Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Koko: px
Aloita esitys sivulta:

Download "Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on"

Transkriptio

1 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota:

2 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1).

3 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1). 2 (Rekursiokaava) Kun n k, esitetään, miten f (n) riippuu luvuista f (n k), f (n k + 1),..., f (n 1).

4 1 Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot f (0),..., f (k 1). 2 (Rekursiokaava) Kun n k, esitetään, miten f (n) riippuu luvuista f (n k), f (n k + 1),..., f (n 1). Usein funktion sijasta ajatellaan lukujonoa, jolloin käytetään merkintää f n tai y n funktiomerkinnän f (n) sijasta.

5 2 Esimerkki Fibonaccin luvut. Alkuarvot: Asetetaan f 0 = 0 ja f 1 = 1. Rekursiokaava: Kun n 2, asetetaan f n = f n 2 + f n 1.

6 2 Esimerkki Fibonaccin luvut. Alkuarvot: Asetetaan f 0 = 0 ja f 1 = 1. Rekursiokaava: Kun n 2, asetetaan f n = f n 2 + f n 1. Lasketaan rekursiokaavan avulla Fibonaccin luvut f 2,..., f 8 : f 2 = f 0 + f 1 = = 1, f 3 = f 1 + f 2 = = 2, f 4 = = 3, f 5 = = 5, f 6 = = 8, f 7 = = 13, f 8 = = 21.

7 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla.

8 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ).

9 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ). 2 (Induktioaskel) Tehdään IO: P(f n k ),..., P(f n 1 ) tosia IO:n avulla todistetaan IV: P(f n ) on tosi. 3 (Johtopäätös) Induktioperiaatteen nojalla n N : P(f n ) on tosi.

10 3 Rekursio ja induktio Jos lukujono (f n ) n N on määritelty rekursiolla, niin sen ominaisuuksia voidaan aina todistaa induktiolla. Jos tehtävänä on todistaa, että P(f n ) pätee jokaisella n N, niin menetellään seuraavasti: 1 (Perusaskel) Todistetaan P(f 0 ),..., P(f k 1 ). 2 (Induktioaskel) Tehdään IO: P(f n k ),..., P(f n 1 ) tosia IO:n avulla todistetaan IV: P(f n ) on tosi. 3 (Johtopäätös) Induktioperiaatteen nojalla n N : P(f n ) on tosi. (Huom: tässä käytetään toista induktioperiaatetta.)

11 4 Esimerkki Tarkastellaan lukujonoa, joka määritellään rekursiolla seuraavasti: f 0 = 1 f n = 2f n 1 + 1, kun n > 0.

12 4 Esimerkki Tarkastellaan lukujonoa, joka määritellään rekursiolla seuraavasti: f 0 = 1 f n = 2f n 1 + 1, kun n > 0. Todistetaan induktiolla, että f n = 2 n+1 1 jokaisella n N. (Toisin sanoen, osoitetaan, että f n = 2 n+1 1, n N, on rekursioyhtälön/differenssiyhtälön f n = 2f n ratkaisu alkuarvolla f 0 = 1.)

13 Esimerkki jatkuu Perusaskel: Kun n = 0, on f 0 = 1 = 2 1 = , joten väite on tosi. Induktioaskel: Olkoon n > 0. IO: f n 1 = 2 (n 1)+1 1 = 2 n 1. IV: f n = 2 n+1 1. IV:n todistus: f n = 2f n IO = 2(2 n 1) + 1 = 2 2 n = 2 n

14 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2.

15 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n

16 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n (Perusaskel) e 0 = 1 = 2 0 = 2 f 0 ja e 1 = 2 = 2 1 = 2 f 1.

17 6 Esimerkki Määritellään lukujono (e n ) n N rekursiolla seuraavasti: e 0 = 1, e 1 = 2 e n = e n 2 e n 1, kun n 2. Todistetaan induktiolla, että e n = 2 fn on Fibonaccin luku. jokaisella n N, missä f n (Perusaskel) e 0 = 1 = 2 0 = 2 f 0 ja e 1 = 2 = 2 1 = 2 f 1. (Induktioaskel) Oletetaan, että n 2, ja väite pätee luvuilla n 2 ja n 1. Tällöin e n = e n 2 e n 1 = 2 f n 2 2 f n 1 = 2 (f n 2+f n 1 ) = 2 fn.

18 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki.

19 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki. Esimerkiksi kertoman määritelmä kirjoitetaan tavallisesti muotoon n! = 1 2 n. Tyhjä tulo tulkitaan ykköseksi eli 0! = 1.

20 Rekursio ja kolme pistettä Kun matemaattisessa määritelmässä käytetään symbolia, kysymys on lähes poikkeuksetta rekursiivisesta määritelmästä, jota ei vain kirjoiteta auki. Esimerkiksi kertoman määritelmä kirjoitetaan tavallisesti muotoon n! = 1 2 n. Tyhjä tulo tulkitaan ykköseksi eli 0! = 1. Tämä on vain lyhennysmerkintä kertoman rekursiiviselle määritelmälle: 0! = 1, n! = n(n 1)!.

21 8 Rekursio ja kolme pistettä Vastaavasti potenssin a n tavallinen määritelmä on a n = aa }{{ a}, n kertaa missä tyhjä tulo (tapaus n = 0) on yksi, kunhan a 0. (0 0 on joko 1 tai määrittelemätön riippuen yhteydestä.)

22 8 Rekursio ja kolme pistettä Vastaavasti potenssin a n tavallinen määritelmä on a n = aa }{{ a}, n kertaa missä tyhjä tulo (tapaus n = 0) on yksi, kunhan a 0. (0 0 on joko 1 tai määrittelemätön riippuen yhteydestä.) Rekursiivinen määritelmä potenssille a n on a 0 = 1, a n = aa n 1. (Alkuarvo kirjoitetaan a 1 = a, jos a = 0 ja 0 0 ei ole määritelty.)

23 Rekursio ja kolme pistettä Myös summa- ja tulomerkinnät ovat piilotettuja rekursiivisia määritelmiä: Kun a 1, a 2, a 3,... ovat (reaali)lukuja, kirjoitetaan tavallisesti n a i = a a n i=1 ja n a i = a 1 a n. i=1

24 Rekursio ja kolme pistettä Myös summa- ja tulomerkinnät ovat piilotettuja rekursiivisia määritelmiä: Kun a 1, a 2, a 3,... ovat (reaali)lukuja, kirjoitetaan tavallisesti n a i = a a n i=1 Näiden rekursiiviset määritelmät ovat 0 a i = 0 i=1 n+1 ja n a i = a 1 a n. i=1 0 a i = 1 i=1 a i = ( n n+1 ) a i + an+1 a i = ( n ) a i an+1 i=1 i=1 i=1 i=1

25 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N.

26 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N. (Perusaskel) 0 i=0 f i = f 0 = 0 = f 2 1

27 Esimerkki Olkoon (f n ) n N Fibonaccin lukujono. Todistetaan induktiolla, että n i=0 f i = f n+2 1 jokaisella n N. (Perusaskel) 0 i=0 f i = f 0 = 0 = f 2 1 (Induktioaskel) Oletetaan, että n 1, ja n 1 i=0 f i = f n+1 1. Tällöin n f i = (n 1 ) f i + fn = (f n+1 1) + f n = f n+2 1. i=0 i=0

28 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin.

29 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin. Otetaan lähtökohdaksi luonnollisten lukujen joukon perusominaisuus: N on pienin sellainen joukko A, jolla pätee ehdot (i) 0 A (ii) jos n A, niin n + 1 A

30 Rekursiosta yleisemmin Paitsi funktioita tai lukujonoja, rekursiolla voidaan määritellä matemaattisia käsitteitä yleisemminkin. Otetaan lähtökohdaksi luonnollisten lukujen joukon perusominaisuus: N on pienin sellainen joukko A, jolla pätee ehdot (i) 0 A (ii) jos n A, niin n + 1 A Tämä voidaan muotoilla joukon N määritelmäksi joukko-opissa. (Operaatio +1 pitää ensin korvata joukko-opillisella vastineella.)

31 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε.

32 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko:

33 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko: B on pienin sellainen joukko A, jolla pätee ehdot (i) ε A (ii) jos b A, niin b0 A ja b1 A.

34 Esimerkki: bittijonot Bittijono on merkkijono b = b 1 b n, missä n N ja b i {0, 1}, kun 1 i n. Tapauksessa n = 0, b on tyhjä jono, jolloin sitä merkitään symbolilla ε. Kaikkien bittijonojen joukko B voidaan määritellä samaan tapaan kuin luonnollisten lukujen joukko: B on pienin sellainen joukko A, jolla pätee ehdot (i) ε A (ii) jos b A, niin b0 A ja b1 A. (Tässä b0 tarkoittaa merkkijonoa, joka saadaan lisäämällä jonon b perään merkki 0.)

35 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot

36 13 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot (i) ε A (ii) jos w A ja a Σ, niin wa A.

37 13 Esimerkki: aakkoston sanojen joukko Yleistetään edellinen esimerkki. Olkoon Σ on äärellinen aakkosto, eli joukko symboleja (merkkejä). Aakkoston Σ sanojen joukko Σ on tällöin pienin joukko A, jolla pätee ehdot (i) ε A (ii) jos w A ja a Σ, niin wa A. Erityisesti siis bittijonojen joukko B on siis sama kuin {0, 1}.

38 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate.

39 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi.

40 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi.

41 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi. Todistetaan induktioväite, että P(wa) on tällöin tosi jokaisella a Σ.

42 Rekursiosta induktioon Edelläolevan kaltaisiin rekursiivisiin määritelmiin liittyy aina automaattisesti vastaava induktioperiaate. Esimerkiksi jos tarkoituksena on todistaa, että jokaisella sanalla w Σ on ominaisuus P, niin voidaan menetellä seuraavasti: 1 (Perusaskel). Osoitetaan, että P(ε) on tosi. 2 (Induktioaskel). Tehdään induktio-oletus, että P(w) on tosi. Todistetaan induktioväite, että P(wa) on tällöin tosi jokaisella a Σ. Tällöin tulee osoitetuksi, että joukko A = {w Σ P(w)} toteuttaa joukon Σ määritelmän ehdot (i) ja (ii), joten on oltava A = Σ.

43 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + :

44 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s).

45 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s). Käytetään merkintöjä f 1 (b) ja f 2 (b) lukuparin f (b) koordinaateille. Siis f 1 (b) = r ja f 2 (b) = s, kun f (b) = (r, s).

46 15 Esimerkki Määritellään rekursiolla funktio f : {0, 1} Z + Z + : f (ε) = (1, 1) { f (b0) = (r, r + s) f (b1) = (r + s, s) kun f (b) = (r, s). Käytetään merkintöjä f 1 (b) ja f 2 (b) lukuparin f (b) koordinaateille. Siis f 1 (b) = r ja f 2 (b) = s, kun f (b) = (r, s). Todistetaan induktiolla, että syt(f 1 (b), f 2 (b)) = 1 kaikilla b {0, 1}.

47 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1.

48 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1.

49 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1. Siispä syt(f 1 (b0), f 2 (b0)) = 1.

50 Esimerkki jatkuu (Perusaskel) Kun b = ε, on f 1 (b) = f 2 (b) = 1, joten syt(f 1 (b), f 2 (b)) = 1. (Induktioaskel) Oletetaan, että syt(f 1 (b), f 2 (b)) = 1. Olkoon f 1 (b) = r ja f 2 (b) = s. Tällöin f 1 (b0) = r ja f 2 (b0) = r + s. Oletetaan, että m Z + on lukujen r ja r + s yhteinen tekijä. Tällöin m on myös lukujen r ja s yhteinen tekijä, joten m = 1. Siispä syt(f 1 (b0), f 2 (b0)) = 1. Samalla tavalla osoitetaan, että syt(f 1 (b1), f 2 (b1)) = 1.

51 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti:

52 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti: K on pienin sellainen joukko A, jolla pätee ehdot (i) p i A jokaisella i N. (ii) Jos ϕ, ψ A, niin (a) ϕ A (b) (ϕ ψ) A (c) (ϕ ψ) A (d) (ϕ ψ) A (e) (ϕ ψ) A

53 17 Rekursio lauselogiikassa Lauselogiikan kaavojen joukko K voidaan määritellä rekursiolla seuraavasti: K on pienin sellainen joukko A, jolla pätee ehdot (i) p i A jokaisella i N. (ii) Jos ϕ, ψ A, niin (a) ϕ A (b) (ϕ ψ) A (c) (ϕ ψ) A (d) (ϕ ψ) A (e) (ϕ ψ) A Huomaa, että K Σ, missä Σ on aakkosto {p i i N} {,,,,, (, )}.

54 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti.

55 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N.

56 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N. 2 (IA) Tehdään induktio-oletus: P(ϕ) ja P(ψ) ovat tosia.

57 18 Induktio kaavan rakenteen suhteen Kun pitää todistaa, että jokaisella kaavalla ϕ K on ominaisuus P, menetellään seuraavasti. 1 (PA) Osoitetaan, että P(p i ) on tosi jokaisella i N. 2 (IA) Tehdään induktio-oletus: P(ϕ) ja P(ψ) ovat tosia. Todistetaan induktioväitteet: (a) P( ϕ) on tosi. (b) P((ϕ ψ)) on tosi. (c) P((ϕ ψ)) on tosi. (d) P((ϕ ψ)) on tosi. (e) P((ϕ ψ)) on tosi.

58 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua.

59 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua. Tätä varten kannattaa ensin määritellä vasempien sulkujen ja oikeiden sulkujen lukumäärät rekursiolla:

60 19 Esimerkki Todistetaan induktiolla, että jokaisessa kaavassa on yhtä monta vasenta sulkua kuin oikeata sulkua. Tätä varten kannattaa ensin määritellä vasempien sulkujen ja oikeiden sulkujen lukumäärät rekursiolla: v(p i ) = 0 o(p i ) = 0 v( ϕ) = v(ϕ) v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 v(ϕ ψ) = v(ϕ)+v(ψ)+1 o( ϕ) = o(ϕ) o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1 o(ϕ ψ) = o(ϕ)+o(ψ)+1

61 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K:

62 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N.

63 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin

64 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ)

65 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ) (b) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ)

66 20 Esimerkki jatkuu Nyt on helppo todistaa induktiolla, että v(ϕ) = o(ϕ) jokaisella ϕ K: (PA) v(p i ) = 0 = o(p i ) jokaisella i N. (IA) Oletetaan, että v(ϕ) = o(ϕ) ja v(ψ) = o(ψ). Tällöin (a) v( ϕ) = v(ϕ) = o(ϕ) = o( ϕ) (b) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (c) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (d) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ) (e) v(ϕ ψ) = v(ϕ)+v(ψ)+1 = o(ϕ)+o(ψ)+1 = o(ϕ ψ)

67 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}.

68 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}. Kaavan ϕ K totuusarvo V (ϕ) {0, 1} totuusjakaumalla v määritellään rekursiolla seuraavasti: (i) V (p i ) = v(p i ) jokaisella i N.

69 Totuusjakaumat ja totuusarvot Totuusjakauma on funktio v, joka liittää jokaiseen propositiosymboliin p i totuusarvon v(p i ), joka on 0 (epätosi) tai 1 (tosi). Siis v : {p i i N} {0, 1}. Kaavan ϕ K totuusarvo V (ϕ) {0, 1} totuusjakaumalla v määritellään rekursiolla seuraavasti: (i) V (p i ) = v(p i ) jokaisella i N. (ii) Oletetaan, että V (ϕ) ja V (ψ) on määritelty. (a) V ( ϕ) = 1 jos ja vain jos V (ϕ) = 0. (b) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = V (ψ) = 1. (c) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = 1 tai V (ψ) = 1. (d) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = 0 tai V (ψ) = 1. (e) V (ϕ ψ) = 1 jos ja vain jos V (ϕ) = V (ψ).

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. 3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.

Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa. Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen

Lisätiedot

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi: 1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1. Kompleksitehtävät, 10/9/2005, sivu 1 / 10 Perustehtävät Tehtävä 1. Sievennä 1. 2 5i 1+2i 2. ( 2 i 2) 150 Tehtävä 2. Olkoon P mielivaltainen reaalikertoiminen polynomi. Osoita, että jos luku z C toteuttaa

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3

Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3 Φ Logiikka I Kaarlo Reipas 17. huhtikuuta 2012 Ψ Tämä materiaali on vielä keskeneräinen. Sisältö 1 Johdanto 3 1.1 Mitä logiikka on?.............................. 3 2 ropositiologiikka 4 2.1 Lauseet...................................

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.

Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b. 2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Loogiset konnektiivit

Loogiset konnektiivit Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Induktio kaavan pituuden suhteen

Induktio kaavan pituuden suhteen Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

Tietorakenteet, laskuharjoitus 1,

Tietorakenteet, laskuharjoitus 1, Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. 5.5 Surjektio Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei. Määritelmä 5.5.1. Kuvaus f : X æ Y on surjektio, jos jokaisella

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

SAT-ongelman rajoitetut muodot

SAT-ongelman rajoitetut muodot SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko, Tehtävä 1 : 1 a) Olkoon G heikosti yhtenäinen suunnattu verkko, jossa on yhteensä n solmua. Määritelmän nojalla verkko G S on yhtenäinen, jolloin verkoksi T voidaan valita jokin verkon G S virittävä alipuu.

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137

Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Tietojenkäsittelytieteen ja tilastotieteen matematiikkaa 1/137 Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi...

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Ratkeavuus ja efektiivinen numeroituvuus

Ratkeavuus ja efektiivinen numeroituvuus Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee

Lisätiedot

8. Kieliopit ja kielet

8. Kieliopit ja kielet 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

Raja-arvot ja jatkuvuus

Raja-arvot ja jatkuvuus Raja-arvot ja jatkuvuus 30. lokakuuta 2014 10:11 Suoraa jatkoa kurssille Johdatus reaalifunktioihin (MATP311) (JRF). Oheislukemista: Kilpeläinen: Analyysi 1, luvut 3-6, Spivak: Calculus, luvut 5-8, 22,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.

Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden

Lisätiedot

Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus

Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sanna Kari Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Toukokuu 2002 Sisältö 1 Johdanto

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot