Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on
|
|
- Irma Härkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota:
2 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1).
3 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1). 2 (Rekursiokaava) Kun n k, esitetään, miten f (n) riippuu luvuista f (n k), f (n k + 1),..., f (n 1).
4 1 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1). 2 (Rekursiokaava) Kun n k, esitetään, miten f (n) riippuu luvuista f (n k), f (n k + 1),..., f (n 1). Usein funktion sijasta ajatellaan lukujonoa, jolloin käytetään merkintää f n tai y n funktiomerkinnän f (n) sijasta.
5 2 Esimerkki Fibonaccin luvut. Alkuarvot: Asetetaan f 0 = 0 ja f 1 = 1. Rekursiokaava: Kun n 2, asetetaan f n = f n 2 + f n 1.
6 2 Esimerkki Fibonaccin luvut. Alkuarvot: Asetetaan f 0 = 0 ja f 1 = 1. Rekursiokaava: Kun n 2, asetetaan f n = f n 2 + f n 1. Lasketaan rekursiokaavan avulla Fibonaccin luvut f 2,..., f 8 : f 2 = f 0 + f 1 = = 1, f 3 = f 1 + f 2 = = 2, f 4 = = 3, f 5 = = 5, f 6 = = 8, f 7 = = 13, f 8 = = 21.
7 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla.
8 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ).
9 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ). 2 (Induktioaskel) Tehdään IO: P(f n k ),..., P(f n 1 ) tosia IO:n avulla todistetaan IV: P(f n ) on tosi. 3 (Johtopäätös) Induktioperiaatteen nojalla n N : P(f n ) on tosi.
10 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ). 2 (Induktioaskel) Tehdään IO: P(f n k ),..., P(f n 1 ) tosia IO:n avulla todistetaan IV: P(f n ) on tosi. 3 (Johtopäätös) Induktioperiaatteen nojalla n N : P(f n ) on tosi. (Huom: tässä käytetään toista induktioperiaatetta.)
11 4 Esimerkki Tarkastellaan lukujonoa, joka määritellään rekursiolla seuraavasti: f 0 = 1 f n = 2f n 1 + 1, kun n > 0.
12 4 Esimerkki Tarkastellaan lukujonoa, joka määritellään rekursiolla seuraavasti: f 0 = 1 f n = 2f n 1 + 1, kun n > 0. Todistetaan induktiolla, että f n = 2 n+1 1 jokaisella n N. (Toisin sanoen, osoitetaan, että f n = 2 n+1 1, n N, on rekursioyhtälön/differenssiyhtälön f n = 2f n ratkaisu alkuarvolla f 0 = 1.)
13 Esimerkki jatkuu Perusaskel: Kun n = 0, on f 0 = 1 = 2 1 = , joten väite on tosi. Induktioaskel: Olkoon n > 0. IO: f n 1 = 2 (n 1)+1 1 = 2 n 1. IV: f n = 2 n+1 1. IV:n todistus: f n = 2f n IO = 2(2 n 1) + 1 = 2 2 n = 2 n
14 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2.
15 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n
16 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n (Perusaskel) e 0 = 1 = 2 0 = 2 f 0 ja e 1 = 2 = 2 1 = 2 f 1.
17 6 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n (Perusaskel) e 0 = 1 = 2 0 = 2 f 0 ja e 1 = 2 = 2 1 = 2 f 1. (Induktioaskel) Oletetaan, että n 2, ja väite pätee luvuilla n 2 ja n 1. Tällöin e n = e n 2 e n 1 = 2 f n 2 2 f n 1 = 2 (f n 2+f n 1 ) = 2 fn.
18 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki.
19 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki. Esimerkiksi kertoman määritelmä kirjoitetaan tavallisesti muotoon n! = 1 2 n. Tyhjä tulo tulkitaan ykköseksi eli 0! = 1.
20 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki. Esimerkiksi kertoman määritelmä kirjoitetaan tavallisesti muotoon n! = 1 2 n. Tyhjä tulo tulkitaan ykköseksi eli 0! = 1. Tämä on vain lyhennysmerkintä kertoman rekursiiviselle määritelmälle: 0! = 1, n! = n(n 1)!.
21 8 Rekursio ja kolme pistettä Vastaavasti potenssin a n tavallinen määritelmä on a n = aa }{{ a}, n kertaa missä tyhjä tulo (tapaus n = 0) on yksi, kunhan a 0. (0 0 on joko 1 tai määrittelemätön riippuen yhteydestä.)
22 8 Rekursio ja kolme pistettä Vastaavasti potenssin a n tavallinen määritelmä on a n = aa }{{ a}, n kertaa missä tyhjä tulo (tapaus n = 0) on yksi, kunhan a 0. (0 0 on joko 1 tai määrittelemätön riippuen yhteydestä.) Rekursiivinen määritelmä potenssille a n on a 0 = 1, a n = aa n 1. (Alkuarvo kirjoitetaan a 1 = a, jos a = 0 ja 0 0 ei ole määritelty.)
23 Rekursio ja kolme pistettä Myös summa- ja tulomerkinnät ovat piilotettuja rekursiivisia määritelmiä: Kun a 1, a 2, a 3,... ovat (reaali)lukuja, kirjoitetaan tavallisesti n a i = a a n i=1 ja n a i = a 1 a n. i=1
24 Rekursio ja kolme pistettä Myös summa- ja tulomerkinnät ovat piilotettuja rekursiivisia määritelmiä: Kun a 1, a 2, a 3,... ovat (reaali)lukuja, kirjoitetaan tavallisesti n a i = a a n i=1 Näiden rekursiiviset määritelmät ovat 0 a i = 0 i=1 n+1 ja n a i = a 1 a n. i=1 0 a i = 1 i=1 a i = ( n n+1 ) a i + an+1 a i = ( n ) a i an+1 i=1 i=1 i=1 i=1
25 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N.
26 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N. (Perusaskel) 0 i=0 f i = f 0 = 0 = f 2 1
27 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N. (Perusaskel) 0 i=0 f i = f 0 = 0 = f 2 1 (Induktioaskel) Oletetaan, että n 1, ja n 1 i=0 f i = f n+1 1. Tällöin n f i = (n 1 ) f i + fn = (f n+1 1) + f n = f n+2 1. i=0 i=0
28 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin.
29 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin. Otetaan lähtökohdaksi luonnollisten lukujen joukon perusominaisuus: N on pienin sellainen joukko A, jolla pätee ehdot (i) 0 A (ii) jos n A, niin n + 1 A
30 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin. Otetaan lähtökohdaksi luonnollisten lukujen joukon perusominaisuus: N on pienin sellainen joukko A, jolla pätee ehdot (i) 0 A (ii) jos n A, niin n + 1 A Tämä voidaan muotoilla joukon N määritelmäksi joukko-opissa. (Operaatio +1 pitää ensin korvata joukko-opillisella vastineella.)
31 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε.
32 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko:
33 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko: B on pienin sellainen joukko A, jolla pätee ehdot (i) ε A (ii) jos b A, niin b0 A ja b1 A.
34 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko: B on pienin sellainen joukko A, jolla pätee ehdot (i) ε A (ii) jos b A, niin b0 A ja b1 A. (Tässä b0 tarkoittaa merkkijonoa, joka saadaan lisäämällä jonon b perään merkki 0.)
35 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot
36 13 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot (i) ε A (ii) jos w A ja a Σ, niin wa A.
37 13 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot (i) ε A (ii) jos w A ja a Σ, niin wa A. Erityisesti siis bittijonojen joukko B on siis sama kuin {0, 1}.
38 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate.
39 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi.
40 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi.
41 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi. Todistetaan induktioväite, että P(wa) on tällöin tosi jokaisella a Σ.
42 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi. Todistetaan induktioväite, että P(wa) on tällöin tosi jokaisella a Σ. Tällöin tulee osoitetuksi, että joukko A = {w Σ P(w)} toteuttaa joukon Σ määritelmän ehdot (i) ja (ii), joten on oltava A = Σ.
43 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + :
44 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s).
45 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s). Käytetään merkintöjä f 1 (b) ja f 2 (b) lukuparin f (b) koordinaateille. Siis f 1 (b) = r ja f 2 (b) = s, kun f (b) = (r, s).
46 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s). Käytetään merkintöjä f 1 (b) ja f 2 (b) lukuparin f (b) koordinaateille. Siis f 1 (b) = r ja f 2 (b) = s, kun f (b) = (r, s). Todistetaan induktiolla, että syt(f 1 (b), f 2 (b)) = 1 kaikilla b {0, 1}.
47 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1.
48 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1.
49 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1. Siispä syt(f 1 (b0), f 2 (b0)) = 1.
50 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1. Siispä syt(f 1 (b0), f 2 (b0)) = 1. Samalla tavalla osoitetaan, että syt(f 1 (b1), f 2 (b1)) = 1.
51 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti:
52 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti: K on pienin sellainen joukko A, jolla pätee ehdot (i) p i A jokaisella i N. (ii) Jos ϕ, ψ A, niin (a) ϕ A (b) (ϕ ψ) A (c) (ϕ ψ) A (d) (ϕ ψ) A (e) (ϕ ψ) A
53 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti: K on pienin sellainen joukko A, jolla pätee ehdot (i) p i A jokaisella i N. (ii) Jos ϕ, ψ A, niin (a) ϕ A (b) (ϕ ψ) A (c) (ϕ ψ) A (d) (ϕ ψ) A (e) (ϕ ψ) A Huomaa, että K Σ, missä Σ on aakkosto {p i i N} {,,,,, (, )}.
54 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti.
55 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N.
56 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N. 2 (IA) Tehdään induktio-oletus: P(ϕ) ja P(ψ) ovat tosia.
57 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N. 2 (IA) Tehdään induktio-oletus: P(ϕ) ja P(ψ) ovat tosia. Todistetaan induktioväitteet: (a) P( ϕ) on tosi. (b) P((ϕ ψ)) on tosi. (c) P((ϕ ψ)) on tosi. (d) P((ϕ ψ)) on tosi. (e) P((ϕ ψ)) on tosi.
