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN

LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN LABORATORIOTYÖ (4 h) LIITE 1/2 SISÄLTÖ 1 TYÖN KUVAUS... 3 2 MITTAUKSET... 3 2.1 Antennin suuntakuvion mittaus... 4 2.2 Piirianalysaattorimittauksia...

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot