1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
|
|
- Sami Lotta Ahonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia ei tunneta, vaan ne on estimoitava havainnoista Voi olla, että tunnetaan tnjakauman tyyppi (esim. normaalijakauma), mutta ei parametrejä (esim. odotusarvo, varianssi); tilanne voi olla myös täysin päinvastainen Seuraavaksi käydään läpi menetelmiä, joiden avulla voidaan estimoida tilastollisessa tunnistuksessa tarvittavia tnjakaumia
2 1.1 Suurimman uskottavuuden menetelmä Maximum Likelihood Estimation, ML-estimaatti Tarkastellaan M:n luokan tunnistusongelmaa Tehdään seuraavat oletukset: Ol., että tunnetaan tnjakaumien p(x ω i ) tyyppi ja että ne voidaan määrittää parametrivektoreiden Θ i avulla. Merkitään siis p(x ω i ; Θ i ) Ol., että eri luokista tehdyt havainnot eivät riipu toisistaan ja tnjakaumat voidaan estimoida erikseen luokkakohtaisesti Ol., että tehdyt havainnot ovat toisistaan riippumattomia myös luokkien sisällä 2
3 Ongelma: kuinka valitaan tnjakauman p(x Θ) parametrit Θ, kun on tehty havainnot X = {x 1,..., x N }? Vastaus: Maksimoidaan parametrien uskottavuusfunktio ( likelihood function ) p(x; Θ): p(x; Θ) = p(x 1,..., x N ; Θ) = N p(x k ; Θ) (1) Eli valitaan estimaatti ˆΘML seuraavasti: N ˆΘ ML = arg max p(x k ; Θ) (2) Θ Välttämätön ehto optimiratkaisulle ˆΘ ML : k=1 N k=1 p(x k; Θ) Θ k=1 = 0 (3) 3
4 Voidaan yhtä hyvin tarkastella uskottavuusfunktion logaritmiä ( loglikelihood function ) L(Θ): N L(Θ) = ln( p(x k ; Θ)) = k=1 N ln(p(x k ; Θ)) (4) k=1 Silloin ehto (3) saa muodon ˆΘ ML : L(Θ) Θ = N = = 0 k=1 N k=1 ln(p(x k ; Θ)) Θ 1 p(x k ; Θ) p(x k ; Θ) Θ (5) 4
5 1.2 Suurimman a posteriori tn:n menetelmä Maximum A Posteriori Probability Estimation, MAP-estimaatti Tarkastellaan M:n luokan tunnistusongelma ja tehdään samanlaiset lähtöoletuk kuin ML-estimaatin tapauksessa Maksimoidaan parametrien uskottavuusfunktion p(x; Θ) sijasta parametrien a posteriori tn:ttä p(θ X) Bayes-säännön perusteella: p(θ X) = p(θ)p(x Θ) p(x) (6) MAP-estimaatti ˆΘMAP löytyy p(θ X):n (tai sen logaritmin!) maksimikohdasta eli ˆΘ MAP : p(θ X) Θ = p(θ)p(x Θ) = 0 (7) Θ 5
6 Ero ML- ja MAP-estimaatin välillä on a priori tn:n p(θ) käytössä. Jos p(θ) on tasajakauma, ML- ja MAP-estimaatit ovat samat. Jos p(θ):iin liittyvä varianssi on suuri, estimaatit ovat lähestulkoon samat 6
7 1.3 Bayesiläinen päättely ML- ja MAP-menetelmät löytävät tnjakaumien p(x ω i ; Θ i ) parametreille arvot käyttäen hyväksi tehtyjä havaintoja X i ja a priori tnjakaumia p(θ i ) Miksi emme suoraan laskisi tnjakaumia p(x X i ) ja suorittaisi luokittelua näiden avulla? Tehdään taas samat lähtöoletukset kuin ML- ja MAP-estimaattien tapauksissa Tiedetään, että p(x X) = p(x Θ)p(Θ X)dΘ, (8) 7
8 missä p(θ X) = p(x Θ)p(Θ) = p(x Θ)p(Θ) (9) p(x) p(x Θ)p(Θ)dΘ N p(x Θ) = p(x k Θ) (10) k=1 Tämän menetelmän haittapuoli on sen monimutkaisuus analyyttinen ratkaisu on olemassa vain erikoistapauksille Kun havaintojen määrä lähestyy ääretöntä, bayesiläisellä päättelyllä saatu normaalijakauman estimaatti lähestyy piikkiä, jonka huipun kohta on MLestimaatti. Tämä tulos yleistyy useille muillekin paljon käytetyille tnjakaumille Huom! Kun N lähestyy ääretöntä, ML- ja MAP-menetelmillä sekä bayesiläisellä päättelyllä saadut tulokset lähestyvät toisiaan. Menetelmien erot ovat merkittäviä, kun käytettävissä on vain rajallisesti havaintoja 8
9 1.4 Maksimientropiamenetelmä Edellä esitetyissä menetelmissä oletettiin tnjakauman tyyppi tunnetuksi ja estimoitiin sille sopivat parametrit Entä jos tunnetaan joitain tilastollisia tunnuslukuja, mutta ei tiedetä mikä tnjakaumatyyppi on kyseessä? Valitaan sellainen tnjakauma, jolla on tunnetut ominaisuudet ja maksimaalinen entropia (ei aina mikään helppo ongelma!) Tnjakauman p(x) entropia H on määritelty seuraavasti: H = p(x) ln(p(x))dx (11) Entropia kuvaa ilmiön satunnaisuutta tai yllätyksellisyyttä. x Tnjakauman entropian maksimointi vastaa minimimaalisinta a priori -tiedon käyttöä. 9
10 Huom! Voidaan osoittaa, että jos tunnetaan odotusarvo ja varianssi, maksimientropiaratkaisu on normaalijakauma 1.5 Mikstuurimallit Mikstuurimalleissa lähdetään siitä, että p(x):n muodostumiseen vaikuttaa joukko jakaumia. Tuntematon p(x) mallinnetaan seuraavanlaisten tiheysjakaumien lineaariyhdistelmänä: p(x) = J p(x j)p j (12) j=1 missä J j=1 P j = 1, p(x j)dx = 1 (13) x 10
11 1.6 EM-algoritmi EM = Expectation Maximization EM-algoritmi sopii erityisen hyvin tilanteisiin, joissa on puuttuvaa dataa. Algoritmi maksimoi loglikelihood-funktion odotusarvon ehdolla havainnot ja nykyinen estimaatti. Algoritmissa toistetaan kahta askelta: E (expectation) ja M (maximization). 1.7 Epäparametriset menetelmät Edellä esitetyissä menetelmissä oletettiin, että tnjakauma voidaan määrittää parametrivektorin avulla. Seuraavaksi tarkastellaan menetelmiä, joissa tätä oletusta ei tehdä. Sekä Parzen-ikkunat ja k:n lähimmän naapurin menetelmä ovat eräänlaisia variaatioita tnjakauman approksimoinnista histogrammin avulla. 11
12 Tnjakaumaa voidaan approksimoida histogrammin avulla seuraavasti: Tarkastellaan vain yhtä piirrettä x, eli 1-ulotteista tapausta, ja pyritään approksimoimaan tnjakauma p(x) Jaetaan x-akseli h:n pituisiksi intervalleiksi Approksimoidaan tn P, että x:n arvo osuu tietylle intervallille. Olkoot N havaintojen lkm ja k N intervallille osuneiden havaintojen lkm. Silloin P k N /N Kun N lähestyy ääretöntä, missä ˆx on intervallin keskikohta ˆp(x) ˆp(ˆx) 1 h k N N, x ˆx h 2, (14) Approksimaatio on hyvä silloin, kun p(x) on jatkuva ja h on riittävän pieni eli oletus p(x) = vakio intervallilla on järkevä 12
13 Voidaan osoittaa, että ˆp(x) p(x), jos N ja seuraavat oletukset toteutuvat: h N 0 k N k N N 0 Käytännössä N on rajoitettu ja sopiva h pitää valita itse 13
14 Parzen-ikkunat Moniulotteisessa tapauksessa l-ulotteinen piirreavaruus jaetaan hyperkuutioksi, joiden tilavuus on h l Määritellään jokaiselle havainnolle x i kantafunktio Φ(x i ) seuraavasti: { 1, kun x ij 1/2 Φ(x i ) =, (15) 0, muulloin missä x ij on x i :n j. komponentti Kaava (14) voidaan esittää tällaisten funktioiden summana: ˆp(x) = 1 h l ( 1 N N i=1 Φ( x i x )) (16) h Edellä jatkuvaa tnjakaumaa approksimoitiin epäjatkuvilla kuutiolla. Jatkuva approksimaatio saadaan, kun käytetään jatkuvia kantafunktioita Φ( ) 14
15 Kantafunktiot valitaan siten, että Φ(x) 0 Φ(x)dx = 1 Kantafunktiot voivat olla esim. eksponentiaalisia, N(0, I) x (17) Mikä on ˆp(x):n odotusarvo eli kuinka approksimaatio käyttäytyy, kun N? ˆp(x) on määritelty havaintojen {x 1,..., x N } avulla, jotka noudattavat todellista tnjakaumaa p(x) 15 Lasketaan ˆp(x):n odotusarvo tnjakauman p(x) suhteen: E[ˆp(x)] = 1 h l ( 1 N N i=1 E[Φ( x i x )]) = h ξ 1 h Φ(ξ x )p(ξ)dξ (18) l h Yllä olevasta kaavasta nähdään, että ˆp(x) on tasoitettu ( smoothed ) versio todellisesta jakaumasta
16 1 Kun h 0, ) lähestyy deltafunktiota δ(ξ x) ja nähdään, h että ˆp(x) on harhaton estimaatti p(x):lle riippumatta N:stä h l Φ( ξ x Jos N on kiinnitetty, estimaatin ˆp(x) varianssi kasvaa, kun h pienenee. Jos h on kiinnitetty, estimaatin ˆp(x) varianssi pienenee, kun N Useimmilla kantafunktiolla saatu estimaatti ˆp(x) on harhaton ja asymptoottisesti konsistentti, jos h 0 siten, että hn, kun N Käytännössä N on rajoitettu ja h joudutaan valitsemaan itse, esim. minimoimalla luokitteluvirhettä. Mikäli ei haluta tinkiä estimaatin ominaisuuksista, tarvittavien havaintojen N lukumäärä kasvaa eksponentiaalisesti piirrevektoreiden dimension l suhteen ( curse of dimensionality! ) 16
17 k:n lähimmän naapurin menetelmä Edellisessä menetelmässä kantafunktiot olivat samanlaisia riippumatta siitä oliko tarkasteltavassa piirreavaruuden osassa havaintoja tiheässä vai harvassa. Yleisempi versio kaavalle (14) : ˆp(x) = k NV (x), (19) missä V (x) on x:stä riippuva tilavuus. Eli kiinnitetään ensin k ja lasketaan vasta sitten havaintojen viemä tilavuus Voidaan osoittaa, että estimaatti on harhaton ja asymptoottisesti konsistentti, jos k ja k/n 0, kun N Saatua estimaattia kutsutaan tnjakauman k:n lähimmän naapurin estimaatiksi. 17
18 k:n lähimmän naapurin päätössääntö on suboptimaalinen variaatio k:n lähimmän naapurin estimaatista: Etsi N:n opetusnäytteen joukosta luokiteltavan näytteen x k lähintä naapuria. Yleensä k on pariton eikä se ole luokkien lukumäärän M monikerta Laske kuinka moni (k i ) lähimmistä naapureista kuuluu luokkaan ω i Valitse se luokka, jolle k i on suurin Lähimmän naapurin menetelmän luokitteluvirheelle P NN voidaan laskea seuraavat teoreettiset rajat, kun N : P Bayes P NN P Bayes (2 M M 1 P Bayes) 2P Bayes, (20) missä P Bayes on Bayes-säännön tuottama optimaalinen luokitteluvirhe ja M on luokkien lkm 18
19 Mikäli N on suuri, k:n lähimmän naapurin päätössääntö toimii paremmin isommilla k:n arvoilla kuin 1. Käytännössä k:n lähimmän naapurin sääntö toimii usein erittäin hyvin yksinkertaisuudestaan huolimatta, mutta on laskennallisesti raskas suurilla N:n arvoilla. 19
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI
1. TODENNÄKÖISYYSJAKAUMIEN ESTIMOINTI Edellä esitelty Bayesiläinen luokittelusääntö ( Bayes Decision Theory ) on optimaalinen tapa suorittaa luokittelu, kun luokkien tnjakaumat tunnetaan Käytännössä tnjakaumia
1. TILASTOLLINEN HAHMONTUNNISTUS
1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,
Hahmontunnistuksen perusteet. Tik (3 ov) L. Syksy 2000
Hahmontunnistuksen perusteet Tik-61.231 (3 ov) L Syksy 2000 Luennot: Laskuharjoitukset: Vuokko Vuori Matti Aksela 1. YLEISTÄ KURSSISTA.................... 1 1.1 Kurssin suorittaminen................ 1
Hahmontunnistuksen perusteet T-61.231, 3ov, L Syksy 2002. Harjoitustyö: Matti Aksela
Hahmontunnistuksen perusteet T-61.231, 3ov, L Syksy 2002 Luennot: Laskuharjoitukset: Harjoitustyö: Vuokko Vuori Markus Koskela Matti Aksela 1. FOREIGN STUDENTS................... 7 2. YLEISTÄ KURSSISTA....................
Maximum likelihood-estimointi Alkeet
Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X
P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu
1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)
Mallipohjainen klusterointi
Mallipohjainen klusterointi Marko Salmenkivi Johdatus koneoppimiseen, syksy 2008 Luentorunko perjantaille 5.12.2008 Johdattelua mallipohjaiseen klusterointiin, erityisesti gaussisiin sekoitemalleihin Uskottavuusfunktio
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Bayesläinen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
1. LINEAARISET LUOKITTIMET
1. LINEAARISET LUOKITTIMET Edellisillä luennoilla tarkasteltiin luokitteluongelmaa tnjakaumien avulla ja esiteltiin menetelmiä, miten tarvittavat tnjakaumat voidaan estimoida. Tavoitteena oli löytää päätössääntö,
Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi
Viikko 2: Ensimmäiset ennustajat Matti Kääriäinen matti.kaariainen@cs.helsinki.fi Exactum C222, 5.-7.11.2008. 1 Tällä viikolla Sisältösuunnitelma: Ennustamisstrategioista Koneoppimismenetelmiä: k-nn (luokittelu
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Aluksi käsittelemme uskottavuus- ja log-uskottavuusfunktioita Seuraavaksi esittelemme suurimman uskottavuuden estimointimenetelmän Ensi viikolla perehdymme aiheeseen lisääkö
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) F(x 0 ) = P(x x 0 ) (1)
5. ESTIMOINTITEORIAN PERUSTEITA 5.1. Perusjakaumat 1-ulotteisina Kun datasta halutaan muodostaa malleja, ne ovat yleensä tilastollisia (esim. regressio, luokittelu, ryhmittely...) Siksi tarvitaan todennäköisyyslaskentaa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 018 Harjoitus B Ratkaisuehdotuksia Tehtäväsarja I 1 (Monisteen tehtävä 14) Olkoon f Y (y; θ) tilastollinen malli, jonka
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
4.2.2 Uskottavuusfunktio f Y (y 0 X = x)
Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
Parametrin estimointi ja bootstrap-otanta
Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Luku 5. Estimointiteorian perusteita
1 / 61 Luku 5. Estimointiteorian perusteita T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 10.11.2011 2 / 61 Tämän luvun sisältö Luku käydään
5.7 Uskottavuusfunktioon perustuvia testejä II
5.7 Uskottavuusfunktioon perustuvia testejä II Tässä pykälässä pohditaan edellä tarkasteltujen kolmen testisuureen yleistystä malleihin, joiden parametri on useampiulotteinen, ja testausasetelmiin, joissa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Tilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
Tämän luvun sisältö. Luku 5. Estimointiteorian perusteita. Perusjakaumat 1-ulotteisina (2) Perusjakaumat 1-ulotteisina
Tämän luvun sisältö Luku 5. T-6. Datasta tietoon, syksy professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto.. Luku käydään läpi kahdella luennolla. Perusjakaumat -ulotteisina Yleistys
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
031021P Tilastomatematiikka (5 op) viikko 4
031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
1. LINEAARISET LUOKITTIMET (jatkoa)
1. LINEAARISET LUOKITTIMET (jatkoa) 1.1 Tukivektorikone ( A Tutorial on Support Vector Machines for Pattern Recognition, http://www.kernel-machines.org/papers/burges98.ps.gz) Tukivektorikoneen ( Support
TILASTOLLINEN OPPIMINEN
301 TILASTOLLINEN OPPIMINEN Salmiakki- ja hedelmämakeisia on pakattu samanlaisiin käärepapereihin suurissa säkeissä, joissa on seuraavat sekoitussuhteet h 1 : 100% salmiakkia h 2 : 75% salmiakkia + 25%
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Mallin arviointi ja valinta. Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL
Mallin arviointi ja valinta Ennustevirhe otoksen sisällä, parametrimäärän valinta, AIC, BIC ja MDL Sisältö Otoksen ennustevirheen estimointi AIC - Akaiken informaatiokriteeri mallin valintaan Parametrimäärän
Suodatus ja näytteistys, kertaus
ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;
SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5
SGN-2500 Johdatus hahmontunnistukseen 2007 Luennot 4 ja 5 Jussi Tohka jussi.tohka@tut.fi Signaalinkäsittelyn laitos Tampereen teknillinen yliopisto SGN-2500 Johdatus hahmontunnistukseen 2007Luennot 4 ja
11 Raja-arvolauseita ja approksimaatioita
11 Raja-arvolauseita ja approksimaatioita Tässä luvussa esitellään sellaisia kuuluisia todennäköisyysteorian raja-arvolauseita, joita sovelletaan usein tilastollisessa päättelyssä. Näiden raja-arvolauseiden
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes Ohjaaja: TkT Arto Klami Valvoja: Prof.
Ryhmäfaktorianalyysi neurotiedesovelluksissa (Valmiin työn esittely) Sami Remes 11.06.2012 Ohjaaja: TkT Arto Klami Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla
Bayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1
T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4
ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 4 Ratkaisuehdotuksia 1. Omppukone Oy valmistaa liukuhihnalla muistipiirejä kymmenen piirin sarjoissa. Omppukone arvioi, että keskimäärin
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto
Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI Ohjaamattomassa oppimisessa on tavoitteena muodostaa hahmoista ryhmiä, klustereita, joiden sisällä hahmot ovat jossain mielessä samankaltaisia ja joiden välillä
Tilastollinen päättely, 10 op, 4 ov
Tilastollinen päättely, 0 op, 4 ov Arto Luoma Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede 3304 TAMPEREEN YLIOPISTO Syksy 2006 Kirjallisuutta Garthwaite, Jolliffe, Jones Statistical Inference,
Luento 2. Yksiparametrisia malleja. Binomi-malli. Posteriorijakauman esittämisestä. Informatiivisista priorijakaumista. Konjugaattipriori.
Luento 2 Binomi-malli Posteriorijakauman esittämisestä Informatiivisista priorijakaumista Konjugaattipriori Slide 1 Yksiparametrisia malleja Binomi Jacob Bernoulli (1654-1705), Bayes (1702-1761) Normaali
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
Harha mallin arvioinnissa
Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 4 Tilastollisen aineiston kuvaileminen, mallintaminen ja estimointi Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin
Uskottavuuden ominaisuuksia
Luku 9 Uskottavuuden ominaisuuksia 9.1 Tyhjentävyys T yhjentävyys (Fisher 1922) luonnehtii täsmällisesti havaintoihin sisältyvän informaation kvantitatiivisesti. Parametrin θ estimaatti T(x) on tyhjentävä
2. Uskottavuus ja informaatio
2. Uskottavuus ja informaatio Viimeksi käsittelimme uskottavuusfunktioita, log-uskottavuusfunktioita ja su-estimaatteja Seuraavaksi tarkastelemme parametrin muunnoksia ja kuinka su-estimaatit käyttäytyvät
6.1.2 Luottamusjoukon määritelmä
6.1.1 Johdanto Olemme tarkastelleet piste-estimointia: tavoitteemme oli etsiä tunnuslukuja t, joilla piste t(y) hyvä arvio mallin parametrille θ (tai sen muunnokselle g(θ)). Pelkän piste-estimaatin esittäminen
3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1
Tilastolliset menetelmät Osa 1: Johdanto Johdanto tilastotieteeseen KE (2014) 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä ja malleja, joiden avulla reaalimaailman ilmiöistä voidaan
Luku 10. Bayesläiset estimaattorit Bayesläiset piste-estimaatit. Lasse Leskelä Aalto-yliopisto 18. lokakuuta 2017
Luku 1 Bayesläiset estimaattorit Lasse Leskelä Aalto-yliopisto 18. lokakuuta 217 1.1 Bayesläiset piste-estimaatit Tarkastellaan datalähdettä, joka tuottaa tiheysfunktion f(x θ) mukaan jakautuneita riippumattomia
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
1. JOHDANTO. 1.1 Johdattelevia esimerkkejä. 1. Kuinka monta ihmishahmoa näet kuvassa?
1. JOHDANTO 1.1 Johdattelevia esimerkkejä 1. Kuinka monta ihmishahmoa näet kuvassa? 1 2. Ovatko viivat yhdensuuntaisia? 2 3. Mitä erikoista on spiraalissa? 3 4. Onko risteyskohdissa mustia vai valkoisia
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
p(θ 1 y) on marginaalijakauma p(θ 1 θ 2, y) on ehdollinen posteriorijakauma Viime kerralla Termejä viime kerralta Marginalisointi Marginaalijakauma
Viime kerralla Marginalisointi Marginaalijakauma Posteriorijakauman faktorointi Ehdollinen posteriorijakauma Slide 1 Posteriorijakaumasta simulointi Normaalijakauma - tuntematon keskiarvo ja varianssi
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
Batch means -menetelmä
S-38.148 Tietoverkkojen simulointi / Tulosten keruu ja analyysi 1(9) Batch means -menetelmä Batch means -menetelmää käytetään hyvin yleisesti Simulointi suoritetaan tässä yhtenä pitkänä ajona olkoon simuloinnin
Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
Uskottavuusperusteisten luottamusvälien korjaaminen bootstrap-menetelmällä Pro gradu -esitelmä
Uskottavuusperusteisten luottamusvlien korjaaminen bootstrap-menetelmllpro gradu -esitelm p. 1/35 Uskottavuusperusteisten luottamusvälien korjaaminen bootstrap-menetelmällä Pro gradu -esitelmä 29.4.2009
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
E. Oja ja H. Mannila Datasta Tietoon: Luku 6
6. HAHMONTUNNISTUKSEN PERUSTEITA 6.1. Johdanto Hahmontunnistus on tieteenala, jossa luokitellaan joitakin kohteita niistä tehtyjen havaintojen perusteella luokkiin Esimerkki: käsinkirjoitettujen numeroiden,
Tilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin
3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto