MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
|
|
- Pirjo Parviainen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi II
2 Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit Bayeslainen päättely jatkuvilla malleilla Lisämateriaalia: Kolikonheiton bayeslainen malli
3 Esimerkki: Kolikko Kolikkoa heitettäessä (0 = klaava, 1 = kruuna) saatiin tulokset x = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0). Kruunan odotettua esiintyvyyttä kuvaavan parametrin p suurimman uskottavuuden estimaatti ˆp(x) = 10% poikkeaa vahvasti tasosta 50%. Tulee hankkia lisää dataa (entä jos ei saatavilla?) Tulee jättää kokeen tulos huomiotta (ja uskoa sokeasti siihen, että kolikko on tasainen?) Voidaanko yo. kokeen tulos sovittaa aiempaan tietämykseen kruunan odotetusta esiintyvyydestä? Tällöin pitää kvantifioida termi tietämys
4 Tietämyksen mallintaminen Yksilön (ihminen tai kone) tietämystä tuntemattoman parametrin arvosta mallinnetaan tulkitsemalla parametri satunnaismuuttujaksi Θ. P(a Θ b) = 95% tarkoittaa, että yksilö uskoo parametrin arvon sijaitsevan välillä [a, b] todennäköisyydellä 95%. Frekventistit rajoittuvat analysoimaan vain objektiivisia todennäköisyyksiä (toistettavissa olevat tilastokokeet) Protonin massa on välillä a ± tn:llä % Tupakointi lisää riskiä sairastua keuhkosyöpään Todennäköisyyden käyttäminen tietämyksen kvantifiointiin tekee todennäköisyydestä subjektiivisen käsitteen Huomenna sataa tn:llä 10% Aarnio tuomittiin rikoksesta todennäköisin syin Relativismi: Todennäköisyys on suhteellista Thomas Bayes
5 Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit Bayeslainen päättely jatkuvilla malleilla Lisämateriaalia: Kolikonheiton bayeslainen malli
6 Esimerkki: Tuntematon kolikko Laatikossa on kolme tasaista kolikkoa (kruunan tn θ = 0.5) sekä yksi lievästi vino (θ = 0.6) ja yksi vahvasti vino (θ = 0.9). Satunnaisesti valittua kolikkoa heitettäessä havaitaan klaava. Millä tn heitetty kolikko oli tasainen? Kolikon tyypin Θ jakauma ennen datan havaitsemista on Osituskaavasta θ P(Θ = θ) Bayesin kaavasta P( klaava ) = = 0.4 P(Θ = 0.5 klaava ) = P(Θ = 0.5) P( klaava Θ = 0.5) P( klaava ) Kolikon tyypin jakauma datan havaitsemisen jälkeen = = 0.75 θ P(Θ = θ klaava )
7 Tietämyksen päivityskaava: Diskreetti malli Tietämys Θ:n arvosta ennen datan x 1 havaitsemista: Priorijakauma p 0 (θ) = P(Θ = θ) Tietämys Θ:n arvosta datan x 1 havaitsemisen jälkeen: Posteriorijakauma p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ). Datalähteen stokastinen malli: Uskottavuusfunktio f 1 (x 1 θ) = P(X 1 = x 1 Θ = θ) Fakta Posteriorijakauma p 1 (θ x 1 ) saadaan priorijakaumasta p 0 (θ) painottamalla ja normittamalla sitä uskottavuudella f 1 (x 1 θ): p 1 (θ x 1 ) = p 0 (θ) f 1 (x 1 θ) θ p 0(θ ) f 1 (x 1 θ ).
8 Tietämyksen päivityskaava: Todistus Osituskaavasta P(X 1 = x 1 ) = θ P(Θ = θ ) P(X 1 = x 1 Θ = θ ) = θ p 0 (θ ) f 1 (x 1 θ), joten Bayesin kaavasta p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ) = P(Θ = θ) P(X 1 = x 1 Θ = θ) P(X 1 = x 1 ) = p 0(θ)f 1 (x 1 θ) P(X 1 = x 1 ) p 0 (θ)f 1 (x 1 θ) = θ p 0(θ ) f 1 (x 1 θ).
9 Esimerkki: Tuntematon kolikko Tuntematon parametri: Heitetyn kolikon tyyppi Θ Priorijakauma p 0 (θ) = P(Θ = θ) Data x 1 = 0 (havaittiin klaava) Uskottavuus f (x 1 θ) = P(X 1 = x 1 Θ = θ) θ Priori p 0 (θ) Uskottavuus f (0 θ) Normittamaton posteriori Posteriori p 1 (θ 0)
10 Esimerkki: Tuntematon kolikko Kolikon tyypin priorijakauma: θ p 0 (θ) Uskottavuusfunktio datapisteelle x 1 = 0 (klaava): θ f (0 θ) Kolikon tyypin posteriorijakauma: θ p 1 (θ 0)
11 Kolikon tyypin priori- ja posteriorijakaumat p 0 (θ) p 1 (θ 0) p 1 (θ 1)
12 Tuntematon kolikko: Monta havaintoa Laatikossa on kolme tasaista kolikkoa (kruunan tn θ = 0.5) sekä yksi lievästi vino (θ = 0.6) ja yksi vahvasti vino (θ = 0.9). Satunnaisesti valittua kolikkoa heitettäessä havaitaan 2 klaavaa. Millä tn heitetty kolikko oli tasainen? Uskottavuusfunktio datajoukolle (x 1, x 2 ) = (0, 0), θ f (0, 0 θ) θ Priori p 0 (θ) Uskottavuus f (0, 0 θ) Normittamaton posteriori Posteriori p 1 (θ 0, 0)
13 Kolikon tyypin priori- ja posteriorijakauma p 0 (θ) p 1 (θ 0) p 1 (θ 00) p 1 (θ 00000) Sadan klaavan havaitsemisen jälkeen posteriorijakauman massa keskittyy tähtitieteellisen pientä poikkeamaa vaille arvoon 0.5. Tämä tuntuu paradoksaaliselta, sillä tn saada 100 klaavaa peräkkäin tasaisella kolikolla on Paradoksi selittyy priorin valinnalla: Ylläoleva priori p 0 (θ) kuvastaa absoluuttista 100% varmuutta siitä, että kolikko ei puolla klaavan suuntaan: P(Θ < 0.5) = 0.
14 Tietämyksen 2-vaiheinen päivityskaava Tietämys Θ:n arvosta ennen datan havaitsemista: Priorijakauma p 0 (θ) = P(Θ = θ) Tietämys Θ:n arvosta datan havaitsemisen jälkeen: Posteriorijakauma p 1 (θ x 1 ) = P(Θ = θ X 1 = x 1 ). Posteriorijakauma p 2 (θ x 1, x 2 ) = P(Θ = θ X 1 = x 1, X 2 = x 2 ). Datalähteen stokastinen malli: Uskottavuusfunktio f 1 (x 1 θ) = P(X 1 = x 1 Θ = θ) Uskottavuusfunktio f 2 (x 2 θ, x 1 ) = P(X 2 = x 2 Θ = θ, X 1 = x 1 ) Fakta Posteriorijakauma p 2 (θ x 2 ) saadaan posteriorijakaumasta p 1 (θ x 1 ) painottamalla ja normittamalla sitä uskottavuudella f 2 (x 2 θ, x 1 ): p 2 (θ x 1, x 2 ) = p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) θ p 1(θ x 1 ) f 2 (x 2 θ, x 1 ).
15 Tietämyksen 2-vaiheinen päivityskaava: Todistus Kun D 1 = {X 1 = x 1 } ja D 2 = {X 2 = x 2 }, saadaan tulokaavasta P(Θ = θ, D 1, D 2 ) = P(D 1 ) P(Θ = θ D 1 ) P(D 2 Θ = θ, D 1 ) osituskaavasta (ehdoton) = P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ), P(D 1, D 2 ) = θ P(Θ = θ, D 1, D 2 ) = θ P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ), ja nämä yhdistämällä p 2 (θ x 1, x 2 ) = P(Θ = θ, X 1 = x 1, X 2 = x 2 ) P(X 1 = x 1, X 2 = x 2 ) P(D 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) = θ P(D 1) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) p 1 (θ x 1 ) f 2 (x 2 θ, x 1 ) = θ p 1(θ x 1 ) f 2 (x 2 θ, x 1 ).
16 Tietämyksen päivitys: Yhteenveto Priorijakauma p 0 (θ) mallintaa yksilön tietämystä tuntemattoman parametrin arvosta Θ Uskottavuusfunktio f (x θ) vastaa datalähteen stokastista mallia Posteriorijakauma mallintaa yksilön tietämystä, johon on yhdistetty priorijakauma sekä havaittu data Posteriorijakauma p 1 (θ x) lasketaan priorijakaumasta ja havaitusta datasta x painottamalla prioritodennäköisyyksiä uskottavuusfunktion arvoilla ja sen jälkeen normittamalla Yksilön tietämyksen mallintamista subjektiivisilla todennäköisyyksillä kutsutaan bayeslaiseksi lähestymistavaksi
17 Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit Bayeslainen päättely jatkuvilla malleilla Lisämateriaalia: Kolikonheiton bayeslainen malli
18 Posteriorijakauman estimaatit Miten päätellään tuntemattoman parametrin θ estimaatti posteriorijakaumasta p 1 (θ x)? 1. Suurimman posterioritodennäköisyyden estimaatti ˆθ: p 1 (ˆθ x) = max p 1 (θ x) θ 2. Posteriorijakauman odotusarvo ˆθ: ˆθ = θ θp 1 (θ x) 3. Raportoidaan koko posteriorijakauma Yo. vaihtoehdoista 1. ja 2. ovat usein lähellä toisiaan. Vaihtoehto 1. voidaan määrittää tuntematta posteriorijakauman normitusvakiota.
19 Esimerkki: Tasajakauman ylärajan estimointi Tuntemattoman välin {1, 2,..., θ} tasajakaumaa noudattavasta datalähteestä on havaittu x 1 = 21, x 2 = 7 ja x 3 = 22. Mikä on paras arvaus (estimaatti) tuntemattoman parametrin θ arvolle? Datalähteen uskottavuusfunktio: f (x i θ) = { 1 θ, 1 x i θ, 0, muuten { 1 θ 3, 1 x 1, x 2, x 3 θ, f (x 1, x 2, x 3 θ) = 0, muuten SU-estimaatti: ˆθ(x) = max(x 1, x 2, x 3 ) = 22. Entä jos meillä on ennakkoon muodostettu näkemys, että tuntemattoman parametrin arvo on todennäköisesti lähellä arvoa 30?
20 Tasajakauman yläraja: bayeslainen estimointi Tuntemattoman välin {1, 2,..., θ} tasajakaumaa noudattavasta datalähteestä on havaittu x 1 = 21, x 2 = 7 ja x 3 = 22. Ennakkotietämys: Parametri on todennäköisesti lähellä arvoa 30. Tulkitaan tuntematon parametri satunnaismuuttujana Θ, jonka odotusarvo on 30? Miten valitaan Θ:n priorijakauma? Valitaan yksikertaisin diskreetti jakauma, jonka odotusarvo on 30 ja jolla on positiivinen tn saada mikä tahansa pos. kokonaisluku. Poisson-jakauma parametrina λ = 30: p 0 (θ) = e λ λθ, θ = 0, 1, 2,... θ! Uskottavuusfunktio { 1 θ 3, 1 x 1, x 2, x 3 θ, f (x 1, x 2, x 3 θ) = 0, muuten
21 Tasajakauman ylärajan estimointi: bayeslainen estimointi Havaittu data: x = (21, 7, 22) Priori p 0 (θ) = e 30 30θ, θ = 0, 1, 2,... θ! Uskottavuus f (x θ) = { 1 θ, 3 θ 22, 0, muuten Posteriori lasketaan päivityskaavasta p 1 (θ x) = p 0 (θ)f (x θ) θ p 0(θ )f (x θ ) = {c θ 1 e θ! θ, 3 θ 22, 0, muuten, missä normitusvakio c = θ p 0(θ )f (x θ ) ei riipu θ:sta. Suurimman posterioritodennäköisyyden estimaatti on ˆθ, joka maksimoi funktion θ 30θ 1 θ! θ joukossa θ Maksimin voi etsiä kokeilemalla tai piirtämällä ko. funktio.
22 Tasajakauman yläraja: Priori ja posteriori Data: x = (21, 7, 22) Priori: Poisson-jakauma odotusarvona λ = 30 Priori p 0 (θ) Posteriori p 1 (θ x) Suurimman posterioritodennäköisyyden estimaatti: ˆθ(x) = 26
23 Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit Bayeslainen päättely jatkuvilla malleilla Lisämateriaalia: Kolikonheiton bayeslainen malli
24 Bayeslainen malli Havaittu data x = (x 1,..., x n ). Kokonaisuuden (tietämys ja datalähde) stokastinen malli = parametrin ja datan (Θ, X ) yhteisjakauma Priori: parametrin Θ jakauma ennen datan havaitsemista Uskottavuus: datan X jakauma ehdolla Θ = θ Posteriori: parametrin Θ jakauma ehdolla X = x Diskreetti parametri ja diskreetti data: Priori: p 0 (θ) ptnf Uskottavuus: f (x θ) on ehdollinen ptnf Posteriori: p 1 (θ x) ehdollinen ptnf Jatkuva parametri ja jatkuva data: Priori: p 0 (θ) tiheysf Uskottavuus: f (x θ) on ehdollinen tiheysf Posteriori: p 1 (θ x) ehdollinen tiheysf
25 Esim. Kohinainen kanava Pisteestä A lähetetään (tuntematon) signaali θ Pisteessä B vastaantotetun signaalin arvo on normaalijakautunut odotusarvona θ ja keskihajontana σ = 2. Kun sama signaali lähetettiin 3 kertaa peräkkäin, vastaanotettiin arvot x = (3, 8, 7). Lähetetyn signaalin arvon SU-estimaatti on vastaanotettujen arvojen keskiarvo m(x) = ( )/3 = 6 Pisteessä B arvellaan ennalta, että lähetetyn signaalin Θ arvo on normaalijakautunut odotusarvona µ 0 = 5 ja keskihajontana σ 0 = 1. H5B3: Määritä tehtyjen havaintojen valossa: 1. Satunnaismuuttujan Θ posteriorijakauman odotusarvo. 2. Väli, joka sisältää tuntemattoman signaalin todellisen arvon 90% todennäköisyydellä.
26 Bayeslainen normaalimalli Tuntemattoman parametrin priorijakauma: Θ Nor(µ 0, σ 0 ), p 0 (θ) = (2πσ0) 2 1/2 e (θ µ 2 0) 2σ 0 2 Datan uskottavuusfunktio: (X i θ) Nor(θ, σ), f (x i θ) = (2πσ 2 ) 1/2 e (x i θ) 2 2σ 2 f (x 1,..., x n θ) = f (x 1 θ) f (x n θ) Esim. Kohinainen kanava: Lähetetyn signaalin priori: Θ Nor(µ 0, σ 0 ), µ 0 = 5, σ 0 = 1 Vastaanotettu signaali: (X i θ) Nor(θ, σ), σ = 2
27 Bayeslainen normaalimallin posteriorijakauma Priorijakauma Θ Nor(µ 0, σ 0 ) Uskottavuus: (X i θ) Nor(θ, σ) Fakta Bayeslaisen normaalimallin posteriorijakauma havaitun datajoukon x = (x 1,..., x n ) suhteen on normaalijakauma Nor(µ 1, σ 1 ), missä µ 1 = 1 µ σ n m(x) σ n, σ 1 = σ0 2 σ 2 1, 1 + n σ0 2 σ 2 ja m(x) = 1 n n i=1 x i on havaitun datajoukon keskiarvo.
28 Esim. Kohinainen kanava Pisteessä B vastaantotetun signaalin arvo on normaalijakautunut odotusarvona θ ja keskihajontana σ = 2. Pisteessä B arvellaan ennalta, että lähetetyn signaalin Θ arvo on normaalijakautunut odotusarvona µ 0 = 5 ja keskihajontana σ 0 = 1. Lähetetyn signaalin posteriorijakauma vastaanotettujen arvojen x = (3, 8, 7) suhteen on Nor(µ 1, σ 1 ), missä µ 1 = 1 µ σ n m(x) σ n = σ0 2 σ ja σ 1 = 1 = 1 + n σ0 2 σ
29 Kohinainen kanava: Piste- ja väliestimaatit Lähetetyn signaalin posteriorijakauma datan x = (3, 8, 7) suhteen on Nor(µ 1, σ 1 ), missä µ 1 = 5.43 ja σ 1 = Lähetetyn signaalinarvon bayeslaisia piste-estimaatteja: Posteriorijakauman odotusarvo: µ 1 = 5.43 Suurimman posterioritodennäköisyyden estimaatti: µ 1 = 5.43 Määritä väli, joka sisältää lähetetyn signaalin todellisen arvon 90% todennäköisyydellä. Ratkaistaan c yhtälöstä ( ) Θ µ = P(Θ = µ 1 ±c) = P = 0 ± c/σ 1 = P( Z c/σ 1 ) σ 1 Taulukoista: P( Z 1.64) = 0.90, joten c = = Väli 5.43 ± 1.24 = [4.19, 6.67] siis peittää lähetetyn signaalin arvon 90% todennäköisyydellä. (Piirrä posteriorijakauman kuva ja vertaa priorijakaumaan)
30 Sisältö Tietämyksen kvantifiointi ja subjektiivinen todennäköisyys Tietämyksen päivittäminen Posterijakauman tulkinta: Piste-estimaatit Bayeslainen päättely jatkuvilla malleilla Lisämateriaalia: Kolikonheiton bayeslainen malli
31 Lisämateriaalia: Kolikonheiton bayeslainen malli Nämä asiat eivät kuulu tenttivaatimuksiin, mutta näihin voi silti olla kiinnostava tutustua.
32 Tuntematon kolikko Tuntematonta kolikkoa heitettäessä (0=klaava, 1=kruuna) on havaittu data x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0). Kolikosta ei ole mitään taustatietoja. Määritä parametrin Θ (kruunan tn) posteriorijakauma. Valitaan prioriksi jatkuvan välin [0, 1] tasajakauma tiheysfunktiona { 1, θ [0, 1], p 0 (θ) = 0, muuten. Uskottavuusfunktio f (x θ) = θ 2 (1 θ) 8 Posteriorijakauman tiheysfunktio { c θ 2 (1 θ) 8, θ [0, 1], p 1 (θ x) = c p 0 (θ)f (x θ) = 0, muuten, missä normitusvakio c = ( 1 0 t2 (1 t) 8 dt) 1
33 Tuntematon kolikko Data: x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0) Priori Posteriori p 0 (θ) dθ = 1 dθ p 1 (θ x)dθ = c θ 2 (1 θ) 8 dθ
34 Beta-jakauma Beta(a, b)-jakauman parametreina a > 0 ja b > 0 tiheysfunktio on { c θ a 1 (1 θ) b 1, kun θ [0, 1], f (θ) = 0, muuten, normitusvakiona c = (a+b 1)! (a 1)!(b 1)!. Beta(1, 1) Beta(3, 9) Beta(9, 3) Beta(9, 9) Arvojoukko = [0, 1] Odotusarvo µ = a a+b ja keskihajonta σ = Kertymäfunktiota ei tunneta suljetussa muodossa µ(1 µ) a+b+1 dbeta(theta,a,b); pbeta(theta,a,b)
35 Tuntematon kolikko Data: x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0) Priori: Tasajakauma Beta(1, 1) Posteriori: Beta(3, 9) Priori Posteriori p 0 (θ) dθ = 1 dθ p 1 (θ x)dθ = c θ 2 (1 θ) 8 dθ
36 Tuntematon kolikko: Kruunien lukumäärä Kolikkoa n kertaa heitettäessä havaittiin k kruunaa. Kolikosta ei ole taustatietoja. Määritä parametrin Θ (kruunan tn) posteriorijakauma. Priorijakauman tiheysfunktio: p 0 (θ) = 1, θ [0, 1] Uskottavuusfunktio datapisteelle x = k saadaan Bin(n, θ)-jakaumasta ( ) n f (k θ) = θ k (1 θ) n k k Posterioritiheys p 1 (θ k) = p 0 (θ)f (k θ) p0 (t)f (k t) dt = c θ k (1 θ) l on Beta(k + 1, l + 1), missä l = n k on klaavojen lkm. Huom Kun n = 10 ja k = 2, saadaan sama posteriori Beta(3, 9), mitä yksityiskohtaiselle datalle x = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0). Normitusvakion c arvo määräytyy ehdosta 1 0 p 1(θ k)dθ = 1. Beta-jakauman taulukoista = c = (k+l+1)! k!l!
37 Tuntematon kolikko: Kruunien lukumäärä n = 10 Beta(3, 9): k = 2, l = 8 Beta(6, 6): k = 5, l = 5 n = 100 Beta(21, 81): k = 20, l = 80 Beta(51, 51): k = 50, l = 50
38 Loppuviikolla vertaillaan bayeslaisia väliestimaatteja frekventistisiin luottamusväleihin.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Bayesläiset tilastolliset mallit
Luku 9 Bayesläiset tilastolliset mallit Lasse Leskelä Aalto-yliopisto 8. lokakuuta 07 9. Priorijakauma ja posteriorijakauma Bayesläisen tilastollisen päättelyn lähtökohtana on päivittää satunnaisilmiöön
Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot
Luku 11 Tilastolliset testit Lasse Leskelä Aalto-yliopisto 17. lokakuuta 2017 11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot Datalähteen tuottamia arvoja mallinnetaan jakaumaa f(x θ) noudattavina
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.
Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Tilastollinen päättely, 10 op, 4 ov
Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
11.1 Nollahypoteesi, vastahypoteesi ja p-arvo
Luku 11 Tilastolliset testit Lasse Leskelä Aalto-yliopisto 4. joulukuuta 2017 11.1 Nollahypoteesi, vastahypoteesi ja p-arvo Aiemmissa luvuissa opittiin määrittämään piste-estimaatteja ja väliestimaatteja
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta
22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen datan kuvaileminen, mallintaminen ja estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4
Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ
Tilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
3.7 Todennäköisyysjakaumia
MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-2.090 Sovellettu todennäköisyyslasku A Harjoitus 4 (vko 41/2003) (Aihe: diskreettejä satunnaismuuttujia ja jakaumia, Laininen luvut 4.1 4.7) 1. Kone tekee
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)
5. ESTIMOINTITEORIAN PERUSTEITA 5.1. Perusjakaumat 1-ulotteisina Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) Siksi tarvitaan todennäköisyyslaskentaa
Satunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 16. syyskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
Bayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Johdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Satunnaismuuttujan odotusarvo ja laskusäännöt
Luku 3 Satunnaismuuttujan odotusarvo ja laskusäännöt Lasse Leskelä Aalto-yliopisto 17. marraskuuta 2017 3.1 Odotusarvon käsite ja suurten lukujen laki Lukuarvoisen satunnaismuuttujan X odotusarvo määritellään
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Johdatus tn-laskentaan perjantai 17.2.2012
Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;
Tilastollinen päättely II, kevät 2017 Harjoitus 1A
Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
Opiskelijanumero Yleisarvio Työläys Hyödyllisyys 12345A K K B U 3 3 3
Luku 6 Datajoukkojen jakaumat, tunnusluvut ja kuvaajat Lasse Leskelä Aalto-yliopisto. lokakuuta 207 6. Datajoukko ja datakehikko Tässä monisteessa datajoukko tarkoittaa järjestettyä listaa keskenään samantyyppisiä
Satunnaismuuttujien summa ja keskiarvo
Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,
Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä
Bayes-mallinnus siltana teorian ja empiirisen evidenssin välillä Antti Penttinen Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Metodifestivaalit Jyväskylän yliopisto 21.5.2013 Suunnitelma
Tämän luvun sisältö. Luku 5. Estimointiteorian perusteita. Perusjakaumat 1-ulotteisina (2) Perusjakaumat 1-ulotteisina
Tämän luvun sisältö Luku 5. T-6. Datasta tietoon, syksy professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto.. Luku käydään läpi kahdella luennolla. Perusjakaumat -ulotteisina Yleistys
Uskottavuuden ominaisuuksia
Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä
Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut
TILASTO-OPPIA Tilastolliset jakaumat, niiden esittäminen ja tunnusluvut Diskreetit jakaumat ja niiden esittäminen frekvenssitauluna ja kaaviona Jakauma on diskreetti jos tilastomuuttuja voi saada vain
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Satunnaismuuttujien summa ja keskiarvo
Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 17. marraskuuta 2017 5.1 Satunnaismuuttujien summa Kahden satunnaismuuttujan summa X + Y on satunnaismuuttuja, jonka jakauma
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen
Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri
Mikrobikriteereiden arviointi esimerkkinä kampylobakteeri Taustaa: NMDD-projekti 2011-2012 Rahoitus: pohjoismaiden ministerineuvosto Vast.tutkija: Maarten Nauta, DTU Epävarmuusanalyysin Bayes-mallinnus,
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain