MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi"

Transkriptio

1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015

2 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

3 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

4 Mitä tilastotiede on? Tilastotiede soveltaa sekä kehittää metodeja ja malleja, joita voidaan käyttää tutkiatteassa reaalimaailman satunnaisilmiöitä. Menetelmät ja mallit perustuvat todennäköisyysteorian lainalaisuuksiin. Tilastotiedettä voidaan soveltaa aina, kun saatavilla on kvantifioitavaa aineistoa. Mikä tahansa aineistojoukko, joka kuvaa jotakin reaalimaailman imiötä on potentiaalinen tilastotieteen tutkimuskohde.

5 Tilastollinen aineisto Populaatio on joukko, joka sisältää kaikki mahdolliset tilastollisen kokeen kohteet. Yksikkö on populaation alkio. Havainto on havaittu arvo, joka liitetään yksikköön. Tilastollinen aineisto on kaikista havainnoista koostuva kokoelma. Esim: Tutkitaan suomalaisten pituuksia ja mitataan sitä varten 2000 satunnaisesti valittua suomalaista. Silloin Populaatio on kaikki suomalaiset. Yksikkö on kuka tahansa suomalainen. Havainto on kenen tahansa mitatun suomalaisen pituus. Tilastollinen aineisto koostuu kaikista mitatuista pituuksista.

6 Yleiskatsaus Aineiston kuvailemiseen käytettäviä menetelmiä: Kuvaajat Tunnusluvut (esim. keskiarvo, varianssi, kovarianssi) Tilastolliset mallit Tilastolliseen päättelyyn käytettäviä menetelmiä Tilastolliset mallit Tilastollinen estimointi Tilastollinen testaus

7 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

8 Tilastollinen aineisto Tilastollisen kokeen aineisto kerätään yleensä taulukkoon eli aineistokehikkoon, jonka rivit vastaavat tilastollisen kokeen havaintoja sarakkeet vastaavat tilastollisen kokeen muuttujia Muuttujat voivat olla laadullisia tai määrällisiä laadullisen muuttujan arvot jaotellaan luokkiin (esim. aurinkoista, sateista, pilvistä ) määrällisen muuttujan arvot ovat lukuja

9 Tilastollinen aineisto Hav. X 1 X 2 X m 1 X 1,1 X 1,2 X 1,m 2 X 2,1 X 2,2 X 1,m 3 X 3,1 X 3,2 X 1,m n X n,1 X n,2 X n,m Taulukko : Aineistokehikko, jossa on n havaintoa ja m muuttujaa.

10 Laadullinen muuttuja Arvot jaotellaan luokkiin, jotka usein numeroidaan kokonaisluvuilla. Esim. Miten kuljet työmatkat? 1 = Bussilla 2 = Polkupyörällä 3 = Muulla tavoin Huom Numeroidun laadullisen muuttujan keskiarvo ei yleensä tarkoita mitään. Numeroidun laadullisen muuttujan mediaanilla voi olla merkitys, mikäli arvot voidaan järjestää.

11 Esimerkki: Laadullinen muuttuja Hav. Matkustustapa 1 Bussi 2 Joku muu 3 Joku muu 4 Bussi 5 Polkupyörä Taulukko : Aineistokehikko, jossa on 5 havaintoa ja muuttuja matkustutapa. Muuttujan keskiarvo olisi 1 ( ) = 2, 5 mutta tässä ei ole järkeä, koska muuten bussin ja jonkun muun keskiarvo olisi polkupyörä.

12 Määrällinen muuttuja Määrällinen muuttuja saa arvoja reaalilukujen osajoukossa. Määrällinen muuttuja voidaan muuntaa laadulliseksi jakamalla arvot luokkiin. Esim Satunnaisesti valitun suomalaisen työssäkäyvän työaika (min/vrk) on määrällinen muuttuja, joka saa arvoja joukossa [0, 1440]. Tämä voidaan jakaa luokkiin esim. L 1 = (0, 60] L 2 = (60, 120]... L 24 = (1380, 1440]

13 Esimerkki: Määrällinen aineisto Hav. Aika (min/päivä) Ryhmä L L L L L8 Taulukko : Aineistokehikko, jossa on 5 havaintoa ja määrällinen muuttuja aika. Viimeisessä sarakkeessa on luokitellut arvot. Näiden viiden havainnon keskiarvo on 1 ( ) = 485.2, 5 joka on noin 8 tuntia 5 minuuttia.

14 Esimerkki: Isien ja poikien pituudet I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P Taulukko : 1000 havaintoparia Pearsonin isä-poika pituusaineistosta.

15 Height Son Father

16 Density Histogram of Fathers Height

17 Histogram of Sons Density Height

18 Määrällisen muuttujan tunnuslukuja Keskiarvo (eli otoskeskiarvo) n m(x) = 1 n i=1 x i Otosvarianssi s 2 (x) = 1 n 1 n (x i m(x)) 2 i=1 Otoskeskihajonta s(x) = s 2 (x) Huom Yo. luvut lasketaan suoraan havaitusta aineistosta, joten niillä ei ole mitään tekemistä minkään todennäköisyysjakauman kanssa. R: mean(x), var(x), sd(x)

19 Järjestystunnuslukuja Järjestetyn muuttujan (määrällinen tai järjestetty laadullinen) havainnoista x = (x 1,..., x n ), voidaan laskea tason p (0, 1) kvantiili Q(p): Q(0.25) on alakvartiili Q(0.5) on mediaani Q(0.75) on yläkvartiili Tällöin 25 % havainnoista on alakvartiilin alapuolella Puolet havainnoista sijaitsee mediaanin alapuolella 25 % havainnoista on yläkvartiilin yläpuolella R: quantile(x,p), summary(x), median(x)

20 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

21 Tilastokokeen stokastinen malli Otantatutkimus Tutkittavan muuttujan arvo havaitaan n:n alkion osajoukossa ja halutaan päätellä tutkittavan muuttujan (tuntematon) jakauma f (x) koko populaatiossa. Stokastinen malli Tilastokokeen tulosta mallinnetaan satunnaisvektorilla (X 1,..., X n ), jonka alkiot ovat riippumattomat ja noudattavat (tuntematonta) jakaumaa f (x). Stokastinen malli on tarkka, kun: Havaitut alkiot on valittu tasaisen satunnaisesti ja riippumattomasti. Havaittujen alkioiden lukumäärä on pieni suhteessa perusjoukon kokoon.

22 Tilastokokeen stokastisen mallin soveltaminen Ongelma Otantatutkimuksessa on havaittu muuttujan arvot (x 1,..., x n ). Miten voidaan havainnoista päätellä tutkittavan muuttujan (tuntematon) jakauma koko populaatiossa? Ratkaisu Tehdään arvaus, että tuntematon jakauma on f (x). Jos arvaus on (likimain) oikea, niin otannan tulosta voidaan (likimain) mallintaa satunnaisvektorilla (X 1,..., X n ), jonka alkiot ovat riippumattomat ja noudattavat jakaumaa f (x). Stokastiikan menetelmillä johdetaan tn, että (X 1,..., X n ) saa (likimain) arvon (x 1,..., x n ). Jos saatu tn 0, hylätään arvaus todennäköisin syin.

23 Aineiston ja stokastisen mallin tunnusluvut Stokastiikan menetelmillä johdetaan tn, että (X 1,..., X n ) saa (likimain) arvon (x 1,..., x n ). Lasketaan tunnusluku g(x 1,..., x n ) aineistosta Tutkitaan, millä tn:llä satunnaisluku g(x 1,..., X n ) on likimain g(x 1,..., x n ) Tunnusluku on funktio g : R n R. Esim Keskiarvo m(x) = 1 n n i=1 x i Otosvarianssi s 2 (x) = 1 n 1 n i=1 (x i m(x))

24 Aineiston ja stokastisen mallin keskiarvot Havainnot (x 1,..., x n ) Stokastinen malli (X 1,..., X n ) n n m(x) = 1 n i=1 x i m(x ) = 1 n i=1 X i E(m(x)) = m(x) Var(m(x)) = 0 E(m(X )) = Var(m(X )) = 1 n σ2 = 1 n x f (dx) = µ (x µ) 2 f (x)dx. Huom Stokastisen mallin keskiarvo on satunnaisluku, jonka odotusarvo on µ ja varianssi σ 2 /n.

25 Aineiston ja stokastisen mallin otosvarianssit Havaittu aineisto (x 1,..., x n ) s 2 (x) = 1 n 1 n (x i m(x)) 2 i=1 E(s 2 (x)) = s 2 (x) Var(s 2 (x)) = 0 Stokastinen malli (X 1,..., X n ) s 2 (X ) = 1 n 1 E(s 2 (X )) = σ 2 = n (X i m(x )) 2 i=1 Var(s 2 (X )) =... (x µ) 2 f (x)dx.

26 Stokastisen mallin sopivuus aineistoon Kun on havaittu aineisto (x 1,..., x n ) ja arvattu jakauma f (x), Miten lasketaan tn, että m(x ) m(x)? Miten lasketaan tn, että s 2 (X ) s 2 (x)? Tulee selvittää stokastista mallia vastaavien tunnuslukujen m(x ) ja s 2 (X ) jakaumat

27 Stokastisen mallin tunnusluvun jakauma Fakta Kun satunnaisvektorin (X 1,..., X n ) komponentit ovat riippumattomat ja noudattavat jakaumaa f (x), niin tunnusluvun g(x 1,..., X n ) jakauma saadaan kaavasta Pr(a < g(x 1,..., X n ) < b) = f (u 1 ) f (u n ) du 1 du n, g 1 (a,b) missä g 1 (a, b) = {u R n : g(u) (a, b)}. Huom (Arvattu) tiheysfunktio f (x) määrää tunnusluvun jakauman Vastaava kaava pätee diskreeteille jakaumille, kun integraalit vaihdetaan summiksi ja tiheydet pistetodennäköisyyksiksi. Yo. kaava on monissa käytännön tilanteissa hyödytön, koska moniulotteinen integraali on vaikea laskea.

28 Normaalijakautuneen mallin tunnusluvut Fakta Kun satunnaisvektorin (X 1,..., X n ) komponentit ovat riippumattomat ja noudattavat N(µ, σ 2 )-jakaumaa, niin Keskiarvo m(x ) = 1 n noudattaa N(µ, σ 2 /n)-jakaumaa. Normalisoitu otosvarianssi n 1 σ 2 s2 (X ) = n i=1 X i n ( Xi m(x ) i=1 noudattaa χ 2 (n 1)-jakaumaa ( khii toiseen ) R: pnorm(x,mu,sigma), pchisq(x,n-1) σ ) 2

29 Esim. Isien pituudet: Keskiarvo On väitetty, että 1900-luvun alussa isien pituudet (cm) noudattavat N(µ, σ 2 )-jakaumaa, missä µ = 171 ja σ = 7. Pearsonin keräämälle n = 1078 havainnon otokselle x = (x 1,..., x n ) m(x) = 171.9, s 2 (x) = 48.75, s(x) = Jos väite ok, niin m(x ) N(µ, σ1 2), missä σ 1 = σ/ n = ( m(x ) µ Pr(m(X ) > m(x)) = Pr > m(x) µ ) σ 1 σ 1 ( ) m(x) µ = 1 pnorm = Väite voidaan siis hylätä todennäköisin syin. R: pnorm(x) σ 1

30 Esim. Isien pituudet: Keskiarvo On väitetty, että 1900-luvun alussa isien pituudet (cm) noudattavat N(µ, σ 2 )-jakaumaa, missä µ = 171 ja σ = 7. Pearsonin keräämälle n = 1078 havainnon otokselle x = (x 1,..., x n ) m(x) = 171.9, s 2 (x) = 48.75, s(x) = Jos väite ok, niin n 1 σ s 2 (X ) χ 2 (n 1), jolloin 2 ( n 1 Pr(s 2 (X ) s 2 (x)) = Pr σ 2 s 2 (X ) n 1 σ 2 = pchisq ( n 1 σ 2 s 2 (x), n 1 Väitettä ei siis voida hylätä todennäköisin syin. R: pchisq(x,n-1) ) s 2 (x) ) 0.458

31 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

32 Normaalijakauman parametrien estimointi Havaittu määrällisen muuttujan arvot x = (x 1,..., x n ). Pohjaoletus: Havainnot ovat riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuuttujien realisaatioita. Miten estimoidaan tuntemattomat parametrit µ ja σ 2 aineistosta? Estimaattoreina käytetään yleensä keskiarvoa ja otosvarianssia: m(x ) = 1 n n i=1 X i ja s 2 (X ) = 1 n 1 n (X i m(x )) 2. i=1 Jos pohjaoletus pätee, niin E(m(X )) = µ ja E(s 2 (X )) = σ 2. Näin ollen m(x ) ja s 2 (X ) ovat parametrien µ ja σ 2 harhattomat estimaattorit.

33 Miten estimoidaan normaalijakauman N(µ, σ 2 ) odotusarvoparametri µ ja sille luottamusväli?

34 Normaalijakauman t-testisuure Stokastinen malli Satunnaisvektori X = (X 1,..., X n ), jolla riippumattomat N(µ, σ 2 )-jakautuneet komponentit m(x ) = 1 n n i=1 X i s 2 (X ) = 1 n n 1 i=1 (X i m(x )) 2 Fakta N(µ, σ 2 )-jakautuneen stokastisen mallin t-testisuure t(x ) = m(x ) µ s(x )/ n noudattaa Studentin t-jakaumaa vapausastein n 1.

35 Studentin t-jakauma Jatkuva satunnaisluku X noudattaa Studentin t-jakaumaa vapausastein n, jos sillä on tiheysfunktio muotoa f (x) = c (1 + x 2 n ) n+1 2. Studentin t-jakauma on symmetrinen: Kaikilla x > 0 pätee 1 F (x) = Pr(X > x) = Pr(X < x) = F ( x) Pr( X > x) = 2 Pr(X > x) Tiheysfunktio ja kertymäfunktio R:llä: dt(x, n) ja pt(x, n)

36 Studentin t-jakauma t distributions f(x) x Kuva : Studentin t-jakaumia vapausastein n = 1 (sininen), n = 2 (vihreä), n = 5 (punainen)ja n = (musta).

37 Normaalijakauman odotusarvon luottamusväli Fakta Jos satunnaisvektorilla X = (X 1,..., X n ) on riippumattomat N(µ, σ 2 )-jakautuneet komponentit, niin satunnaisväli ( ) s(x ) s(x ) m(x ) t 1 α/2, m(x ) + t n 1 α/2 n peittää parametrin µ tn:llä 1 α, missä t 1 α/2 = qt(1 α/2, n 1) on n 1 vapausasteen Studentin t-jakauman tason 1 α/2 kvantiili.

38 Normaalijakauman odotusarvon luottamusväli: Tulkinta Havaittu määrällisen muuttujan arvot x = (x 1,..., x n ). Aineistosta laskettu luottamustason 1 α luottamusväli on ( ) s(x) s(x) m(x) t 1 α/2, m(x) + t n 1 α/2 n Pohjaoletus: Havainnot ovat riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuuttujien realisaatioita. Tulkinta: Aineistosta laskettu estimaatti ˆµ = m(x) aina kuuluu yo. välille Tuntematon parametri µ joko kuuluu tai ei kuulu yo. välille Jos pohjaoletus pätee, niin satunnainen väli ( ) s(x ) s(x ) m(x ) t 1 α/2, m(x ) + t n 1 α/2 n peittää tuntemattoman parametrin µ tn:llä 1 α.

39 Miten estimoidaan normaalijakauman N(µ, σ 2 ) varianssiparametri σ 2 ja sille luottamusväli?

40 Normaalijakauman varianssin χ 2 -testisuure Stokastinen malli Satunnaisvektori X = (X 1,..., X n ), jolla riippumattomat N(µ, σ 2 )-jakautuneet komponentit m(x ) = 1 n n i=1 X i s 2 (X ) = 1 n n 1 i=1 (X i m(x )) 2 Fakta Stokastiseen malliin perustuva testisuure χ 2 (X ) = (n 1)s2 (X ) σ 2 noudattaa χ 2 -jakaumaa vapausastein n 1.

41 Khii toiseen -jakauma Jatkuva satunnaisluku X 0 noudattaa χ 2 -jakaumaa vapausastein n, jos sillä on tiheysfunktio muotoa { c x n 2 1 e x/2, x > 0, f (x) = 0, x 0. χ 2 -jakauma ei ole symmetrinen: F (x) = 0 kaikilla x < 0. Tiheysfunktio ja kertymäfunktio R:llä: dchisq(x, n) ja pchisq(x, n)

42 χ 2 -jakauma Chi squared distribution f(x) x Kuva : χ 2 -jakaumien tiheysfunktioita vapausastein n = 1 (musta), n = 2 (punainen), n = 3 (vihreä) and n = 5 (sininen).

43 Normaalijakauman varianssin luottamusväli Stokastinen malli Satunnaisvektori X = (X 1,..., X n ), jolla riippumattomat N(µ, σ 2 )-jakautuneet komponentit Fakta Satunnaisväli ( (n 1)s 2 (X ) c 1 α/2, (n 1)s 2 ) (X ) c α/2 peittää parametrin σ 2 tn:llä 1 α, missä c 1 α/2 = qchisq(1 α/2, n 1), c α/2 = qchisq(α/2, n 1), ovat n 1 vapausasteen χ 2 -jakauman tasojen 1 α/2 ja α/2 kvantiilit.

44 Normaalijakauman varianssin luottamusväli: Tulkinta Havaittu määrällisen muuttujan arvot x = (x 1,..., x n ). Aineistosta laskettu luottamustason 1 α varianssin luottamusväli on ( (n 1)s 2 (x) (n 1)s 2 ) (x), c 1 α/2 c α/2 Pohjaoletus: Havainnot ovat riippumattomien N(µ, σ 2 )-jakautuneiden satunnaismuuttujien realisaatioita. Tulkinta: Aineistosta laskettu estimaatti ˆσ 2 = s 2 (x) aina kuuluu yo. välille Tuntematon parametri σ 2 joko kuuluu tai ei kuulu yo. välille Jos pohjaoletus pätee, niin satunnainen väli ( (n 1)s 2 (X ) c 1 α/2, (n 1)s 2 (X ) c α/2 peittää tuntemattoman parametrin σ 2 tn:llä 1 α. )

45 Normaalijakauman parametrien estimointi Yhteenveto Tuntemattomien parametrien µ ja σ 2 :n piste-estimaatit: m(x) = 1 n n i=1 x i ja s 2 (x) = 1 n 1 n (x i m(x)) 2. i=1 Aineistosta laskettu luottamustason 1 α luottamusväli µ:lle: ( ) s(x) s(x) m(x) t 1 α/2, m(x) + t n 1 α/2 n Aineistosta laskettu luottamustason 1 α luottamusväli σ 2 :lle: ( (n 1)s 2 (x) (n 1)s 2 ) (x), c 1 α/2 c α/2 Luottamuskertoimet: t 1 α/2 = qt(1 α/2, n 1), c 1 α/2 = qchisq(1 α/2, n 1), c α/2 = qchisq(α/2, n 1).

46 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

47 Bernoullijakauman parametrin estimointi Tehdään n riippumatonta otosta palauttaen suuresta perusjoukosta. Merkitään { 1, jos alkio i kuuluu joukkoon A, X i = 0, muuten Halutaan estimoida osajoukon A alkioiden suhteellinen osuus p koko perusjoukon alkioista. Käytetään estimaattoria ˆp(X ) = 1 n n X i = i=1 lkm(havaitut alkiot joukossa A) n Tämä on tuntemattoman parameterin p harhaton estimaattori, sillä E(ˆp(X )) = p.

48 Bernoullijakauman testisuure Stokastinen malli Satunnaisvektori X = (X 1,..., X n ), jolla riippumattomat Ber(p)-jakautuneet komponentit Kun n on suuri ja p ei ole kovin lähellä nollaa tai ykköstä, niin stokastisen mallin pohjalta määritelty testisuure ˆp(X ) p ˆp(X )(1 ˆp(X ))/n noudattaa likimain N(0, 1)-jakaumaa.

49 Bernoullijakauman luottamusväli Stokastinen malli Satunnaisvektori X = (X 1,..., X n ), jolla riippumattomat Ber(p)-jakautuneet komponentit Kun n on suuri ja p ei ole kovin lähellä nollaa tai ykköstä, niin satunnainen väli ( ) ˆp(X )(1 ˆp(X )) ˆp(X )(1 ˆp(X )) ˆp(X ) z, ˆp(X ) + z n n peittää parametrin p likimain todennäköisyydellä 1 α, missä z = qnorm(1 α/2) on N(0, 1) jakauman tason 1 α/2 tason kvantiili.

50 Sisältö Johdanto Tilastollisen aineiston kuvaileminen Tilastokokeen stokastinen malli Normaalijakauman parametrien estimointi Bernoullijakauman parametrin estimointi Suurimman uskottavuuden estimaattori

51 Suurimman uskottavuuden function Oletetaan, että on kerätty havainnot x = (x 1, x 2,..., x n ) satunnaismuuttujista X 1, X 2,..., X n, joilla on yhteistiheysfunktio f (x; θ), missä θ on jakauman parametri. Havaintoihin liittyvä Suurimman uskottavuuden funktio on L(θ) = f (x 1,..., x n ; θ), joka on parametrin θ funktio, kun havainnot x = (x 1,..., x n ) on kiinnitetty. Huom Jos X 1, X 2,..., X n ovat riippumattomia, niin L(θ) = f (x; θ) = n f i (x i ; θ), missä f i (x i ; θ) on satunnaismuuttujan X i tiheysfunktio kaikilla i = 1,..., n. i=1

52 Suurimman uskottavuuden estimaattori Oletetaan, että X 1,..., X n ovat riippumattomia satunnaismuuttujia. Suurimman uskottavuuden estimaattori ˆΘ = ˆΘ(X 1,..., X n ) on satunnaismuuttuja, jolle ˆΘ = argmax θ f (X 1,..., X n ; θ) f (X 1,..., X n ; ˆΘ) = max f (X 1,..., X n ; θ). θ Kun havainnot x 1,..., x n on tehty, voidaan laskea suurimman uskottavuuden estimaatti ˆθ. joka toteuttaa yhtälön ˆθ = ˆΘ(x 1,..., x n ), L(ˆθ) = f (x 1,..., x n ; ˆθ) = max f (x 1,..., x n ; θ). θ

53 Suurimman uskottavuuden estimaatin etsiminen Suurimman uskottavuuden estimaatti ˆθ on usein jokin seuraavista: Funktion L epäjatkuvuuspiste Funktion L määrittelyoukon reunapiste Piste, jossa funktion L derivaatta on 0. Sen sijaan, että maksimoidaan L, on usein helpompaa maksimoida logaritminen uskottavuusfunktio l(θ) = log(l(θ)), sillä logaritmi muuntaa tulot summiksi ja derivoinit on siten helpompaa. Tämän maksimointi on yhtäpitävää funktion L maksimoinnin kanssa, sillä L on ei-negatiivinen ja logaritmi on aidosti kasvava välillä (0, ).

54 Suurimman uskottavuuden estimaattori normaalijakaumalle Olkoot x 1,..., x n reaalisaatioita riippumattomista N(µ, σ 2 )-jakautuneista satunnaismuuttujista X 1,..., X n, eli X i :n tiheysfunktio on f (x i ; µ, σ 2 ) = 1 ( σ 2π exp 1 ( ) xi µ 2 ) 2 σ kaikilla i ja joillekin µ (, ), σ > 0. Huom Normaalijakaumalle parametri θ on kaksiulotteinen vektori θ = (µ, σ 2 ).

55 ... Suurimman uskottavuuden estimaattori normaalijakaumalle Uskottavuusfunktio annetulle x = (x 1,..., x n ) on L(µ, σ 2 ) = f (x 1 ; µ, σ 2 )f (x 2 ; µ, σ 2 ) f (x n ; µ, σ 2 ) ( 1 = exp 1 n ) σ n (2π) n 2 2σ 2 (x i µ) 2 ja log-uskottavuusfunktio on l(µ, σ 2 ) = log L(µ, σ 2 ) i=1 = n 2 log(σ2 ) n 2 log(2π) 1 2σ 2 n (x i µ) 2 i=1

56 Uskottavuusfunktion maksimin etsiminen l(µ, σ 2 ) = n 2 log(σ2 ) n 2 log(2π) 1 2σ 2 n (x i µ) 2 (1) Derivoidaan µ:n suhteen ja asetetaan derivaatta nollaksi: 0 =: µ l(µ, σ2 ) = 1 n σ 2 (x i µ). Nyt saadaan ratkaistuksi ˆµ = 1 n n i=1 x i = m(x). (2) Korvataan µ arolla ˆµ = m(x) funktiossa l: l(m(x), σ 2 ) = n 2 log(σ2 ) n 2 log(2π) 1 n 2σ 2 (x i m(x)) 2. (3) Derivoidaan σ 2 :n suhteen ja asetetaan derivaatta nollaksi: 0 =: σ 2 l(µ, σ2 ; x) = n 2σ n 2σ 4 (x i m(x)) 2. i=1 i=1 i=1 i=1 Ratkaisu: ˆσ 2 = 1 n n i=1 (x i m(x)) 2 = n 1 n s2 (x).

57 Suurimman uskottavuuden estimaattori normaalijakaumalle Parametrin µ SU-estimaattori muuttujille (X 1,..., X n ) ˆM = m(x ) = 1 n n i=1 X i on harhaton, tehokas (sillä on pienein varianssi harhattomien estimaattoreiden joukossa) ja johdonmukainen (ˆµ µ). N ( ) µ, σ2 n -jakautunut Parametrin σ 2 SU-estimaattori ˆΣ 2 = 1 n n (X i m(x )) 2 on i=1 harhainen: E(Σ 2 ) = n 1 n σ2, mutta johdonmukainen. on χ 2 (n 1)-jakautunut. n ˆΣ 2 σ 2

58 Huom Estimaattori on satunnaismuuttuja ja estimaatti on estimaattorin realisaatio. Estimaatti ei ole satunnainen. Tilastotieteen kirjallisuudessa näitä ei aina ole selkeästi eroteltu, koska oletuksena on, että analysoidaan jotakin aineistoa, eli taustalla olevien satunnaismuuttujien X 1,..., X n havaittuja realisaatioita x 1,..., x n.

59 Ensi viikolla aiheena tilastollinen hypoteesin testaus...

60 Aineistolähteet Luentokalvot pohjautuvat osittain kurssin edellisten vuosien (Ilkka Mellin, Milla Kibble, Juuso Liesiö) luentokalvoihin. Esityksessä käytetyt kuvat Guinness-tuoppi: Image courtesy of Sami Keinänen Wikimedia Commons.

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen datan kuvaileminen, mallintaminen ja estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1

Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1 Tilastolliset menetelmät Osa 1: Johdanto Johdanto tilastotieteeseen KE (2014) 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä ja malleja, joiden avulla reaalimaailman ilmiöistä voidaan

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Uskottavuuden ominaisuuksia

Uskottavuuden ominaisuuksia Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 4

031021P Tilastomatematiikka (5 op) viikko 4 031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät Ratkaisuehdotuksia

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät Ratkaisuehdotuksia HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 14..2017 Ratkaisuehdotuksia 1. Olkoon θ positiivinen parametri, ja asetetaan 2θ 1 y exp y 2 /θ), kun y > 0 fy; θ) = 0, muuten

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 2A

Tilastollinen päättely II, kevät 2017 Harjoitus 2A Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Mallipohjainen klusterointi

Mallipohjainen klusterointi Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua 2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot