SMG-5450 Antennit ja ohjatut aallot

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "SMG-5450 Antennit ja ohjatut aallot"

Transkriptio

1 Luennot SMG-5450 Antennit ja ohjatut aallot ti SC105B pe SC105B Luennoijat Tuomas Kovanen, SC307, Jukka Uusitalo, SC305b, (Luentokalvot: Janne Keränen ja Pasi Raumonen) Harjoitustehtävien tarkastaja Pasi Raumonen, SC301,

2 SMG-5450 Antennit ja ohjatut aallot Tavoitteet Siirtolinjojen, aaltoputkien ja resonaattorien perusyhtälöiden numeerinen ratkaiseminen. Antennien peruskäsitteet, tavallisimmat antennityypit ja niiden ominaisuuksien perustelu sähkömagneettisen teorian kautta. Kirja antenneja käsittelevään osaan kurssia Antenna theory and design, Stutzman, W.L. & Thiele, G.A. 2nd Ed. Kirjasta on tarkoitus käydä kappaleet 1-7 ja luvut aikataulun puitteissa. Aivan kaikkea ei tästä alueesta ehditä käsittelemään.

3 SMG-5450 Antennit ja ohjatut aallot Suoritusvaatimukset Viikottaiset harjoitustehtävät tai tentti. Tentissä saa olla mukana kirjallisuutta. Sekä tentissä että harjoitustehtävissä vaaditaan osattavaksi luennoilla käsitellyt osat kirjasta sekä luentomateriaali. Sekä harjoitustehtävissä että tentissä on sekä laskutehtäviä että teoreettisempia kysymyksiä. Kurssin alkuosan harjoitustehtävät sisältävät MATLABilla ohjelmointia ja myös osassa muita tehtäviä MATLABista on hyötyä.

4 Alustava ohjelma 4.periodi: vko 6-9 vko periodi: vko Siirtolinjojen, aaltoputkien ja resonaattorien perusyhtälöt ja niiden numeerinen ratkaiseminen Antennitehtävän perusteet. Antennien ominaisuuksia kuvaavat parametrit ja niiden määrittäminen Antennityyppien esittelyä ja niiden ominaisuuksien analysointia

5 Johdantoa antenneihin Antenni Laite, jonka avulla sähkömagneettia aaltoja voidaan (tarkoituksella) lähettää tai vastaanottaa. Eli se muuntaa ohjatun aallon (aaltoputki/siirtolinja) vapaan tilan aalloksi tai päinvastoin. Antenni välittää informaatiota ilman lähetyspaikan ja vastaanottopaikan välisiä rakenteita. Antenni vs. siirtolinja Siirtolinja vaatii ohjaavan rakenteen Tehohäviö 1 R 2 antennilla ja (e αr ) 2 siirtolinjalla

6 Johdantoa antenneihin Tehohäviöt kasvavat siirtolinjalla voimakkaasti taajuuden kasvaessa Matalat taajuudet ja lyhyet etäisyydet: siirtolinja Korkeat taajuudet ja pitkät etäisyydet: antenni Rajalliset taajuuskaistat antenneilla Radiosysteemeissä suurempi häiriöalttius ja huonompi turvallisuus Luotettavuustekijät Historialliset syyt (esim nykyiset puhelinverkot)

7 Johdantoa antenneihin Antenneja on pakko käyttää: Liikkuviin kohteisiin, eli kun kiinteä yhteys ei mahdollinen Yksi lähetin monta (liikkuvaa) vastaanottajaa Kaukokartoitus (remote sensing): tutka (aktiivinen) ja radiometria (passiivinen) Teolliset sovellukset (mikroaalloilla kuumennus ja kuivaus) Antenneilla on jokin minimikoko, eikä niitä voi korvata pienellä sirulla/komponentillä, kuten elektroniikassa usein käy

8 Säteilyn perusteita Säteily on smg-häiriön etenemistä poispäin häiriölähteestä, siten että aallon kokonaisenergia on vakio kaikilla etäisyyksillä lähteestä. Häiriölähde: virtalähde, jossa varaukset kiihtyvässä liikkeessä. Esimerkki: Vakionopeudella etenevän pistevarauksen kiihdytys, s Jatkuvan säteilyn tuottamiseksi pitää varauksien olla koko ajan kiihtyvässä liikkeessa edestakaisin liikkuva varaus sinimuotoinen lähdevirta.

9 Siirtolinjasta antenniksi? Tarkastellaan avointa siirtolinjaa, jossa seisova aalto: Johtimien aiheuttamat kentät vahvistavat toisiaan linjojen välissä ja kumoavat toisensa muualla (johtojen väli aallonpituus ) siirtolinjan tuottama säteily vähäistä. λ 4 Jos johtimien päistä käännetään λ 4 -pituiset pätkät, pystysuorassa osassa virrat ovat yhdensuuntaiset, eivätkä niiden kentät enää kumoa toisiaan. (Kuvassa aalto ajanhetkellä, jolloin virta maksimissaan.) Johtimien tuottama häiriö vaihtelee ajan funktiona sinimuotoisesti. Pystysuorat johtimenpätkät aiheuttavat etenevän aallon kuvan 1-4 mukaisesti. Vastaa puoliaaltodipolia palataan niihin tarkemmin myöhemmin.

10 Antennien peruskäsitteitä Resiprookkisuus (Reciprocity) Antennin ominaisuudet (esim suuntakuvio ja impedanssi) ovat samanlaiset antennin toimiessa lähetettimenä ja sen toimiessa vastaanottimena. Tämä vaatii tiettyjä ominaisuuksia antennimateriaaleilta, mutta lähes kaikki käytännön antennit ovat resiprookkisia. Resiprookkista antennia on mahdollista käsitellä lähettävänä systeeminä tai vastaanottavana systeeminä sen mukaan kumpi on tarkoituksenmukaisinta. Esim. vastaanottavan antennin kuormalle antamaa tehoa voidaan arvioida sen lähetysominaisuuksista.

11 Antennien peruskäsitteitä Säteilykuvio F(θ, ϕ) (Radiation pattern) kertoo antennin tuottaman (ja vastaanottaman) säteilyn suuntariippuvuuden (kuva 1-5). Suuntaavuus D (Directivity) Säteilyn maksimisuunnan tehotiheyden suhde keskimääräiseen tehotiheyteen (kuva 1-5). Vahvistus G (Gain) Suuntaavuus, kun on olettu huomioon tehohäviöt antennissa. Polarisaatio (Polarization) Antennin säteilemän aallon polarisaatio on se kuvio, jonka sähkökenttävektorin kärki piirtää ajan funktiona yhdessä tarkastelupisteessä.

12 Antennien peruskäsitteitä Impedanssi Z A (Impedance) Jännitteen ja virran suhde antennin syötössä. Tavoitteena on sovittaa Z A siirtolinjan kanssa. Kaistanleveys (Bandwidth) Taajuusalue, jolla antenni toimii hyväksyttävästi jonkin suorituskykyparametrin mukaan. Scanning, Keilanohjaus Säteilykuvion tarkoituksellinen liikuttaminen, joko sähköisesti tai mekaanisesti.

13 Antennien peruskäsitteitä Antennin valitaan edellä olevien ominaisuuksien perusteella. Antennin suunnittelu on kompromissien hakemista, sillä jos antennilla jokin parametri on erityisen hyvä, se tapahtuu jonkin muun parametrin kustannuksella. Kaikkia hyviä ominaisuuksia ei voi saada yhteen antenniin, joten käytännössä tarvitaan erilaisia antenneja, ja valinta niiden välillä riippuu sovelluskohteesta. Edellisten ominaisuuksien lisäksi on otettava huomioon sovelluskohteesta riippuen: koko, paino, tehonsyöttö, tutkapinta-ala (radar cross section), EMC.

14 Antennien neljä päätyyppiä Antennit voidaan jakaa neljään ryhmään sen mukaan, miten niiden toiminta muuttuu taajuuden funktiona. Sähköisesti pienet antennit Antennin koko aallonpituus, jolla toimitaan. + Pieni koko matalillakin taajuuksilla, edullinen Resonanssiantennit Antenni toimii yksittäisellä taajuudella tai kapealla taajuuskaistalla. + Kohtalainen vahvistus ja reaalinen impedanssi, edullinen Kapea taajuuskaista

15 Antennien neljä päätyyppiä Laajakaista-antennit Suuntakuvio, suuntaavuus, vahvistus ja impedanssi pysyvät hyväksyttävissä rajoissa laajalla taajuusalueella. Säteilyn tuottaa antennissa aktiivinen alue (pieni osa koko antennista, aallonpituuden tai sen puolikkaan kokoa), joka vaihtaa paikkaa antennissa, kun taajuus muuttuu. + Leveä kaistanleveys Aukkoantennit Antennissa on fyysinen aukko, jonka läpi aalto kulkee. + Suuri vahvistus Katso kuva 1-6.

16 Sähkömagneettisen teorian kertausta..? Maxwellin yhtälöt (aikaharmonisille kentille) E = jωb (1) H = jωd + J T (2) D = ρ T (3) B = 0 (4) Väliaineyhtälöt J T = σe + J (5) D = εe (6) B = µh (7)

17 Sähkömagneettisen teorian kertausta..? J T ja ρ T ovat kokonaisvirrantiheys ja -varaustiheys. J on tunnettu lähdevirta, eli syötön aiheuttama virrantiheys antennissa. Virratiheydelle ja varaukselle saadaan johdettua Maxwellin yhtälöistä virran jatkuvuusyhtälö: J T = jωρ T. (8) Häviölliselle johteelle voidaan (2) kirjoittaa muodossa: ( H = jω ε + σ ) E + J = jωε E + J, jω missä ε on kompleksinen dielektrisyysvakio.

18 Sähkömagneettisen teorian kertausta..? Roottoriyhtälöistä (1) ja (2) saadaan samanmuotoisia, kun lisätään (2):een kuvitteellisen magneettinen virrantiheys M: E = jωµh M. M:ää voidaan käyttää ekvivalenttisena lähteenä korvaamaan monimutkainen E-kenttä ja helpottamaan näin tehtävää.

19 Sähkömagneettisen teorian kertausta..? Tehtävällä on yksikäsitteinen ratkaisu vasta, kun tiedetään rajapinta- ja reunaehdot (katso kuva 1-7), ˆn (H 2 H 1 ) = J s (E 2 E 1 ) ˆn = M s, Missä J s, M s ovat pintavirtojen tiheydet. Täydelliselle johteelle ehdot saadaan muotoon H tan = J s ja E tan = 0.

20 Sähkömagneettisen teorian kertausta..? Poyntingin yhtälö Tilavuudessa V lähteestä otettu teho on yhtä suuri kuin tilavuudesta pois virtaavan tehon, tilavuudessa lämmöksi muuttuvan tehon sekä magneettiseksi ja sähköiseksi energiaksi varastoituneen tehon summa, P s = P f + P dav + j2ω(w mav W eav ).

21 Sähkömagneettisen teorian kertausta..? Tilavuuden reunan S läpi virtaava kompleksinen teho saadaan yhtälöstä P f = 1 E H ˆnds = S ˆnds, 2 S missä S on nk. Poyntingin vektori (tehotiheys yksiköissä W/m 2 ). Kerroin 1 2 juontuu siitä, että E ja H ovat huippuarvoja ja P f :n reaaliosa on alueesta poistuvan tehon aikakeskiarvo. Lämpöhäviötehon aikakeskiarvo, P dav = 1 σ E 2 dv. 2 V

22 Sähkömagneettisen teorian kertausta..? Varastoituneen magneettisen energian aikakeskiarvo, W mav = µ H 2 dv, ja sähköenergian aikakeskiarvo W eav = ε E 2 dv. Jos syöttötehoa ei ole annettu, se voidaan laskea virrantiheyden avulla, P s = 1 E J dv. 2 V V V

23 Sähkömagneettisen teorian kertausta..? Mitä tehon kompleksuus tarkoittaa käytännössä? Otetaan P f esimerkiksi: P f :n reaaliosa on pinnan S läpi menevät tehon aikakeskiarvo. P f :n imaginaariosa vastaa pinnan S läpi edestakaisin kulkevaa tehoa, jonka aikakeskiarvo on nolla.

24 Antennitehtävän ratkaiseminen Tyypillisessä antennitehtävässä oletetaan, virtajakauma antennissa tiedetään ennalta, ja halutaan ratkaista annetun virrantiheyden aikaansaamat kentät E ja H. Nämä saadaan ratkaisemalla yhtälöt (1) ja (2) yhdessä. Ratkaisun helpottamiseksi käytetään usein potentiaalifunktioita A ja Φ, H = 0 H = 1 µ A (9) (E + jωa) = 0 E + jωa = Φ. (10)

25 Antennitehtävän ratkaiseminen Kun kentät E ja H ilmaistaan potentiaalien avulla saadaan aaltoyhtälö vektoripotentiaalille A (Kun käytetään Lorentzin (gauge-)ehtoa A = jωµεφ), 2 A + ω 2 µεa = µj. (11) (11) on differentiaaliyhtälö, josta voidaan ratkaista A tunnetulla virrantiheydellä J. Kentät saa sitten kätevästi yhtälöstä (9) ja E = jωa j ( A) ωµε. (12)

26 Antennitehtävän ratkaiseminen Huom. Yhtälö (11) on vektoriaaltoyhtälö. Suorakulmaisessa koordinaatistossa se sisältää kolme skalaarista aaltoyhtälöä 2 A x + β 2 A x = µj x 2 A y + β 2 A y = µj y, 2 A z + β 2 A z = µj z missä β = ω µε on tasoaallon etenemiskerroin. Huomaa, että z-suuntainen virta aiheuttaa A:n, jolla on pelkästään z-komponentti.

27 Antennitehtävän ratkaiseminen Esimerkki: Ratkaistaan z-suuntaisen pistelähteen aiheuttama kenttä. Virrantiheys on nolla kaikkialla paitsi yhdessä pisteessä (origossa), missä virta on z-suuntainen, ts. µj z = δ(x)δ(y)δ(z). Vaikka tapaus onkin epäfysikaalinen, yleinen virtajakauma voidaan ajatella pistelähteiden kokoelmana (summana). Ratkaistava yhtälö on Lähteen ulkopuolella 2 A z + β 2 A z = δ(x)δ(y)δ(z). (13) 2 A z + β 2 A z = 0. (14)

28 Antennitehtävän ratkaiseminen Yhtälön (14) ratkaisut ovat e jβr r ja ejβr r, joista vain ensimmäinen on fysikaalisesti järkevä esittäen lähteestä poispäin kulkevaa palloaaltoa. Ratkaisuksi saadaan A z (r, φ, θ) = e jβr 4πr. Mielivaltaisen virrantiheyden aiheuttama aalto saadaan summaamalla eri paikoissa sijaitsevien pistelähdeiden aiheuttamat palloaallot virrantiheyden suuduudella painotettuna, A(r, φ, θ) = V µj e jβr 4πR dv, (15)

29 Antennitehtävän ratkaiseminen missä R on lähteen etäisyys tarkastelupisteeseen (katso kuva 1-8). Kun H on saatu ratkaisua vektoripotentiaalin avulla, E:n voi ratkaista joko yhtälöstä (12) tai ehkä vielä helpommin ratkaisemalla E yhtälöstä (2), E = 1 jωε ( H J). (16) Kun ollaan lähteen ulkopuolella, J = 0.

30 Ideaalinen dipoliantenni Ideaalinen dipoli on sähköisesti pieni lanka-antenni ( z λ), jossa virralla vakio amplitudi ja vaihe. Ideaalinen dipoliantenni on käytännön antennina harvinainen. Se on enemmänkin teoreettinen väline, sillä todellisen antennin voidaan approksimoida koostuvan useasta ideaalisesta dipolista, eli virtaelementistä. Esimerkiksi lyhyt lanka-antenni, jossa syöttö keskeltä ja virta menee nollaan langan päissä (lyhyt dipoli), vastaa monilta ominaisuuksiltaan ideaalista dipolia.

31 Ideaalinen dipoliantenni Tarkastellaan z:n pituista z-akselilla olevaa virtaelementtiä, jossa vakio amplitudi I. z P z I R y r Koska z λ ja z R, R r sekä nimittäjässä että eksponentissä. x A = ẑµi z/2 z/2 e jβr 4πR dz µie jβr 4πr z ẑ (17) Vrt. pistelähteen tuottama aalto, jossa I z = 1.

32 Ideaalinen dipoliantenni Magneettikentäksi H saadaan (pienellä väännöllä) H = 1 µ A = I z [ ] jβe jβr e jβr 4π r r 2 ˆr ẑ = I z [ jβ 4π r + 1 ] r 2 e jβr sinθ ˆφ

33 Ideaalinen dipoliantenni ja sähkökenttä E yhtälöllä (16) magneettikentän roottorista, E = I z 4π + I z 2π [ jωµ + r [ µ ε µ ε 1 r jωεr 3 ] 1 r jωεr 3 ] e jβr sin θ ˆθ e jβr cos θ ˆr

34 Ideaalinen dipoliantenni H ja E voidaan kirjoittaa myös muodossa H = I z ( 4π jβ ) e jβr sinθ ˆφ (18) jβr r E = I z ( 4π jωµ jβr + 1 ) e jβr (jβr) 2 sinθ ˆθ r + I z ( 1 2π jβη jβr + 1 ) e jβr (jβr) 2 cos θ ˆr (19) r jossa β = ω µε = 2π λ ja η = µ ε

35 Ideaalinen dipoliantenni kaukokenttä Antennien tapauksessa on tärkeää tietää millaiset kentät ovat kaukana antennista. Kun sähköinen etäisyys on iso, 1 ts. r λ eli βr 1, kaikki jβr :n potenssit ovat paljon pienempiä kuin 1, jolloin kenttien lausekkeet saadaan muotoon H = E = ja niiden kompontenttien suhde on I z e jβr jβ sinθ 4π r (20) I z sin θ ˆθ 4π r (21) E θ H φ = µ ε = η (22) eli aaltoimpedanssi, sama suhde kuin tasoaalloilla.

36 Ideaalinen dipoliantenni kaukokenttä Tarkastellaan seuraavaksi antennin tehoa. r-säteisen pinnan läpi virtaa kompleksinen tehotiheys S = 1 2 E H = 1 2 ( I z 4π ) 2 ωµβ sin2 θ r 2 ˆr, (23) joka on puhtaasti reaalinen ja säteen suuntainen. Tehotiheyden reaalisuus tarkoittaa, että antennista ulospäin virtaa energiaa aikakeskiarvolla S pinta-alayksikköä kohden, eikä antenniin päin palaa energiaa. Kyseessä on siis puhdas säteilytilanne.

37 Ideaalinen dipoliantenni kaukokenttä Tarkastellaan antennista poistuvaa kokonaistehoa integroimalla tehotiheys origokeskeisen pallopinnan läpi, P f = pallopinta S ˆnds = ωµβ 12π (I z)2. (24) Kokonaistehon reaalisuus tarkoittaa, että energiaa poistuu alueesta pinnan läpi aikakeskiarvolla P f. Vertaa ohmisiin häviöihin! Kokonaisteho on pallon säteestä riippumaton, eli pienemmän ja isomman pallopinnan läpi menee yhtä paljon energiaa, mikä on tyypillistä palloaallolle häviöttömässä materiaalissa. Tämän tyyppistä tehoa kutsutaan säteilytehoksi.

38 Ideaalinen dipoliantenni lähikenttä Kenttien lausekkeet (18) ja (19) ovat voimassa millä tahansa etäisyydellä, ja niitä tarvitaan esim. syöttöimpedanssin ymmärtämiseen. Kun βr 1, vain isoimmat jβr:n potenssit jäävät jäljelle, jolloin päädytään lähikentän lausekkeisiin, H nf = I z 4π e jβr E nf = jη I z 4πβ r 2 sin θ ˆφ (25) e jβr r 3 sin θ ˆθ jη I z 2πβ e jβr Lähikentän magneettikenttä on sama kuin virran aiheuttama induktiokenttä ja sähkökenttä on r 3 cos θ ˆr. (26)

39 Ideaalinen dipoliantenni lähikenttä samanlainen kuin varauksien q ja q muodostaman z-mittaisen dipolin kenttä. Huomaa, että sähkö- ja ja magneettikentät ovat 90 :een vaihesiirrossa, mikä viittaa reaktiiviseen tehoon. Kun lasketaan tehotiheys näillä lausekkeilla, ( I z S nf = jη 2β 4π ) 2 1 r 5 (sin2 θˆr sin 2θˆθ), (27) havaitaan, että se on puhtaasti imaginaarinen. Teholla ei ole säteen suuntaista komponenttia, jonka aikakeskiarvo eroaa nollasta. Kyseessä on seisova aalto, jossa energia varastoituu vuoron perään sähkökenttään ja magneettikenttään.

40 Ideaalinen dipoliantenni lähikenttä Imaginaarinen tehotiheys näkyy antennin syöttöimpedanssin nollasta eroavana reaktanssina, säteilyteho näkyy taas impedanssin reaaliosassa. Huomaa! Lähikenttiin päädyttiin lausekkeista, joita johdettaessa oletettiin, että z r. Lähikenttien alueella taas r λ. Lähikenttien lausekkeet ovat siis voimassa vain säteen arvoilla z r λ!

41 Alustavaa säteilykuvioista Säteilykuvio on tärkein yksittäinen antennin ominaisuus. Lähettävällä antennilla se kertoo kaukokenttien amplitudin suuntariippuvuuden, ts. kuinka paljon antenni säteilee mihinkin suuntaan. Kaikilla antenneilla kaukokentät vaimenevat 1/r-riippuvaisesti, mutta riippuvuus kulmista (θ, φ) on jokaisella antennilla erilainen.

42 Alustavaa säteilykuvioista Säteilykuvio esitetään tavallisesti graafisesti. Usein säteilykuvio esitetään jollakin antennin kautta menevällä tasolla, joista yleisimmät ovat päätasot: E-taso: Sähkökenttä on tason suuntainen H-taso: Magneettikenttä on tason suuntainen Esimerkki säteilykuviosta: z-suuntainen ideaalidipoli (katso kuva 1-10) on xy-tasossa ympärisäteilevä (omnidirectional) E-taso: mikä tahansa z-akselin sisältämä taso H-taso: xy-taso

43 Viivalähteen kentät Tarkastellaan nyt ideaalista dipolia yleisemmän lanka-antennin säteilykenttiä. Mallinnetaan sitä z-suuntaisella viivalähteellä, jonka virran amplitudi on I(z). Viivalähteen tuottaman aallon vektoripotentiaaliksi saadaan (15):sta A z = µ I(z ) e jβr 4πR dz. (28)

44 Viivalähteen kentät R voidaan kirjoittaa kuvan 1-11 merkinnöillä muodossa R = y 2 + (z z ) 2 = r 2 + ( 2r cos θz + (z ) 2 ) (29) = r z cos θ + (z ) 2 sin 2 θ 2r Edellisessä käytetty binomisarjaa: (a + b) r = k=0 ( r k )ar k b k + (z ) 3 sin 2 θ cos θ 2r Jos z r, edellisen summan termit pienenevät eteenpäin summassa mentäessä. Käytännössä summa pitää katkaista jostain kohtaa. Mukaan otetaan sitä enemmän termejä, mitä tarkempi approksimaatio tarvitaan.

45 Viivalähteen kentät Yhtälössä (28) summataan eri antennin osista lähteviä palloaaltoja. Nimittäjässä oleva R vaikuttaa ainoastaan kenttien amplitudiin tarkastelupisteessä, joten riittää approksimaatio R r. Osoittajan eksponentin vaihetermissä tarvitaan tarkempi approksimaatio R r z cos θ. (30) Vaikka eri lähdepisteiden tuottamien aaltojen amplitudin voidaan olettaa olevan sama tarkastelupisteessä, aallot voivat olla eri vaiheessa, jos erot välimatkassa eri lähdepisteistä tarkastelupisteeseen ovat aallonpituuden luokkaa. Jo λ/2-suuruinen ero R:ssä aiheuttaa 180 :n suuruisen vaihe-eron.

46 Viivalähteen kentät Joten (28) saadaan muotoon A z = µ I(z cos θ) ) e jβ(r z dz 4πr = µ e jβr I(z )e jβz cos θ dz, (31) 4πr josta saadaan magneettikentäksi H = = ˆφ 1 µ 1 µ (A zẑ) = 1 µ ( A z sin θˆθ + A z cos θˆr) 1 r e jβr 4πr 2 θ { jβµsinθ I(z )e jβz cos θ dz [ ]} µcos θ I(z )e jβz cos θ dz (32)

47 Viivalähteen kentät Yhtälön ensimmäinen termi on suuruusluokaltaan βr-kertainen toiseen termiin verrattuna, joten kaukokentässä (βr 1) vain ensimmäinen termi jää jäljelle, H = ˆφ jβ µ sinθµe jβr 4πr I(z )e jβz cos θ dz = ˆφ jβ µ sin θa z (33) ja vastaavasti sähkökenttä (E = jωa j ( A) ωµε ) kaukokentässä on E = jωa θˆθ = jω sinθazˆθ (34)

48 Viivalähteen kentät Antennin kaukokentät saadaan yhtälöistä (33) ja (34), kunhan vain integraali (31) saadaan laskettua. Antennien kaukokentät muodostavat TEM-palloaallon, sillä sähkö- ja magneettikentällä on vain etenemissuunnalle (ˆr) kohtisuorat komponentit E θ ja H φ, jotka ovat lisäksi kohtisuorassa keskenään. Lisäksi E θ = ηh φ, joka on TEM-aallon ominaisuus. Kaukana antennista TEM-palloaallot ovat likimain TEM-tasoaaltoja.

49 Kaukokenttä Yleistetään kaukokenttien käsite mielivaltaiselle äärelliselle antennille. Tavoitteena on etsiä sellainen raja säteelle r, että sitä suuremmilla etäisyyksillä kaikki edellä tehdyt kaukokenttäapproksimaatiot pätevät. Tavallisesti yhtälössä (15) eksponentissä olevan R:n approksimaation virhe tulee ensimmäisenä vastaan. Arvioidaan R:ää samansuuntaisten säteiden approksimaation avulla (katso kuvat 1-12 ja 1-13). Saadaan arvio R = r r r r rr = r ˆr r, (35) joka on z-suuntaisen viivalähteen tapauksessa sama kuin (30).

50 Kaukokenttä Raja sille, millä etäisyydellä lähteestä kaukokenttäalue alkaa, saadaan siitä etäisyydestä, jolla samansuuntaisten säteiden oletuksesta tuleva virhe on jo merkittävä. D:n pituiselle viivavaraukselle arvio rajasta saadaan laskemalla se etäisyys, millä (29):n kolmannen termin pudottaminen aiheuttaa maksimissaan λ/16-suuruisen virheen etäisyyteen: r ff = 2D2 λ. (36) Sädetta r ff kutsutaan kaukokentän etäisyydeksi tai Rayleigh n etäisyydeksi.

51 Kaukokenttä Yleiselle maksimimitaltaan D:n suuruiselle antennille käytetään viivavarauksen tapauksessa johdettuja kaukokentän ehtoja: r > 2D2 (37) λ r D (38) r λ (39) Ehto (38) liittyy approksimaatioon R r ja (39) on ekvivalentti ehdon βr 1 kanssa ja liittyy yhtälöiden (32) ja (33) tyylisiin termien pudotuksiin.

52 Kaukokenttä Ehto (37) on riittävä UHF-taajuuksien yläpuolella, mutta matalilla taajuuksilla antenni voi olla pieni aallonpituuteen nähden, jolloin tarvitaan ehtoja (38) ja (39). Lähikenttä voidaan vielä jakaa kahteen osaan: reaktiivinen lähikenttä ja säteilevä lähikenttä. Näiden säteiden rajat voidaan esittää (D λ) Reaktiivinen lähikenttä 0 < r < 0.62 D 3 /λ Säteilevä lähikenttä 0.62 D 3 /λ < r < 2D 2 /λ Kaukokenttä r > 2D 2 /λ

53 Säteilykenttien ratkaiseminen Yleisen antennin säteilykenttien ratkaisemisen vaiheet: 1. Etsi A integroimalla yhtälö A = µ e jβr 4πr V Je jβˆr r dv, (40) 2. Laske E E = jωa ( jωa ˆr)ˆr (41) 3. Laske H H = 1 ηˆr E (42)

54 Säteilykenttien ratkaiseminen Esimerkki: L-pituinen vakioamplitudinen viivalähde, kuva I(z I 0, x = 0, y = 0 ja L 2 ) = < z < L 2 0, muualla A z = µ e jβr 4πr = µ e jβr 4πr I 0 L 2 L 2 = µ I 0Le jβr 4πr I 0 e jβz cos θ dz e jβ(l/2) cos θ jβ(l/2) cos θ e jβ cos θ sin[(βl/2) cos θ] (βl/2) cos θ. E = jω sin θa zˆθ = jωµi 0Le jβr 4πr sinθ sin[(βl/2) cos θ] (βl/2) cos θ ˆθ (43)

55 Säteilykuvio Antennin säteilykuvio on kaukokenttien amplitudin vaihtelu r-säteisellä pallopinnalla, normalisoituna maksimiarvoltaan 1:ksi. z-suuntaiselle antennille F(θ, φ) = E θ E θ (max). (44) F(θ, φ) on normalisoitu kenttien säteilykuvio. Normalisoitu säteilykuvio ei riipu säteestä. E θ ja siten myös F(θ, φ) voivat olla kompleksisia. Tällöin vaiheen nollakulma asetetaan kohtaan, jossa F(θ, φ) saa arvon 1.

56 Säteilykuvio 1. Esimerkki: Ideaalinen dipoli, F(θ, φ) = I z jωµe jβr 4π r I z 4π jωµe jβr r sin θ = sinθ. 2. Esimerkki:Vakioamplitudiselle virtalähteelle saadaan säteilykuvion lauseke normalisoimalla (43), F(θ) = sinθ sin[βl/2 cos θ] βl/2 cos θ (45) Yhtälössä (45) esiintyy funktio sin(u)/u, eli sinc-funktio, jonka maksimi saavutetaan, kun u = βl/2 cos θ = 0, eli kun θ = 90.

57 Säteilykuvio Yhtälö (45) havainnollistaa sitä kaikille antenneille yhteistä piirrettä, että säteilykuvio voidaan kirjoittaa muodossa F(θ, φ) = g(θ, φ)f(θ, φ), (46) jossa g(θ, φ) elementtitekijä (element factor) ja f(θ, φ) muotokerroin (pattern factor). Elementtitekijä on (antennin) alkeisvirtaelementin suuntakuvio. Tämä tekijä riippuu antennin virtojen suunnasta tarkastelupisteeseen nähden. Tekijä johtuu A:n projektiosta pallopinnalle yhtälöstä (41). Muotokerroin kertoo antennin virtajakauman vaikutuksen säteilykuvioon. Se on yhtälöstä (40) saadun A:n normeerattu säteilykuvio.

58 Säteilykuvio 1. Esimerkki: Ideaalinen dipoli koostuu koostuu yhdestä virtaelementistä, joten sillä F(θ) = sin θ = g(θ). Tämä on virtaelementin projektio θ-suuntaan. 2. Esimerkki: Vakioamplitudisen virtalähteen tapauksessa f(θ) = g(θ) = sinθ (47) sin[βl/2 cos θ] βl/2 cos θ (48) Huomaa, että molemmat esimerkit ovat tasossa ympärisäteileviä (omnidirectional), eli niiden suuntakuviot ovat φ:stä riippumattomia.

59 Säteilykuvio Muotokerroin saadaan summaamalla ( integroimalla) kaukokentässä antennin eri osista lähtevät samansuuntaiset säteet ottaen huomioon amplitudit ja vaiheet. Johonkin tiettyyn suuntaan eri osista antennia lähteneet säteet saapuvat enemmän samanvaiheisina, jolloin ne vahvistavat toisiaan ja vastaavasti johonkin toiseen suuntaan vastakkaisvaiheisina, jolloin ne kumoavat toisiaan (kuva 1-16). Esimerkiksi vakioamplitudisen virtalähteen tapauksessa säteet ovat samassa vaiheessa antennin pituussuuntaan kohtisuoralla tasolla, joten säteilyn maksimisuunta (pääkeila) on tähän suuntaan.

60 Säteilykuvio Ideaalidipoli on taas niin lyhyt, että vaihe-eroja ei pääse muodostumaan mihinkään suuntaan, joten muotokerroin on 1. Pitkille viivalähteille (L λ) muotokerroin (48) on paljon terävämpi kuin sinθ, joten F(θ) f(θ). Siksi usein riittää pelkän muotokertoimen tarkastelu. Jos pääkeila osoittaa johonkin muualle kuin elementtitekijän maksimisuuntaan (θ = 90 ), elementtitekijä pitää ottaa huomioon.

61 Säteilykuvio Toinen tapa kuvata antennin suuntaavuusominaisuuksia on käyttää tehon säteilykuviota (power pattern, directivity pattern, suuntakuvio). Se määritellään säteilytehon θ, φ -riippuvuutena. Säteilyteho saadaan Poyntingin vektorin r-komponentistä. z-suuntaiselle viivalähteelle H φ = E θ /η, jolloin Poyntingin vektorin r-komponentti on E θ 2 2η. Kun tämä vielä normalisoidaan, huomataan yleinen yhteys kenttien ja tehon säteilykuvioille, P(θ, φ) = F(θ, φ) 2. (49)

62 Säteilykuvio Säteilykuviot esitetään usein desibeliasteikolla. Huomaa, että kenttien (amplitudin) säteilykuvio ja tehon säteilykuvio ovat desibeleinä samoja: P(θ, φ) db = 10 log P(θ, φ) = 10 log F(θ, φ) 2 = 20 log F(θ, φ) = F(θ, φ) db

63 Säteilykuvioparametrit Tyypillisesti säteilykuviot esitetään päätasoilla polaaripiirroksina (napakoordinaattipiirroksina, polar plot), joissa viivan etäisyys origosta kertoo säteilyn suuruuden kyseiseen suuntaan. Esimerkiksi kuvassa 1-15 on tyypillinen (tehon) säteilykuvio. Säteilykuvio sisältää monta keilaa, Pääkeila (main lobe), joka sisältää maksimisäteilyn suunnan Useita sivukeiloja (side lobe), jotka ovat pääkeilaa pienempiä

64 Säteilykuvioparametrit Mahdollisesti säteilykuviossa on myös takakeila (back lobe), joka on pääkeilalle vastakkainen. Sivukeilataso (side lobe level) on sivukeilan maksimin suhde pääkeilan maksimiin. Maksimi sivukeilataso (SLL) on suurin sivukeilataso, SSL db = 20 log F(SSL) F(max), (50) missä F(max) on kentän säteilykuvion maksimiarvo ja F(SSL) säteilykuvion maksimiarvo sivukeiloissa. Sivukeilataso kertoo kuinka hyvin säteilyteho on keskittynyt pääkeilaan.

65 Säteilykuvioparametrit Oletetaan, että säteilykuvio riippuu vain θ:sta. Puolitehon keilanleveys (3dB keilanleveys, half-power beamwidth) HP niiden kulmien erotus, joissa tehon säteilykuvion arvo pääkeilassa on puolet maksimista, HP = θ HPleft θ HPright, (51) jossa siis P(θ HPleft ) = P(θ HPright ) = 1/2. Kenttien säteilykuviossa F(θ) nämä kulmat vastaavat 1/ 2-kohtia. Ideaaliselle dipolille HP = = 90. Jos säteilykuvio riippuu myös φ:sta, voidaan määrittää kaksi puolitehon leveyttä.

66 Säteilykuvioparametrit Isotrooppinen antenni säteilee joka suuntaan yhtä paljon, vakio säteilykuvio. Pallosäteilijä. Tasossa ympärisäteilevän antennin (omnidirectional antenna) säteilykuvio on vakio jossain tasossa. Rintamasäteilijän (broadside antenna) pääkeila on kohtisuorassa antennin sisältämään tasoon nähden. Päätysäteilijän (endfire antenna) muotokertoimen pääkeila on antennin sisältämän tason suuntainen. z-suuntaisille viivalähteille, rintasäteilijän pääkeila on θ = 90 -suuntainen, päätysäteilijän 0 ja 180 -suuntainen.

67 Säteilykuvioparametrit Kuvassa 1-16 on joitain muotokertoimen f(θ) suuntakuvioita z-suuntaisille viivalähteille. Muista, että päätysäteilijöillä elementtitekijällä sin θ on suuri merkitys.

68 Suuntaavuus ja vahvistus Yksi tärkeä antennin ominaisuus on se, miten sen säteilemä energia suuntaantuu, eli sen suuntavuus. Lähdetään määrittelemään tätä suuretta. Antennin säteilemä tehon aikakeskiarvo on P = 1 { } 2 Re E H ˆnds = 1 2 Re 2π π 0 0 (E θ Hφ E φ Hθ)r 2 sinθdθdφ,

69 Suuntaavuus ja vahvistus jota saadaan yksinkertaistettua, kun käytetään tasoaallolle voimassa olevaa ehtoa Tällöin H = 1 ηˆr E H φ = E θ η ja H θ = E φ η. (52) P = 1 2η ( E θ 2 + E φ 2 )r 2 dω, (53) missä dω = sin θ dθ dφ = avaruuskulmaelementti, katso kuva 1-17.

70 Suuntaavuus ja vahvistus Koska säteilykenttien suuruus 1/r-riippuvainen, voidaan määritellä säteilyintensiteetti, U(θ, φ) = 1 2 Re {E H } r 2ˆr, (54) joka on säteilyteho avaruuskulmayksikköä (steradiaani) kohden annettuun suuntaan. Se on riippumaton säteen suuruudesta. Se voidaan kirjoittaa säteilykuvion avulla, U(θ, φ) = U m F(θ, φ) 2, (55) jossa U m on sätelyintensiteetin maksimi, ja säteilykuvio F(θ, φ) on normalisoitu ykköseksi maksimi-intensiteetin suuntaan, kuten aiemminkin.

71 Suuntaavuus ja vahvistus Nyt säteilyteho voidaan kirjoittaa muodossa P = U(θ, φ)dω = U m F(θ, φ) 2 dω. (56) Isotroopisella säteilijällä säteilyintensiteetti on vakio U ave, jolloin P = U ave dω = 4πU ave, jossa 4π (sr) on täysi avaruuskulma. Yleiselle säteilijälle intensiteetti ei ole vakio, mutta myös sille voidaan määritellä keskimääräinen säteilyintensiteetti yksikköavaruuskulmaa kohden, U ave = 1 4π U(θ, φ)dω = P 4π Se vastaa sitä säteilyintensiteettiä, jota isotrooppinen häviötön säteilijä säteilisi ympärilleen syöttöteholla P. (57)

72 Suuntaavuus ja vahvistus Esimerkki: ideaalinen dipoli. Yhtälöstä (23) saadaan ( I z ) 2 βωµsin 2 θ, (58) eli U(θ, φ) = 1 2 4π ( ) 2 I z βωµ ja F(θ, φ) = sinθ U m = 1 2 4π Sijoittamalla yhtälössä (24) laskettu kokonaisteho (57):än, ideaalidipolin keskimääräiseksi säteilyintensiteetiksi saadaan U ave = P 4π = ωµβ 12π (I z)2 4π = 1 3 ( I z 4π ) 2 βωµ = 2 3 U m. (59)

73 Suuntaavuus ja vahvistus Suuntavuus on (θ, φ)-suuntaisen säteilyintensiteetin suhde keskimääräiseen säteilyintensiteettiin, D(θ, φ) = U(θ, φ) U ave = 4πU(θ, φ) P. (60) Suuntaavuus voidaan esittää myös etäisyydellä r (θ, φ)-suuntaisen tehotiheyden suhteena keskimääräiseen tehotiheyteen, D(θ, φ) = U(θ, φ)/r2 U ave /r 2 = 1 2 Re{E H } ˆr P. (61) 4πr 2

74 Suuntaavuus ja vahvistus Usein suuntaavuuden laskemiseen käytetään muotoa D(θ, φ) = 1 4π U(θ, φ) = U(θ, φ)dω 1 4π F(θ, φ) 2 F(θ, φ) 2 dω = 4π Ω A F(θ, φ) 2, (62) missä Ω A on keilan avaruuskulma, Ω A = F(θ, φ) 2 dω (63) Tästä yhtälöstä huomaamme, että suuntaavuus riippuu pelkästään antennin säteilykuviosta.

75 Suuntaavuus ja vahvistus Yhtälöstä (56) nähdään, että P = U m Ω A. Keilan avaruuskulma vastaa siis avaruuskulmaa, johon kaikki antennin lähettämä teho saataisiin mahdutettua, jos koko keilan alueella intensiteetti olisi maksimiarvo U m. Katso kuva Usein suuntaavuudesta puhutaan yhtenä lukuna, eikä kulmien funktiona. Tällöin kyseessä on suuntaavuuden maksimiarvo, D = U m U ave = U m P/4π = 4πU m U m Ω A = 4π Ω A. (64)

76 Suuntaavuus ja vahvistus Kulmariippuvalle suuntaavuudelle pätee Katso kuva D(θ, φ) = D F(θ, φ) 2. (65) Esimerkki: Ideaalinen dipoli, Ω A = sin θ 2 sinθdθφ = 2π 4 3 = 8π 3, D = 4π Ω A = 3 2.

77 Suuntaavuus ja vahvistus Vahvistus kertoo kuinka hyvin antenni muuttaa siihen syötetyn tehon säteilytehoksi (θ, φ)-suuntaan. (Teho)vahvistus määritellään G(θ, φ) = 4πU(θ, φ) P in, (66) jossa P in on antennin napoihin syötetty teho. Vahvistus huomioi antennissa tapahtuvat häviöt toisin kuin suuntaavuus. Erona suuntaavudessa (60) ja vahvistuksessa (66) on se teho, mitä nimittäjässä käytetään. Jos antenni olisi häviötön, pitäisi paikkansa G(θ, φ) = D(θ, φ).

78 Suuntaavuus ja vahvistus Samoin kuin suuntaavuudella, vahvistuksestakin puhutaan usein vain yhtenä lukuna, joka on kulmariippuvan vahvistuksen maksimiarvo, G = 4πU m P in. (67) Oikeassa antennissa osa tehosta hukkuu antennissa ja lähellä olevissa rakenteissa, joten vahvistus on pienempi kuin suuntaavuus. Säteilytehon osuutta syöttötehosta kutsutaan säteilytehokkuudeksi, e r = P P in (0 e r 1). (68)

79 Suuntaavuus ja vahvistus Nähdään, että G(θ, φ) = e r D(θ, φ), erityisesti G = e r D. (69) Kun kirjassa tai luennoilla puhutaan suuntaavuudesta tai vahvistuksesta tästä eteenpäin, ovat kyseessä maksimiarvot, jos ei toisin mainita. Suuntaavuus ja vahvistus ilmoitetaan usein desibeleissä, D db = 10 log D, G db = 10 log G. (70)

80 Suuntaavuus ja vahvistus Usein vahvistus ilmoitetaan suhteessa johonkin referenssiantenniin, eli käytetään suhteellista vahvistusta, G = U m U m,ref. (71) Normaali vahvistus on suhteellinen vahvistus, kun referenssinä on häviötön isotrooppinen antenni. Alle 1 GHz taajuudella käytetään referenssinä usein (häviötöntä) puoliaaltodipolia. Tällöin käytetään yksikkönä dbd:tä ja referenssin ollessa isotrooppinen antenni dbi:tä. Näiden yksiköiden välillä on yhteys 0 dbd = 2.15 dbi.

81 Antennin impedanssi Antennin syöttöimpedanssi on se impedanssi, jolla antenni näkyy sen syöttöpisteisiin. Syöttöimpedanssiin vaikuttavat kaikki antennin lähistöllä olevat rakenteet ja muut antennit ( vaikutus antennin kenttiin vaikutus säteilytehoon vaikutus antennin syöttötehoon). Käsittelyn yksinkertaistamiseksi oletetaan antenni eristetyksi. Syöttöimpedanssi jakautuu kahteen osaan, Z A = R A + jx A, (72) jossa R A on syöttöresistanssi ja X A syöttöreaktanssi.

82 Antennin impedanssi R A kuvaa antennin häviöitä kahdella eri tapaa tehoa lähtee antennista säteilemällä, eikä se palaa ohmiset häviöt antennissa Ohmiset häviöt ovat tavallisesti pieniä verrattuna säteilyhäviöihin, paitsi sähköisesti pienillä antenneilla. Säteilyhäviöt ovat antennin säteilemää tehoa, eli sitä mitä antennilla juuri pyritään tuottamaan, mutta antennia syöttävän piirin kannalta tämäkin teho on häviötä. X A vastaa lähikenttiin varastoitunutta tehoa. Resiprookkisen antennin impedanssi on sama vastaanotossa ja lähetyksessä.

83 Syöttöresistanssi ja säteilytehokkuus Antennin häviöiden aikakeskiarvo on P in = 1 2 R A I A 2, (73) missä I A on virta syöttöpisteessä. Kerroin 1/2 johtuu siitä, että I A on virran huippuarvo. Erotetaan säteilyteho ja ohmiset häviöt, P in = P + P ohmic 1 2 R A I A 2 = 1 2 R r I A R ohmic I A 2, (74) jossa R r on (syöttöpisteistä katsottu) säteilyresistanssi, R r = 2P I A 2. (75)

84 Syöttöresistanssi ja säteilytehokkuus Säteilyresistanssi voidaan määritellä minkä tahansa muunkin antennivirran avulla. (74):sta seuraa, että R A = R r + R ohmic. (76) R ohmic vastaa antennin ja muiden antennirakenteiden (esim maatason) häviöitä, R ohmic = 2(Pin P) I A 2. (77)

85 Syöttöresistanssi ja säteilytehokkuus Säteilyteho saadaan integroimalla Poyntingin vektoria kaukokentässä olevan pinnan S ff yli, P = 1 E H ˆnds. (78) 2 S ff Esimerkki: Ideaalidipolin säteilyteho (I A = I) saadaan yhtälöstä (24), jolloin (η = µ ε, β = ω εµ) R r = 2P I A 2 = 2 I 2 ωµβ = η 2 3 π ( z λ 1 εµ µ 12π (I z)2 = 6π β2 ( z) 2 ) 2 ( ) 2 z 80π 2 Ω (79) λ Ideaalidipolille R r on hyvin pieni, koska z λ.

86 Syöttöresistanssi ja säteilytehokkuus Säteilytehon ja ohmisten häviöiden suhde määrää antennin tehokkuuden. Edellä määriteltiin säteilytehokkuudeksi säteilytehon suhde antennin ottamaan kokonaistehoon, e r = P P in = = P P + P ohmic = 1 2 R r I A R r I A R ohmic I A 2 R r R r + R ohmic = R r R A (80) Korkeilla taajuuksilla ohmisia häviöitä voidaan arvoida olettamalla, että antennin johtavissa osissa virta kulkee tunkeutumissyvyyden (δ = 2 ωµσ ) paksuisessa

87 Syöttöresistanssi ja säteilytehokkuus pintakerroksessa, jolloin saadaan arvio R ohmic L σ2πaδ = L 2πa R s, (81) jossa L on johtimen pituus, a johtimen säde ja R s pintaresistanssi, R s = 1 σδ = ωµ 2σ. (82) Jos lanka-antennin virta ei ole vakio, ohmiseksi resistanssiksi saadaan R ohmic = 2P ohmic I A 2 = 1 I A 2 R s 2πa L/2 L/2 I(z) 2 dz. (83)

88 Esimerkki: Lyhyt dipoliantenni Monille antenneille säteilytehokkuus on lähes 100%. Tämä ei kuitenkaan päde kaikille sähköisesti pienille antenneille. Ideaalisen dipolin virralla oletettiin olevan vakio amplitudi. Todellisilla suorilla lanka-antenneilla amplitudi ei ole vakio, vaan virran suuruus pienenee antennin päätä kohden. Keskeltä syötetyssä lyhyessä dipolissa ( z λ) virta on jakautunut lähes kolmiomuotoisesti, katso kuva Vektoripotentiaali lyhyen dipolin tapauksessa saadaan yhtälöstä (15). Samoin kuin ideaalidipolin tapauksessa (17), antennin eri osista saapuvien aaltojen amplitudi- ja

89 Esimerkki: Lyhyt dipoliantenni vaihe-erot ovat mitättömiä, A = ẑµ z/2 z/2 I(z ) e jβr 4πR dz µe jβr 4πr z/2 z/2 I(z )dz ẑ (84) Tulos on siis sama kuin ideaalidipolille, paitsi että kertoimena on I z:n sijasta virran integraali z:n pituisen antennin yli, eli kuvan 1-20b mukaisen kolmiovirtakuvion pinta-ala. Lyhyen dipolin säteilykuvio on siten sama kuin ideaalidipolilla eli F(θ) = g(θ) = sinθ. Koska suuntaavuus riippuu ainoastaan säteilykuviosta, myös suuntaavuus on sama kuin ideaalisella dipolilla.

90 Esimerkki: Lyhyt dipoliantenni Kolmiovirtakuvion pinta-ala on puolet I z:sta, joten säteilykenttien suuruus on puolet ideaalidipolin kentistä. Sanotaan, että lyhyen dipolin ekvivalenttinen pituus on puolet ideaalisen dipolin pituudesta. Säteilyresistanssi saadaan integroimalla Poyntingin vektoria kaukokentässä, eli se on verrannollinen sähkökentän neliöön ja sitä kautta antennin ekvivalenttisen pituuden neliöön. Koska lyhyen dipolin säteilykuvio on sama kuin ideaalisen dipolin, sen säteilyresistanssi on neljäsosa ideaalidipolin säteilyresistanssista, R r = 20π 2 ( z λ ) 2 Ω.

91 Esimerkki: Lyhyt dipoliantenni Ohminen resistanssi saadaan yhtälöstä (83), kun virtajakauma on nyt I(z) = I A (1 2 z z z ), z 2, R ohmic = z 2πa R s 3. Tämä on 1 3 saman mittaisen ideaalidipolin ohmisesta resistanssista. Koska lyhyen dipolin säteilyresistanssi suhde ohmiseen resistanssiin on pienempi kuin ideaalisessa dipolissa, lyhyen dipolin säteilytehokkuus on pienempi kuin ideaalidipolin.

92 Esimerkki: Lyhyt dipoliantenni Esimerkin 1-4 autoradion antennin säteilytehokkuus on 6.7% eli varsin matala. Vastaanottoantennin huono tehokkuus voidaan kompensoida käyttämällä suuritehoisia lähetysantenneja korkeissa mastoissa. Näin vastaanottoantennit voivat olla halpoja ja yksinkertaisia, kallista ja monimutkaista tekniikkaa tarvitaan ainoastaan muutamissa lähetysantenneissa. Antennin tehokkuuden vähenemisen lisäksi ohmiset häviöt toimivat myös kohinan lähteinä. Ulkopuolelta tullut kohina on kuitenkin yleensä merkittävämpi kohinalähde.

93 Syöttöreaktanssi Syöttöreaktanssi edustaa lähikenttiin varastoitunutta tehoa. Sähköisesti pienillä antenneilla syöttöreaktanssi on suuri, ja syöttöresistanssi pieni, kuten edellä on todettu. Lyhyellä dipolilla on kapasitiivinen reaktanssi ja pienellä silmukka-antennilla induktiivinen reaktanssi.

94 Syöttöreaktanssi Antennin impedanssi vaikuttaa siihen, kuinka lähettimen teho siirtyy antenniin tai antennilta vastaanottimeen. Jotta vastaanottimeen saadaan mahdollisimman suuri teho, sen impedanssin pitäisi olla antenni-impedanssin kompleksikonjugaatti. Vastaanottimissa on tyypillisesti reaalinen impedanssi (50 Ω), joten antennin reaktanssi pitää poistaa sovituspiirillä. Sovituspiirien ohmiset häviöt pienentävät tehokkuutta ja lisäksi sovituspiirit kaventavat antennin kaistanleveyttä.

95 Polarisaatio Antennin polarisaatio on antennin lähettämän aallon polarisaatio annettuun suuntaan. Kaukana antennista aalto on lokaalisti tasoaalto. Tasoaallon polarisaatio on se kuvio, jonka sähkökenttävektorin kärki piirtää ajan funktiona yhdessä tarkastelupisteessä (kuvat 1-21 ja 1-22). Yleisesti kärjen piirtämä kuvio on ellipsi, eli aalto on elliptisesti polarisoitunut (kuvat 1-22e ja 1-22f). Jos vektorin kärki liikkuu edestakaisin viivaa pitkin, aalto on lineaarisesti polarisoitunut (kuvat 1-22a ja 1-22b). Viivavarauksen kenttä

96 Polarisaatio Jos sähkökenttävektorin pituus pysyy vakiona, mutta sen kärki kiertää ympyrän muotoista reittiä, aalto on ympyräpolarisoitunut. Jos aalto tulee tulee kohti tarkastelijaa ja vektorin kärki kiertää myötäpäivää ajan funktiona, aalto on vasenkätisesti polarisoitunut. Vastapäivää kiertävä on oikeakätisesti polarisoitunut (kuvat 1-22c, 1-22d ja 1-23). Helix-antennin kenttä, kätisyys sama kuin helixin käämityksen kätisyys

97 Polarisaatio Sähkökenttä ajan funktiona yhdessä tarkastelupisteessä (z = 0) voidaan kuvan 1-24 merkinnöillä kirjoittaa muodossa E = E xˆx + E y ŷ = E 1 cos ωtˆx + E 2 cos(ωt + δ)ŷ, (85) jossa δ vaihe, jolla y-komponentti on edellä x-komponenttiä. E 1 ja E 2 sähkökentän x- ja y-komponenttien maksimiarvot. Kun δ = 0, kyseessä lineaarinen polarisaatio, E 1 :n ja E 2 :n suhteelliset arvot määräävät polarisaation suunnan. δ > 0, kyseessä vasenkätinen elliptinen polarisaatio. δ < 0, oikeakätinen elliptinen polarisaatio.

98 Polarisaatio Jos E 1 = E 2 ja δ = ±90, kyseessä on ympyräpolarisoitunut aalto. Osoitinmuodossa (85) saa muodon E = E 1 ˆx + E 2 e jδ ŷ = E1 2 + E2 2 (cos γ ˆx + sin γejδ ŷ) = E ê, (86) jossa γ = tan 1 E 2 E 1. ê on kompleksinen yksikkövektori, joka kertoo aallon polarisaation. z-suuntaan etenevän aallon polarisaatio tiedetään, jos tunnetaan polarisaatioparametrit δ ja γ tai vektori ê.

99 Polarisaatio Antennin tuottaman aalto voi olla eri tavalla polarisoitunut eri suuntiin antennista, eli polarisaatio on suuntariippuvainen. Pääkeilan sisällä polarisaatio pysyy usein lähes samana, joten keilan maksimisuuntaa käytetään antennin polarisaation kuvaamiseen. Sivukeiloissa polarisaatio voi olla hyvin erilainen. Resiprookkisilla antenneilla polarisaatio-ominaisuudet ovat samoja myös vastaanotossa. Antenni vastaanottaa tehokkaimmin aaltoa, jonka polarisaatio ja kätisyys on sama, kuin mikä on antennille ominainen polarisaatio.

100 Käytännön sähköisesti pienet dipolit Sähköisesti pienen antennin koko on alle λ/10. Sähköisesti pieni antennikin voi olla matalilla taajuuksilla fyysisesti hyvin suuri. Sähköisesti pieniä dipoleita Lyhyt dipoli, jossa kolmiovirta (kuva 2-1) Ideaalinen dipoli, jossa vakiovirta (kuva 2-2) Ohuissa (halkaisija λ) keskellä syötetyissä lankaantenneissa virta on lähes sinimuotoinen ja nolla langan päässä. Koska lyhyen dipolin lankojen pituus aallonpituuden murto-osa, virta on lähes kolmiomainen (kuva 2-1b). Koska ideaalidipolissa virta on vakio, varauksien pitää

101 Käytännön sähköisesti pienet dipolit pakkautua johtimien päihin. Käytännössä tämä saadaan aikaiseksi laittamalla johtimien päihin metallilevyt, joihin varaus voi siirtyä johtimesta. Tätä kutsutaan kondensaattorilevyantenniksi (capacitor-plate antenna, kuva 2-3). Johtimessa virta on lähes vakio ja levyissä kulkevien virtojen kentät kumoutuvat kaukokentässä. Levy voidaan korvata yhdellä tai useammalla säteen suuntaisella johtimella. Sähköisesti pieniä dipoleita käytetään Hyvin matalilla taajuuksilla ( 10 khz) AM-taajuuksilla vastaanotossa ( 500 khz) Vain erityistilanteissa korkeammilla taajuuksilla

102 Puoliaaltodipoli Puoliaaltodipoli on λ/2-pituinen suora dipoliantenni, jossa virran amplitudi muuttuu sinimuotoisesti, ollen keskellä syötön kohdassa maksimissaan (kuva 2-5a). Koska dipolin johtimien paksuus on pieni pituuteen verrattuna, voidaan sitä approksimoida äärettömän ohuella viivalähteellä. Puoliaaltodipolin etuna on se, että se saadaan resonanssitilaan, jolloin syöttöreaktanssi on nolla, joten reaktanssin poistamiseen ei tarvita sovituspiiriä.

103 Puoliaaltodipoli Resonanssitila saadaan, jos antennin pituus on hieman pienempi kuin λ 2, sitä lyhyempi mitä paksummat antennijohtimet ovat. Dipolin virtajakauma on [ I(z) = I m sin β ( )] λ 4 z, z λ 4 (87) Sijoittamalla (40) (41):een saadaan puoliaaltodipolin tapauksessa λ E θ = jωµsin θ e jβr 4 I(z )e jβz cos θ dz (88) 4πr Ei-normalisoitu muotokerroin saadaan integraalikaavalla (F-11) λ 4

104 f un = λ 4 Puoliaaltodipoli π ) I m sin( 2 β z e jβz cos θ dz λ 4 [ / 0 =I m + 0 λ 4/ λ 4 e jβz cos θ β 2 β 2 cos 2 θ e jβz cos θ β 2 β 2 cos 2 θ = I m β 2 sin 2 θ ( π ( π jβ cos θ sin( 2 + βz ) β cos 2 + βz )) ( π ( jβ cos θ sin( ] π 2 βz ) + β cos 2 βz )) [ jβ cos θ e j π 2 cos θ ( β) + e j π 2 cos θ β jβ cos θ ] = I m β sin 2 θ 2 cos ( π 2 cos θ )

105 Puoliaaltodipoli Sijoittamalla tämä (88):een, saadaan E θ = jωµ 2I m β e jβr 4πr sinθcos ( π 2 sin 2 θ cos θ) Tässä elementtitekijä on tuttu g(θ) = sinθ ja normalisoitu muotokerroin on ja säteilykuvio f(θ) = cos ( π 2 cos θ) sin 2 θ F(θ) = g(θ)f(θ) = cos ( π 2 cos θ) sinθ (89), (90). (91)

106 Puoliaaltodipoli Säteilykuvio on esitetty kuvassa 2-5b. Puoliaaltodipoli säteilee eniten antennin suuntaa kohtisuoraan, eli se on rintamasäteilijä. Lisäksi se on xy-tasossa ympärisäteilevä. Jos dipolin pituutta kasvatettaisiin pidemmäksi kuin λ, osaan dipolia tulisi vastakkaissuuntainen virta (kuva 5-3). Näiden erisuuntaisten virtojen kentät kumoaisivat toisiaan rintamasuuntaan (θ = 90 ), ja vahvistavat muihin suuntiin (kuva 5-4). Tästä syystä suurin osa käytännön lanka-antenneista on pienempiä kuin λ. Puoliaaltodipolin syöttöimpedanssi on 73 + j42.5 Ω. Jos pituutta lyhennetään hiukan resonanssin saavuttamiseksi, impedanssi on 70 + j0 Ω.

107 Antennit maatason yläpuolella Tähän mennessä olemme olettaneet, että antenni on vapaassa tilassa. Tämä oletus ei aiheuta suurta virhettä käytännön antenneille, jotka ovat korkealla ja joilla on suuri vahvistus. Leveäkeilaisille antenneille lähellä olevat kappaleet vaikuttavat säteilykuvioon ja impedanssiin. Tärkein vaikuttava tekijä on maataso. Oletetaan tässä vaiheessa ideaalinen maataso Maa on täydellistä johdetta Oletus aiheuttaa vain pienen virheen hyvillä johteilla (esim alumiini ja kupari)

108 Antennit maatason yläpuolella Se muodostaa äärettömän tason. Aiheuttaa isomman virheen. Jos antenni on lähellä maatasoa, tason oltava iso antennin dimensioihin verrattuna. voidaan usein korvata tasossa olevilla säteen suuntaisilla johtimilla (kuva 2-12c)

109 Maataso kuvalähdemenetelmä Antennin ollessa maatason päällä, se aiheuttaa kaksi sädettä joka tarkastelusuuntaan, yhden suoraan antennista ja toisen heijastuneena maatasosta. Tarkastellaan maatason yläpuolella olevaa ideaalista dipolia. Maataso voidaan korvata maatason toiselle puolelle asetetulla sopivalla kuvalähteellä. Antenni ja kuvalähdeantenni muodostavat yhdessä samat kentät maatason yläpuolella kuin antenni ja maataso. Tämä seuraa siitä, että kuvalähde asetetaan niin, että antennin ja kuvalähteen kentät yhdessä toteuttavat maatason kohdalla saman reunaehdon, kuin mikä ilman ja maatason rajalla toteutuisi.

110 Maataso kuvalähdemenetelmä Katso kuvat 2-7 ja 2-9 pysty- ja vaakasuuntaisen ideaalidipolin kuvalähteestä. Kuvassa 2-8 on selitetty reunaehtojen toteutumista. Yleisen antennin kuvalähde saadaan jakamalla antennin virrat vaaka- ja pystysuuntaisiin virtaelementteihin ja käyttämällä näihin virtaelementteihin kuvalähdemenetelmää (kuva 2-10). Käytännön sovellus kuvalähdemenetelmästä on monopoliantenni.

111 Monopoli Monopoli on dipoli, joka on puolitettu keskipisteestään, sijoitettu maatason päälle ja sen syöttö on kytketty maatason ja johtimen välille. Monopoleilla on vastineensa eri dipoli-tyypeille, esimerkiksi ideaalinen, lyhyt ja λ/4-pituinen monopoli (katso kuva 2-11). Monopoleja syötetään usein koaksiaalilla kuvan 2-12a mukaisesti. Kuvalähdemenetelmän nojalla monopolin virrat ja varaukset ovat samat kuin vastaavan dipolin yläosassa, mutta sen syöttöjännite on vain puolet dipolin syöttöjännitteestä.

112 Monopoli Tämä seuraa siitä, että maatason potentiaali on dipolin syöttöpisteiden potentiaalien puolivälissä. Siten Z A,mono = V A,mono I A,mono = 1 2 V A,dipole I A,dipole = 1 2 Z A,dipole. (92) Säteilyresistanssin tapauksessa tämän näkee vielä selvemmin. Koska kuvalähdemenetelmän mukaan kentät maatason yläpuolella ovat samat kuin dipolilla, mutta nyt säteilyä lähteekin vain ylempään puolitasoon, säteilyteho on vain puolet dipolin tapauksesta. Siten R r,mono = P mono 1 2 I A,mono = P dipole 1 2 I A,dipole = R r,dipole. (93)

113 Monopoli Esimerkiksi lyhyen h-pituisen (h λ) monopolin säteilyresistanssi on R r,mono = 40π 2 ( h λ). Monopolin suuntaavuus on kaksinkertainen dipoliin verrattuna, D mono = 4πU m = 4πU m P 1 mono 2 P dipole = 2D dipole. (94) Suuntaavuuden kasvu ei tule säteilyintensiteetin maksimin kasvusta, vaan keskimääräisen säteilyintensiteetin puoliintumisesta.

114 Matalilla taajuuksilla λ/4-monopolit ovat hyvin pitkiä. Niiden tukivaijereita voidaan käyttää samaan tarkoitukseen kuin levyjä kondensaattorilevyantenneissa. Rakennetta kutsutaan umbrella loaded monopole (kuva 2-13b).

115 Magneettinen dipoli? Olemme käsitelleet paljon sähköisiä ideaalidipoleita, ja todenneet, että niiden toiminnan ymmärtäminen auttaa myös muiden antennien ymmärtämiseen. Onko vastaavaa magneettista dipolia olemassa? Staattisilla ja matalataajuisilla kentillä sähköinen dipoli ajatellaan koostuvan kahdesta erimerkkisestä varauksesta etäisyydellä z toisistaan. Myös ideaalista dipoliantennia voidaan mallintaa samaan tapaan kahdella oskilloivalla pistevarauksella virrantiheys kytkeytyy varauksiin virran jatkuvuusyhtälön kautta (Kuva 2-2).

116 Magneettinen dipoli? Stationaarisisessa tapauksessa magneettinen dipoli koostuu pienestä virtasilmukasta. Pienen silmukan aiheuttama magneettikenttä on tarkalleen samanmuotoinen kuin sähköisen dipolin tuottama sähkökenttä. Nämä rakenteet ovat siis duaaliset. Magneettista dipolia voidaan mallintaa samanlaisena rakenteena kuin sähköinen dipoli, nyt vain dipolissa kulkee keinotekoinen magneettinen virta sähköisen virran asemesta. Magneettista (ideaali)dipolia, eli pientä virtasilmukkaa, voidaan käyttää myös antennina samaan tapaan kuin sähköistäkin.

117 Pieni silmukka-antenni Pieni silmukka-antenni on suljettu virtasilmukka, joka on sähköisesti pieni. Pienen silmukka-antennin kentät voidaan ratkaista kahdella eri tavalla: Integroimalla silmukan (säteily)kentät suoraan silmukkavirroista Käyttäen hyväksi pienen silmukka-antennin ja sähköisen ideaalidipolin duaalisuutta

118 Pieni silmukka-antenni Ratkaistaan ensin pienen silmukka-antennin kaukokentät suoraan silmukkavirroista. Pienen silmukan tapauksessa silmukan muodolla ei ole merkitystä, vaan ainoastaan sen pinta-alalla. Laskennan yksinkertaistamiseksi tarkastellaan kuvan 2-16 mukaista neliösilmukkaa, jossa kulkee vakiovirta I. Silmukan jokainen sivu vastaa siten ideaalista dipolia.

119 Pieni silmukka-antenni Silmukan kenttien vektoripotentiaali saadaan näiden neljän l-pituisen dipolin vektoripotentiaalista, A = µil [( e jβr 1 ) ( e jβr3 e jβr 2 ˆx + e jβr4 4π R 1 R 3 R 2 R 4 ) ] ŷ Nimittäjässä olevia etäisyyksiä voidaan approksimoida r:llä ja osoittajissa käytetään samansuuntaisten säteiden approksimaatiota, jolloin saadaan A = µile jβr 4πr + [( e jβ(l/2) sin θ sin φ e ( e jβ(l/2) sin θ cos φ e jβ(l/2) sin θ cos φ) ŷ jβ(l/2) sin θ sin φ)ˆx ]

120 Pieni silmukka-antenni Koska βl 1, sinifunktiot voidaan korvata argumenteillaan, [ ( A = 2j µile jβr βl sin 4πr 2 ( βl + sin 2 ) sin θ sin φ ˆx ) ] sinθ cos φ ŷ jβl 2 µie jβr 4πr = jβl 2 µie jβr 4πr sin θ( sinφ ˆx + cos φ ŷ) sin θ ˆφ

121 Pieni silmukka-antenni Koska A:lla ei ole r-suuntaista komponenttia, ja E = jωa = ISηβ 2 e jβr 4πr sinθ ˆφ (95) H = jossa S on silmukan pinta-ala. 1 ηˆr E = ISβ2 e jβr 4πr sinθ ˆθ, (96) Sama tulos saadaan myös ympyrän muotoiselle silmukalle, ja vielä yleisemmin minkä tahansa muotoiselle tasossa olevalle pienelle silmukalle. Kentät riippuvat vain magneettisesta momentista, eli silmukkavirran ja silmukan pinta-alan tulosta IS, eivätkä silmukan muodosta.

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.

Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri. Kä y tä n n ö n sä h k ö ise sti p ie n e t d ip o lit Säh k ö isesti pien en an ten n in k o k o o n alle λ/1 0. Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

Johdantoa antenneihin

Johdantoa antenneihin Johdantoa antenneihin A ntenni Laite, jonka avulla säh köm ag neettia aaltoja void aan (tarkoituksella) läh ettää tai vastaanottaa. E li se m uuntaa oh jatun aallon (aaltop utki/ siirtolinja) vap aan tilan

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

Ideaalinen dipoliantenni

Ideaalinen dipoliantenni Ideaalinen dipoliantenni Ideaalinen dipoli on säh k öisesti p ieni lank a-antenni ( z λ), jossa v irralla v ak io am p litu d i ja v aih e. Id eaalinen d ip oliantenni on k äy tännön antennina h arv inainen.

Lisätiedot

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen LIITTEET Leena Korpinen, Jarmo Elovaara, Lauri Puranen SISÄLLYSLUETTELO Liite 1 Voimalinjojen sähkö- ja magneettikentän laskenta... 530 Liite 2 Radiotaajuisen kentän laskentamalleja... 537 Liite 3 Mikroaaltoantennin

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 17. marraskuuta 2016 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori 2 (18)

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. Resonanssiantennit Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. E sim erk k ejä: S u orat lank ad ip olit V -d ip olit T aittod ip olit (folded

Lisätiedot

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. Pieni silmukka-antenni duaalisuus Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta. S amalla saamme my ö s silmukan läh ikentät. Käy tämme h y v äksi sitä, että

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen.

Harjoitus 2. 10.9-14.9.2007. Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. SMG-1300 Sähkömagneettiset kentät ja aallot I Harjoitus 2. 10.9-14.9.2007 Nimi: Op.nro: Tavoite: Gradientin käsitteen sisäistäminen ja omaksuminen. Tehtävä 1: Harjoitellaan ensinmäiseksi ymmärtämään lausekkeen

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s. 7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona

Lisätiedot

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus

Lisätiedot

Magneettinen energia

Magneettinen energia Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee

Lisätiedot

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle.

Laske relaksaatiotaajuus 7 µm (halk.) solulle ja 100 µm solulle. TEKNILLINEN KORKEAKOULU HARJOITUSTEHTÄVÄT Sähkömagneettisten kenttien ja optisen säteilyn biologiset 31.10.2005 vaikutukset ja mittaukset 1(5) Kari Jokela Säteilyturvakeskus HARJOITUSTEHTÄVÄ 1 Laske relaksaatiotaajuus

Lisätiedot

3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20.

3.32. On tärkeätä muistaa, että tehosta desibeleissä puhuttaessa käytetään kerrointa 10 ja kentänvoimakkuuden yhteydessä kerrointa 20. 3.3 3. Desibeli Tasoaallon vaimenemisen häviöllisessä väliaineessa voi laskea aaltoluvusta β. Aaltoluvun imaginaariosa on mitta vaimenemiselle, ja usein puhutaankin β i :stä yksiköissä neperiä/metri eikä

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Kulmaheijastinantenni

Kulmaheijastinantenni Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen

Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana

Lisätiedot

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )

KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina ) KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia

Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia kahdessa eri m oodissa: norm aalim oodi ja aksiaalim

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus, EMC

SMG-5250 Sähkömagneettinen yhteensopivuus, EMC TAMPEREEN TEKNILLINEN YLIOPISTO Elektroniikan laitos Sähkömagnetiikka SMG-5250 Sähkömagneettinen yhteensopivuus, EMC Kevät 2009 Kurssimateriaali Jukka-Pekka Uusitalo (Pieni päivitys, 29.01.09 J. Kangas)

Lisätiedot

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051

KELAN INDUKTANSSI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Miika Manninen, n85754 Tero Känsäkangas, m84051 VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Miika Manninen, n85754 Tero Känsäkangas, m84051 SATE.2010 Dynaaminen kenttäteoria KELAN INDUKTANSSI Sivumäärä: 21 Jätetty tarkastettavaksi: 21.04.2008

Lisätiedot

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist

Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni. Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi 31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde

Lisätiedot

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8 Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Antenni ja säteilykuvio

Antenni ja säteilykuvio POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan

Lisätiedot

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Esimerkki: Kun halutaan suojautua sähkömagneettisia

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Antennit. Säteilyn syntyminen antennissa

Antennit. Säteilyn syntyminen antennissa Antennit Antenneilla lähetetään ja vastaanotetaan radioaaltoja. Lähetysleho pyritään saamaan antennilla mahdollisimman tehokkaasti radiotielle tai radiotieltä vastaanottimeen. Antenneja tarvitaan lahes

Lisätiedot

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT 5. Sähkömagnetismi: Sähkömagneettinen säteily ja antennit 5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT Olemme tarkastelleet sähkömagneettisten aaltojen etenemistä tasoaaltoina tyhjössä ja homogeenisessa materiassa

Lisätiedot

Elektroniikka, kierros 3

Elektroniikka, kierros 3 Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f

Lisätiedot

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0

Lisätiedot

AALTOLIIKEOPPIA FYSIIKASSA

AALTOLIIKEOPPIA FYSIIKASSA 1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä

Lisätiedot

Häiriöt, siirtojohdot, antennit, eteneminen

Häiriöt, siirtojohdot, antennit, eteneminen Radioamatöörikurssi PRK OH2TI Häiriöt, siirtojohdot, antennit, eteneminen 2.11.2011 Teemu, OH2FXN 1 / 44 Häiriöt Radioamatööri on vastuussa aiheuttamistaan häiriöistä. Kaikissa häiriötapauksissa amatööri

Lisätiedot

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän

on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa muutosta vastustavan voiman ja siten magneettikentän Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen

Lisätiedot

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1

Sähkömagnetismi. s. 24. t. 1-11. 24. syyskuuta 2013 22:01. FY7 Sivu 1 FY7 Sivu 1 Sähkömagnetismi 24. syyskuuta 2013 22:01 s. 24. t. 1-11. FY7 Sivu 2 FY7-muistiinpanot 9. lokakuuta 2013 14:18 FY7 Sivu 3 Magneettivuo (32) 9. lokakuuta 2013 14:18 Pinta-alan Webber FY7 Sivu

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

a P en.pdf KOKEET;

a P  en.pdf KOKEET; Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten

Lisätiedot

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu

Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Digitaalinen signaalinkäsittely Desibeliasteikko, suotimen suunnittelu Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen,

Lisätiedot

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE 30.01.2014 VASTAA KUUTEEN (6) TEHTÄVÄÄN!! 1. Vastaa, ovatko seuraavat väittämät oikein vai väärin. Perustelua ei tarvitse kirjoittaa. a) Atomi ei voi lähettää

Lisätiedot

Faradayn laki ja sähkömagneettinen induktio

Faradayn laki ja sähkömagneettinen induktio Faradayn laki ja sähkömagneettinen induktio Haarto & Karhunen Magneettivuo Magneettivuo Φ määritellään magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetuloksi Φ B A BAcos Acosθ θ θ

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V.

Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka vastus on R. Liitetään virtapiiriin jännitelähde V. Luku 8 Magneettinen energia Luvussa 4 nähtiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita, sillä Faradayn lain mukaan magneettikentän muuttaminen aiheuttaa

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1 Työ 21 Valon käyttäytyminen rajapinnoilla Työvuoro 40 pari 1 Tero Marttila Joel Pirttimaa TLT 78949E EST 78997S Selostuksen laati Tero Marttila Mittaukset suoritettu 12.11.2012 Selostus palautettu 19.11.2012

Lisätiedot