58 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua.
59 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua. Tätä varten kannattaa ensin määritellä vasempien sulkujen ja oikeiden sulkujen lukumäärät rekursiolla:
60 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua. Tätä varten kannattaa ensin määritellä vasempien sulkujen ja oikeiden sulkujen lukumäärät rekursiolla: v(p i ) = 0 o(p i ) = 0 v( ϕ) = v(ϕ) v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 o( ϕ) = o(ϕ) o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1
61 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K:
62 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N.
63 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin
64 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ)
65 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ) (b) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ)
66 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ) (b) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (c) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (d) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (e) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ)
67 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}.
68 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}. Kaavan ϕ K totuusarvo V (ϕ) {0, 1} totuusjakaumalla v määritellään rekursiolla seuraavasti: (i) V (p i ) = v(p i ) jokaisella i N.
69 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}. Kaavan ϕ K totuusarvo V (ϕ) {0, 1} totuusjakaumalla v määritellään rekursiolla seuraavasti: (i) V (p i ) = v(p i ) jokaisella i N. (ii) Oletetaan, että V (ϕ) ja V (ψ) on määritelty. (a) V ( ϕ) = 1 jos ja vain jos V (ϕ) = 0. (b) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = V (ψ) = 1. (c) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = 1 tai V (ψ) = 1. (d) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = 0 tai V (ψ) = 1. (e) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = V (ψ).
Vaihtoehtoinen tapa määritellä funktioita f : N R on
Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot
LisätiedotEnsimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotEnsimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Lisätiedot1. Esitä rekursiivinen määritelmä lukujonolle
Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)
LisätiedotInduktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...
Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P(n) on totta kaikille n = 0,1,2,.... Tässä väite P(n) riippuu n:n arvosta. Todistuksessa
Lisätiedot4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
LisätiedotTietojenkäsittelyteorian alkeet, osa 2
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
Lisätiedot4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
LisätiedotDeterminantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Lisätiedot= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotRatkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,
LisätiedotMS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I
MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,
Lisätiedot1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
LisätiedotRatkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Olkoot A, B ja C propositiolauseita. Näytä, että A (B C) (A B) (A C). Ratkaisu: Yksi tapa
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotMatematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
LisätiedotTehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
LisätiedotTodistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
Lisätiedot(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
LisätiedotJohdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
LisätiedotKonnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.
Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen
LisätiedotKirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:
1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,
LisätiedotICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.
LisätiedotLuonnollisen päättelyn luotettavuus
Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä
LisätiedotSäännöllisten kielten sulkeumaominaisuudet
Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,
LisätiedotDFA:n käyttäytyminen ja säännölliset kielet
säännölliset kielet TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. marraskuuta 2015 Sisällys toiminta formaalisti Olkoon M = (Q, Σ, δ, q 0, F) deterministinen
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
LisätiedotPerustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.
Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa
Lisätiedotb) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 5 Mikko Salo 5.9.2017 The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable.... It came
LisätiedotHY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa
LisätiedotJohdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
LisätiedotÄärellisten automaattien ja säännöllisten kielten ekvivalenssi
Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotJohdatus logiikkaan I Harjoitus 4 Vihjeet
Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotInduktio, jonot ja summat
Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotLogiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3
Φ Logiikka I Kaarlo Reipas 17. huhtikuuta 2012 Ψ Tämä materiaali on vielä keskeneräinen. Sisältö 1 Johdanto 3 1.1 Mitä logiikka on?.............................. 3 2 ropositiologiikka 4 2.1 Lauseet...................................
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Käytännön asiat Jonot Sarjat 1.1 Opettajat luennoitsija Riikka Korte
LisätiedotDiskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotLoogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
LisätiedotTIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013
TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen
LisätiedotKaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi
LisätiedotTodistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.
Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotLisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. marraskuuta 2015
TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. marraskuuta 2015 Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4 a 5 00 k 11 i
LisätiedotRatkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
LisätiedotPredikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
Lisätiedot-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
LisätiedotSekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä
Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja
Lisätiedot1. Logiikan ja joukko-opin alkeet
1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9
Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon
Lisätiedotisomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
LisätiedotInsinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Lisätiedoton rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4
LisätiedotVieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
Lisätiedot(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
LisätiedotTietorakenteet, laskuharjoitus 1,
Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta
LisätiedotInduktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
LisätiedotTehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun
LisätiedotMatematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
LisätiedotSurjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.
5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella
LisätiedotTIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012
TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava
Lisätiedotmissä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
LisätiedotTIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti
LisätiedotJonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f
LisätiedotMS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.
LisätiedotHY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 5 Ratkaisuehdotukset 1. Päättele resoluutiolla seuraavista klausuulijoukoista: (a) {{p 0 }, {p 1 }, { p 0, p 2 },
LisätiedotTIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 19. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. syyskuuta 2016 Sisällys Neuvoja opintoihin tee joka päivä ainakin vähän uskalla mennä epämukavuusalueelle en
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio
LisätiedotKuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
Lisätiedot