MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi"

Transkriptio

1 MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi Periodi I

2 Sisältö Tilastollisen merkitsevyyden testaaminen Odotusarvon testaaminen suurille datajoukoille Merkitsevyyden testaaminen normaalimallille

3 Mustekala Paul Jalkapallon MM-kisoissa 2010 Paul ennusti voittajan oikein jokaiselle Saksan ottelulle. Onko poikkeuksellisen hyvä ennustustulos tilastollisesti merkitsevä, vai voidaanko se lukea tavanomaisen satunnaisvaihtelun piiriin?

4 Nollahypoteesi H 0 Tilastollisen merkitsevyystestin lähtökohdaksi muotoillaan nollahypoteesi H 0, joka vastaa tilannetta, jossa mitään uutta tai yllättävää ei tarvita havaintojen selittämiseen. Esim H 0 : Selvännäkijän ennustukset eivät ole arvauksia parempia H 0 : Uusi lääke ei ole lumelääkettä tehokkaampi H 0 : Salkunhoitajan rahaston tuotto ei ole pörssi-indeksiä parempi Merkitsevyystestin vastahypoteesi H 1 on yleensä nollahypoteesin vastakohta.

5 Nollahypoteesi vs. data Kuuluuko havaittu data tyypillisen satunnaisvaihtelun piiriin vai onko syytä epäillä nollahypoteesia? Esimerkki (Kolikko) Tasaiseksi väitettyä kolikkoa 50 kertaa heitettäessä saadaan 42 kruunaa. H 0 : Kruunan tn θ = 1/2 H 1 : Kruunan tn θ 1/2 Esimerkki (Kohinainen kanava) Tiedonsiirtovirheiden väitetään olevan normaalijakautuneita parametreina µ = 0 ja σ = 3. Kanavaa kerran testaamalla mitattiin virheeksi x 1 = 4.8. H 0 : µ = 0 H 1 : µ 0 Esimerkki (Laadunvalvonta) Tukkukauppiaan väitteen mukaan sen tomaateista enintään 5% on huonolaatuisia. Suuresta tilauserästä poimittiin satunnaisesti 50 tomaattia ja niistä 4 todettiin huonolaatuisiksi. H 0 : Huonolaatuisten osuus θ 0.05 H 1 : Huonolaatuisten osuus θ > 0.05

6 Testisuureen p-arvo Havaitun datajoukon x = (x 1,..., x n ) poikkeuksellisuutta analysoidaan laskemalla testisuure t(x) = t(x 1,..., x n ), joka tiivistää havaitut datapisteet yhdeksi reaaliluvuksi. Testisuureen p-arvo on todennäköisyys, jolla nollahypoteesin mukaisen datalähteen ennakoidaan tuottavan poikkeavampia tai yhtä poikkeavia testisuureen arvoja kuin t(x). p-arvo Tulkinta > 0.10 Havainto ei ole ristiriidassa H 0 :n kanssa 0.05 Havainto todistaa jonkun verran H 0 :aa vastaan < 0.01 Havainto todistaa vahvasti H 0 :aa vastaan

7 Esim. Kolikko Tasaiseksi väitetty kolikko tuottaa 42 kruunaa 50 heitolla. H 0 : Kruunan tn θ = 1/2 H 1 : Kruunan tn θ 1/2 Testisuure = kruunien lukumäärä: t(x) = 42 T = t(x ) = kruunien lkm stokastisessa mallissa f (x) = P(T = x H 0 ) = ( 50 x ) ( 1 2 Testisuureen odotusarvo t 0 = E(T H 0 ) = 25. p-arvo = P( T t 0 t(x) t 0 H 0 ) ) x ( 1 1 ) 50 x 2 = P( T H 0 ) 8 50 = f (x) + f (x) x=0 x=42 Havainto todistaa vahvasti H 0 :aa vastaan.

8 Esim. Kohinainen kanava Tiedonsiirtovirheiden väitetään olevan normaalijakautuneita odotusarvona µ = 0 ja keskihajontana 3. Havainto: x 1 = 4.8. H 0 : Odotusarvo µ = 0 H 1 : Odotusarvo µ 0 Testisuure = normitettu poikkeama nollahypoteesin mukaisesta odotusarvosta: z(x) = x = 1.6 p-arvo = P( Z 1.6 H 0 ) = π e t2 /2 dt 11%, Havainto on selitettävissä tavanomaisella satunnaisvaihtelulla. Havainto ei puhu H 0 :aa vastaan.

9 Esim. Laadunvalvonta Tukkukauppiaan väitteen mukaan sen toimittamista tomaateista enintään 5% on huonolaatuisia. Suuresta erästä poimittiin satunnaisesti 50 tomaattia ja niistä 4 todettiin huonolaatuisiksi. H 0 : Huonojen osuus θ 0.05 H 1 : Huonojen osuus θ > 0.05 Testisuure: Huonojen lkm: t(x) = 4 Datalähteen tuottamien testisuureen arvojen stokastinen malli: ( ) 50 P θ (T = t) = f θ (t) = θ t (1 θ) 50 t t Poikkeavuus: testisuureen arvo poikkeaa ylöspäin odotusarvosta ( ) P θ T E θ (T ) t(x) E θ (T ) = P θ (T t(x)) = Ongelma: tn riippuu θ:sta. Valitaan suurin tn (miksi?). 50 t=4 f θ (t). p-arvo = max P θ(t t(x)) = P 0.05 (T t(x)) = θ t=4 f 0.05 (t) 24%

10 Tilastollisen merkitsevyystestin vaiheet Joskus asetetaan myös vastahypoteesi H 1, jolloin tarkoitus on tutkia, puoltaako havaittu datajoukko enemmän H 0 :n vai H 1 :n hyväksymistä. 1. Asetetaan nollahypoteesi H 0 ja mahdollisesti vastahypoteesi H Valitaan käytettävä testisuure ja lasketaan havaittua dataa x vastaava testisuureen arvo t(x). 3. Määritetään datalähteen tuottamia testisuureen arvoja mallintavan satunnaismuuttujan T jakauma nollahypoteesin vallitessa. 4. Määritetään mitkä testisuureen arvot tulkitaan havaittua testisuureen arvoa poikkeuksellisemmiksi (puoltavat H 1 :n hyväksymistä H 0 :n sijaan) ja lasketaan testin p-arvo. 5. Tehdään johtopäätökset: Pieni p-arvo = H 0 hylätään Suuri p-arvo = H 0 jää voimaan

11 Testaaminen valitulla merkitsevyystasolla Miten pieni p-arvo on riittävän pieni? Tietyissä tilanteissa vaaditaan yksiselitteistä johtopäätöstä: testin pohjalta H 0 joko hyväksytään tai hylätään. Tällaisen testin pohjaksi valitaan merkitsevyystaso α (0, 1) ja johtopäätös muodostetaan seuraavasti: Jos p-arvo α, nollahypoteesi hyväksytään (jää voimaan), Jos p-arvo < α, nollahypoteesi hylätään. Usein on tapana valita merkitsevyystasoksi α = 1% tai α = 5%

12 Testausvirheet Mikään ei takaa, että tehty johtopäätös olisi oikea. Johtopäätös Totuus H 0 hyväksytään H 0 hylätään H 0 tosi Oikea päätös Hylkäysvirhe H 0 epätosi Hyväksymisvirhe Oikea päätös Testaajan johtopäätös on aina arvaus. Hyvä arvaus on todennäköisesti oikein.

13 Testausvirheiden todennäköisyydet p(x) = testisuureen p-arvo datajoukolle x X = (X 1,..., X n ) mallintaa datalähteen tuottamia arvoja ennen niiden havaitsemista = p(x ) on satunnaisluku Hylkäysvirheen todennäköisyys on P(H 0 hylätään H 0 ) = P(p(X ) < α H 0 ) Hyväksymisvirheen todennäköisyys on P(H 0 hyväksytään H 1 ) = P(p(X ) α H 1 ), α Hylkäysvirheen tn Hyväksymisvirheen tn Lähellä nollaa Pieni Suuri Lähellä ykköstä Suuri Pieni Fakta Hylkäysvirheen tn α.

14 Testausvirheiden tulkinta Anni Aktiivi Käyttää merkitsevyystasoa α = 5% Hylkää useammin nollahypoteeseja On henkisesti varautunut siihen, että tietty osuus testien johtopäätöksistä on virheellisiä Tietää, että pitkällä tähtäyksellä hänen hylkäämistään nollahypoteeseista enintään 5% on virheellisesti hylätty (Hän ei kuitenkaan tiedä mitkä niistä.) Hyväksyy Villeä harvemmin virheellisesti nollahypoteeseja (ei tiedä miten usein) Ville Varovainen Käyttää merkitsevyystasoa α = 1% Hylkää harvemmin nollahypoteeseja On henkisesti varautunut siihen, että tietty osuus testien johtopäätöksistä on virheellisiä Tietää, että pitkällä tähtäyksellä hänen hylkäämistään nollahypoteeseista enintään 1% on virheellisesti hylätty (Hän ei kuitenkaan tiedä mitkä niistä.) Hyväksyy Annia useammin virheellisesti nollahypoteeseja (ei tiedä miten usein)

15 Esim. Rikosoikeus H 0 : Epäilty on syytön H 1 : Epäilty on syyllinen Havaittu data: Saatavilla oleva todistusaineisto Hylkäysvirhe: Syytön tuomitaan Hyväksymisvirhe: Syyllistä ei tuomita Anni Aktiivi Käyttää merkitsevyystasoa α = 5% Langettaa useammin tuomioita Tuomitsee pitkällä tähtäyksellä 5% syyttömiä Jättää Villeä harvemmin syyllisiä tuomitsematta Ville Varovainen Käyttää merkitsevyystasoa α = 1% Langettaa harvemmin tuomioita Tuomitsee pitkällä tähtäyksellä 1% syyttömiä Jättää Annia useammin syyllisiä tuomitsematta

16 Esim. Kolikko Tasaiseksi väitettyä kolikkoa 10 kertaa heitettäessä havaitaan data y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Testaa väitettä 5% merkitsevyystasolla. H 0 : Kruunan tn θ = 0.5, H 1 : Kruunan tn θ 0.5. Testisuure: t(x)=kruunien lkm Testisuureen stokastinen malli: T = t(x ) f H0 (t) = P(T = t H 0 ) = ( 10 t ) ( 1 2 ) 10 Havainnon y p-arvo p(y) = P( t(x ) 5 4 H 0 ) = 1 10 f H0 (t) + f H0 (t) 2.1%. t=0 t=9 Johtopäätös: Nollahypoteesi hylätään (5% merkitsevyystasolla). Mitä osataan sanoa virhetodennäköisyyksistä?

17 Esim. Kolikko Hylkäysvirheen tn Testin p-arvot testisuureen funktiona: # kruunat p-arvo (%) % merkitsevyystasolla testin hylkäysalue on {0, 1, 9, 10}. Hylkäysvirheen tn on P(t(X ) {0, 1, 9, 10} H 0 ) = 1 10 f H0 (t) + f H0 (t) 2.1%. t=0 t=9

18 Esim. Kolikko Hyväksymisvirheen tn Testin p-arvot testisuureen funktiona: # kruunat p-arvo (%) % merkitsevyystasolla testin hylkäysalue on {0, 1, 9, 10}. Hyväksymisvirheen tn on P(t(X ) {2, 3,..., 8} H 1 ) =? Ongelma: vastahypoteesi (H 1 : θ 0.5) ei määrää θ:n arvoa. Ääritapaus θ 0.5, jolloin P(t(X ) {2, 3,..., 8} H 1 ) P(t(X ) {2, 3,..., 8} H 0 ) 8 = f H0 (t) 97.9%. t=2

19 Esim. Kahden tyyppisiä kolikoita Tasaiseksi väitettyä kolikkoa 10 kertaa heitettäessä havaitaan data y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Tiedetään, että joko θ = 0.5 tai θ = 0.9. Testaa väitettä 5% merkitsevyystasolla. H 0 : Kruunan tn θ = 0.5, H 1 : Kruunan tn θ = 0.9. Sama testisuure, sama p-arvo, sama johtopäätös (H 0 hylätään). ( ) 10 f H1 (t) = P(T = t H 1 ) = 0.9 t (1 0.9) 10 t t Hyväksymisvirheen tn: P( t(x ) {2, 3,..., 8} H 1 ) = 8 f H1 (t) 26%. t=2

20 Sisältö Tilastollisen merkitsevyyden testaaminen Odotusarvon testaaminen suurille datajoukoille Merkitsevyyden testaaminen normaalimallille

21 Odotusarvon testisuure suurille datajoukoille Datalähde tuottaa toisistaan riippumattomia ja samoin jakautuneita satunnaislukuja X 1, X 2,..., X n odotusarvona (tuntematon) µ. H 0 : µ = µ 0 H 1 : µ µ 0 Jakauma tuntematon = mahdoton testata? Approksimatiivinen testi mahdollinen, jos paljon dataa. Testisuure: t(x) = m(x) µ 0 s(x)/ n. Fakta Suurille datajoukoille testisuureen stokastinen malli t(x ) noudattaa likimain normitettua normaalijakaumaa, jolloin p-arvo P( t(x ) t(x) H 0 ) P( Z t(x) ).

22 Esim. Kahviautomaatti Kahviautomaatin on tarkoitus laskea jokaiseen kuppiin keskimäärin 10.0 cl kahvia. Kahviautomaatin toimintaa testattiin valuttamalla automaatista 30 kupillista ja mittamalla kahvin määrät kupeissa. Mittauksessa havaittiin arvot (cl): Onko kahviautomaatti oikein kalibroitu? Mittausdatan x keskiarvo on m(x) = , joka poikkeaa tavoitearvosta µ 0 = Onko poikkeama tilastollisesti merkitsevä?

23 Esim. Kahviautomaatti Datajoukon keskiarvo m(x) = , keskihajonta s(x) = H 0 : µ = 10.0 H 1 : µ 10.0 Havaitun datajoukon testisuure: t(x) = m(x) µ 0 s(x)/ n = / 30 = Jos uskotaan, että n = 30 on riittävän iso, voidaan käyttää suuren datajoukon testiä: p-arvo P( t(x ) t(x) H 0 ) P( Z 4.60) Johtopäätös: Hyvin pieni p-arvo puoltaa vahvasti H 0 :n hylkäämistä.

24 Sisältö Tilastollisen merkitsevyyden testaaminen Odotusarvon testaaminen suurille datajoukoille Merkitsevyyden testaaminen normaalimallille

25 Datalähteen normaalimalli Analyysiä helpottava yleinen hypoteesi: Havaitut arvot ovat toteumia riippumattomista Nor(µ, σ)-jakautuneista satunnaismuuttujista. Normaalijakauman parametreja µ ja σ ei tunneta. Yleisen hypoteesin pätiessä tilastokokeen tulos (ennen sen havaitsemista) on satunnaisvektori X = (X 1,..., X n ), jonka komponentit ovat riippumattomat ja Nor(µ, σ)-jakautuneet. Huom Ennen testaamista on syytä pohtia (tai testata) onko normaalisuus perusteltu.

26 Tilastokokeen stokastisen mallin tunnusluvut Tilastokokeen stokastinen malli on X = (X 1,..., X n ), jonka komponentit ovat riippumattomat ja Nor(µ, σ)-jakautuneet. Stokastisesta mallista laskettu keskiarvo on satunnaisluku m(x ) = 1 n n X i, i=1 jonka odotusarvo on µ ja keskihajonta σ/ n. Jos hypoteesi µ = µ 0 pätee, niin suure m(x ) µ 0 σ/ n noudattaa normitettua normaalijakaumaa.

27 Esim. Kahviautomaatti: mittausten jakauma Mittausdatan x keskiarvo on m(x) = Onko mittausdata likimain normaalijakautunut? Kahvimäärien histogrammi frekvenssi Määrä(cl)

28 Esim. Kahviautomaatti: Normitettu keskiarvo Jos data tulee normaalijakaumasta, niin poikkeaman tilastollista merkitsevyyttä voidaan verrata N(0, 1)-jakaumaan, kunhan m(x) normitetaan muotoon m(x) µ 0 σ/ n = σ/ 30 =? Ongelma: Parametri σ on tuntematon. Ratkaisu: Korvataan σ estimaatilla s(x) = Havaitusta datasta saadaan tunnusluku t(x) = m(x) µ 0 s(x)/ n = / 30 = 4.60.

29 Keskihajonnan korvaaminen otoskeskihajonnalla Yleisen hypoteesin (normaalimalli) ja nollahypoteesin (µ = µ 0 ) pätiessä normitettu tunnusluku m(x ) µ 0 σ/ n Nor(0, 1) Entä t(x ) := m(x ) µ 0 s(x )/ n?

30 Normaalimallin testisuure Fakta Normaalimallin tuottaman satunnaisvektorin X = (X 1,..., X n ) tunnusluku t(x ) = m(x ) µ s(x )/ n noudattaa Studentin t-jakaumaa vapausastein n 1, jonka tiheysfunktio on ( ) (n 1)+1 f (t) = c n t2 2. n 1

31 Studentin t-jakauma Jatkuva satunnaisluku X noudattaa t-jakaumaa vapausastein n, jos sillä on tiheysfunktio muotoa f (x) = c n ( 1 + x 2 n ) n+1 2. t distributions f(x) x Kuva: Studentin t-jakaumia vapausastein n = 1 (sininen), n = 2 (vihreä), n = 5 (punainen)ja n = (musta). Student (William S Gosset): The probable error of a mean. Biometrika 1908.

32 Studentin t-testi Havaitulle datalle m(x) = , s(x) = 0.563, t(x) = Yleisen hypoteesin (normaalijakauma) ja nollahypoteesin (µ = µ 0 ) pätiessä stokastista mallia vastaava (satunnainen) tunnusluku on t(x ) := m(x ) µ 0 s(x )/ n t(29). Jos hypoteesit ok, niin tyypillisesti t(x ) 0. Studentin t-testin p-arvo on poikkeaman t(x ) 4.60 tn: P( t(x ) 4.60) = 2*(1-pt(4.60,29)) = Näin pieni p-arvo tarkoittaa, että testisuureen havaittu poikkeama nollasta johtuu hyvin epätodennäköisesti satunnaisvaihtelusta. Havaittu poikkeama on siis tilastollisesti merkitsevä ja antaa aiheen hylätä nollahypoteesi µ = 10.0.

33 Studentin t-testin suorittaminen p-arvolla: Yhteenveto Lähtökohdat Havaittu data x = (x 1,..., x n ). Yleinen hypoteesi (normaalimalli): Datalähteen arvot riippumattomia ja normaalijakautuneita (µ,σ) Nollahypoteesi H 0 : µ = µ 0 (Vaihtoehtoinen hypoteesi H 1 : µ µ 0 ) Testaus Lasketaan datasta testisuure t(x) = m(x) µ 0 s(x)/ n Lasketaan t(n 1)-jakaumasta p-arvo P( t(x ) t(x) ). Johtopäätös Jos p-arvo on lähellä nollaa = Hylätään nollahypoteesi H 0 Muussa tapauksessa nollahypoteesi jää voimaan. R: t.test(x,mu=10.0)

34 Luennot päättyvät tähän (perjantaina ei ole luentoa). Kiitos aktiivisesta osallistumisesta ja menestystä tuleviin opintoihin.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastollisen merkitsevyyden testaus Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot

11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot Luku 11 Tilastolliset testit Lasse Leskelä Aalto-yliopisto 17. lokakuuta 2017 11.1 Nollahypoteesi, vastahypoteesi ja poikkeavat havainnot Datalähteen tuottamia arvoja mallinnetaan jakaumaa f(x θ) noudattavina

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Kalle Kytölä, Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

11.1 Nollahypoteesi, vastahypoteesi ja p-arvo

11.1 Nollahypoteesi, vastahypoteesi ja p-arvo Luku 11 Tilastolliset testit Lasse Leskelä Aalto-yliopisto 4. joulukuuta 2017 11.1 Nollahypoteesi, vastahypoteesi ja p-arvo Aiemmissa luvuissa opittiin määrittämään piste-estimaatteja ja väliestimaatteja

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 11 (vko 48/003) (Aihe: Tilastollisia testejä, Laininen luvut 4.9, 15.1-15.4, 15.7) Nordlund 1. Kemiallisen prosessin

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1

Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5 TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen datan kuvaileminen, mallintaminen ja estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017

Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017 Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä

Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Tilastollisen analyysin perusteet Luento 6: Korrelaatio ja riippuvuus tilastotieteessä Sisältö Riippumattomuus Jos P(A B) = P(A)P(B), niin tapahtumat A ja B ovat toisistaan riippumattomia. (Keskustelimme

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Bayesläiset tilastolliset mallit

Bayesläiset tilastolliset mallit Luku 9 Bayesläiset tilastolliset mallit Lasse Leskelä Aalto-yliopisto 8. lokakuuta 07 9. Priorijakauma ja posteriorijakauma Bayesläisen tilastollisen päättelyn lähtökohtana on päivittää satunnaisilmiöön

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

2. TILASTOLLINEN TESTAAMINEN...

2. TILASTOLLINEN TESTAAMINEN... !" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾

edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾ ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: 8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen

Tilastollisen analyysin perusteet Luento 5: Jakaumaoletuksien. testaaminen Tilastollisen analyysin perusteet Luento 5: Sisältö Tilastotieteessä tehdään usein oletuksia havaintojen jakaumasta. Useat tilastolliset menetelmät toimivat tehottomasti tai jopa virheellisesti, jos jakaumaoletukset

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1 Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot