Sisältö. Luento 2: Tulostusprimitiivien toteutus GRAAFISTEN PRIMITIIVIEN TOTEUTUS. Piirtäminen rasteriruudulle. Suoran viivan vaatimukset

Koko: px
Aloita esitys sivulta:

Download "Sisältö. Luento 2: Tulostusprimitiivien toteutus GRAAFISTEN PRIMITIIVIEN TOTEUTUS. Piirtäminen rasteriruudulle. Suoran viivan vaatimukset"

Transkriptio

1 Sisältö Tietokonegrafiikka / perusteet Tik /301 4 ov / 2 ov Suora ja ympyrä Antialiasointi Fill-algoritmit Point-in-polygon Luento 2: Tulostusprimitiivien toteutus Lauri Savioja 09/03 Primitiivien toteutus / 1 Primitiivien toteutus / 2 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Piirtäminen rasteriruudulle Alkeisoperaationa: SetPixel ( x, y, color ) Suorien viivojen piirtäminen Malli piirturikynällä piirtämisestä Kynä on aina jossakin (CP = Current Position) Inkrementaaliset alkeisoperaatiot: PenUp / PenDown CP' = CP + (±1, ±1) -> 8 eri askelta Pisteet piirrettävissä missä järjestyksessä hyvänsä Koordinaatit suhteellisina määritellyn rasterin origoon nähden Primitiivien toteutus / 3 Primitiivien toteutus / 4 Laskennallisia vaatimuksia Nopea, eli kokonaislukuja yhteen- ja vähennyslaskuja shiftejä Hitaita asioita kertolaskut reaaliluvut kirjastofunktiot, esim. trigonometriset operaatiot Suora Suoran viivan vaatimukset Tasapaksu (tasainen intensiteetti) Portaaton Täsmällinen alku ja loppu Intensiteetti riippumaton pituudesta ja kulmakertoimesta Primitiivien toteutus / 5 Primitiivien toteutus / 6 1

2 Algoritmi suoran piirtämiseksi Suoran yhtälö y=ax+b Alkupiste (x o,y o ), loppupiste (x 1,y 1 ) DDA (Digital Differential Analyzer) - algoritmi Periaate: pisteitä suoralla voidaan laskea esim. janan päätepisteiden (p 1, p 2 ) avulla esitetystä parametrimuodosta p(t) = p 1 + t *?p = p 1 + t * (p 2 - p 1 ) ; t [0,1] x(t) = x 1 + t *?X y(t) = y 1 + t *?Y = y 1 + m * (t *?X) ; m =?Y /?X eli antamalla t:lle sopivia arvoja ja pyöristämällä lasketut koordinaatit. Primitiivien toteutus / 7 Primitiivien toteutus / 8 DDA (jatkuu) symmetrinen DDA : iteroidaan t-parametria riittävän pienin askelin, jotta kaikki "janalla olevat" (so. lähellä olevat) pisteet tulevat käytyä läpi. yksinkertainen DDA : iteroidaan yksikköaskelin sitä koordinaattia, jonka siirtymä on suurempi, esim. x increment = ±1 ja y increment = m, kun m < 1. heikkouksia: jakolasku alussa liukuluvut, pyöristys joka pisteessä procedure dda (x1, y1, x2, y2 : integer); var dx, dy, steps, k : integer; x_increment, y_increment, x, y : real; dx := x2 - x1; dy := y2 - y1; if abs(dx) > abs(dy) then steps := abs(dx); else steps := abs(dy); x_increment := dx / steps; y_increment := dy / steps; x := x1; y := y1; set_pixel (round(x), round(y)); for k := 1 to steps do x := x + x_increment; y := y + y_increment; set_pixel (round(x), round(y)) end DDA (koodina) Primitiivien toteutus / 9 Primitiivien toteutus / 10 SIGGRAPH diat Bresenhamin algoritmi DDA:ssa turhaa laskentaa, sillä yksi koordinaatti (esim. x) muuttuu aina kokonaisaskelin toisestakin koordinaatista (y) tarvitsee havaita vain muutos, ts. milloin pyöristys antaa eri arvon kuin edellisessä pisteessä. Johdetaan tehokkaampi algoritmi: tarkkaillaan pyöristysvirhettä nousevalla suoralla (0 <= m <= 1 ) x-arvo etenee kokonaisaskelin: round(x) - x = 0 y:n virhe vaihtelee: d = round(y) - y (-0.5,+0.5) merkitään viimeksi piirrettyä pistettä ( x', y' ) = ( round(x), round(y) ) = ( x, y+d ) seuraava piste on ( x+1, y+m ), joka pyöristettynä on round(x+1) = x' + 1 round(y+m) = y', jos d+m < 0.5 = y' + 1, jos d+m >= 0.5 Primitiivien toteutus / 11 Primitiivien toteutus / 12 2

3 Bresenham (jatkuu) riittää siis tarkkailla lausekkeen s = d + m -0.5 etumerkkiä ja päivittää sitä askelittain: alussa d := 0, eli s0 := m -0.5 joka kierroksella lisätään s := s + m, ja vähennetään s := s - 1, jos s > 0 (koska y' kasvaa yhdellä). siirrytään kokonaislukuihin skaalaamalla s tekijällä 2*dx : m = dy / dx p = 2*dx*s = 2*dx*d + 2*dy - dx eli alussa p0 := 2*dy - dx joka kierroksella p := p + 2*dy ja lisäksi aina kun p > 0: p := p - 2*dx. procedure bres_line (x1, y1, x2, y2 : integer); Bresenham PASCAL-kielisenä: var dx, dy, x, y, x_end, p, const1,const2 : integer; dx := abs(x1 - x2); dy := abs(y1 - y2); p := 2 * dy - dx; const1 := 2 * dy; const2 := 2 * (dy - dx); if x1 > x2 then { if x1 > x2 } end else x := x2; y := y2; x_end := x1 { if x1 <= x2 } x := x1; y := y1; x_end := x2 set_pixel(x, y); while x < x_end do end x := x + 1; if p < 0 then p := p + const1 else set_pixel(x, y) y := y + 1; p := p + const2 Primitiivien toteutus / 13 Primitiivien toteutus / 14 Bresenham (jatkuu) algoritmin edut: ei lainkaan jakolaskua eikä liukulukuja kertolasku vain tekijällä 2 (= bin.luvun sivuttaissiirto) Huom. algoritmi johdettu nousevalle suoralle, dx>0, m < 1. Jos dx < 0, vaihdetaan päätepisteet (p 1, p 2 ) keskenään, tai päivitetään x-arvoa -1:n askelin laskevalle suoralle, -1 < m < 0, vaihdetaan y:n askeleeksi -1 Jos m > 1, vaihdetaan x:n ja y:n roolit keskenään. KÄYRÄT VIIVAT suorien ohella tarvitaan usein myös käyriä: 2 käyrät (ympyrän, ellipsin, parabelin kaaret) splinit (myöhemmin tällä kurssilla) perusprimitiivi POLYLINE tuottaa vain suora-osaisia murtoviivoja, yleistetty primitiivi GDP tarkoitettu mm. käyrien piirtämiseen GDP:n parametrien tulisi pääsääntöisesti olla geometrisia pisteitä, ei esim. polynomiyhtälön kertoimia periaatteessa mikä hyvänsä käyrä voidaan approksimoida murtoviivalla, mutta tehokkaampaa on yleensä tuottaa käyrän pisteet suoraan sen määritelmästä Primitiivien toteutus / 15 Primitiivien toteutus / 16 Käyrät viivat (jatkuu) DDA-algoritmi ja Bresenhamin muunnelma siitä ovat helposti muunnettavissa monille käyrille sopiviksi, mutta on varottava äärellisestä differenssiaskeleesta aiheutuvaa virhettä. Esim. paraabeli voidaan esittää differentiaalimuodossa: y = ax 2 + b <=> dy = 2ax * dx, y(0) = b. Täsmällisen käyrän tuottavassa algoritmissa on otettava huomioon myös termi dx 2 :?y(0) =?x 2?y(n) =?y(n-1) + 2ax *?x Paraabeli koodi x := 0; y := b; dx := 1; dy := dx * dx; dy_const := 2 * a * dx; while x < xmax do x := x + dx; y := y + dy; set_pixel (round(x), round(y)) dy := dy + dy_const; Huom! kun ohitetaan piste, jossa dx = dy, pitäisi x:n ja y:n rooleja muuttaa siten, että askelletaan y:tä yhdellä ja lasketaan dx sen mukaan. Primitiivien toteutus / 17 Primitiivien toteutus / 18 3

4 Ympyränpiirtoalgoritmi Bresenhamin ympyränpiirtoalgoritmi symmetrian ansiosta riittää tarkastella vain kahdeksasosaa koko ympyrästä; loput pisteet saadaan vaihtamalla x:n ja y:n rooleja ja etumerkkejä (olettaen, että keskipiste on origossa): -x,y x,y -y,x y,x -y,-x y,-x -x,-y x,-y piirtäminen alkaa pisteestä (0,r) ja päättyy, kun x=y. Primitiivien toteutus / 19 Primitiivien toteutus / 20 y exact yi yi-1 Ympyrä (jatkuu) Tarkastellaan askelta i, jossa ollaan viimeksi piirretty piste (x i, y i ), ja seuraavaksi on pääteltävä kumpi pisteistä, (x i +1, y i ) vai (x i +1, y i 1), on lähempänä todellista käyrän pistettä (x i +1, y exact ) : d1 d2 Ympyrä (jatkuu) ympyrän yhtälöstä y 2 = r 2 x 2 saadaan: y exact2 = r 2 (x i + 1) 2, jota voidaan verrata vaihtoehtoisiin pisteisiin: d 1 = y i2 y exact 2 = y i 2 r 2 + (x i + 1) 2, d 2 = y exact2 (y i - 1) 2 = r 2 (x i + 1) 2 (y i - 1) 2 p i = d 1 d 2 = 2(x i + 1) 2 + y i2 + (y i - 1) 2 2r 2 valitaan se piste, jonka etäisyys oikeasta on pienempi, eli jos parametri p i < 0, niin valitaan arvo y i, muuten arvo (y i - 1). xi xi+1 Primitiivien toteutus / 21 Primitiivien toteutus / 22 Ympyrä (jatkuu) Parametrin p arvo seuraavassa pisteessä (x i +1, y i+1 ) voidaan laskea iteratiivisesti edellisessä pisteessä lasketusta arvosta. Edellä laskettua lauseketta muokkaamalla saadaan: p i+1 = 2[(x i +1) + 1] 2 + y 2 i+1 + (y i+1-1) 2 2r 2 = p i + 4x i (y i y i2 ) 2(y i+1 - y i ) = p i + 4x i + 6, jos y i+1 = y i = p i + 4x i + 6 4y i + 4, jos y i+1 = y i + 1 aloituspisteessä (0, r) lauseke on: p 1 = 3 2r. procedure bres_circle (x_center, y_center, radius : integer); var p, x, y : integer; procedure plot_circle_points; { 8 symmetric positions } set_pixel(x_center + x, y_center + y); set_pixel(x_center - x, y_center + y); set_pixel(x_center + x, y_center - y); set_pixel(x_center - x, y_center - y); set_pixel(x_center + y, y_center + x); set_pixel(x_center - y, y_center + x); set_pixel(x_center + y, y_center - x); set_pixel(x_center - y, y_center - x) Ympyräkoodi Primitiivien toteutus / 23 Primitiivien toteutus / 24 4

5 Ympyräkoodi (jatkuu) { bres_circle } x := 0; y := radius; p := 3-2 * radius; while x < y do plot_circle_points; if p < 0 then p := p + 4 * x + 6 else p := p + 4 * (x- y) + 10; y := y - 1; x := x + 1; end if x = y then plot_circle_points; Aliasoituminen l. vieraantumisongelma rasteriviivojen piirtämisessä piirtosuunta vaikuttaa viivan tiheyteen tiheys = 8 / (8 * 2) tiheys = 8 / 8 viivan leveys voi olla vain kokonaisluku xy-suunnissa vinon viivan reuna on porrasmainen (jagged) HUOM! Sama ongelma koskee myös muita graafisia kuvioita. Primitiivien toteutus / 25 Primitiivien toteutus / 26 Antialiasointi-diat Antialiasointi Antialiasointi = vieraantumisongelman ehkäiseminen tavallisin menetelmä on kunkin pikselin sävyttäminen sen mukaan, kuinka suurelta osin piirrettävä kuvio peittää sitä: Primitiivien toteutus / 27 Primitiivien toteutus / 28 Antialiasointi (jatkuu) viivan reunat sumenevat, mutta keskimäärin tasoittuvat mahdollista vain sävynäytöllä (ei mustavalkealla) erityislaitteilla mahdollista pikselien hienosäätö (pixel phasing): porraskohdissa olevia pikseleitä siirretään lähemmäs oikeaa viivaa pikselien suuruutta säädetään viivan kaltevuuden mukaan ALUEEN TÄYTTÄMINEN Kaksi perusperiaatetta: 1) konversio janoiksi pyyhkäisyjuoville 2) värin levittäminen rasterissa Primitiivien toteutus / 29 Primitiivien toteutus / 30 5

6 Juovakonversio etsitään kultakin pyyhkäisyjuovalta ne janat, jotka jäävät monikulmioalueen sisälle y1 y2 y3 y4 y5 y6 y7 y8 Juovakonversio (jatkuu) voidaan laskea joka juovalle (y=vakio) toisistaan riippumatta, missä kohdissa (x-arvo) juova leikkaa monikulmion reunan tehokkaampaa, jos hyödynnetään koherenssia (so. vierekkäisten juovien samankaltaisuutta): saman reunajanan perättäiset leikkauspisteet juovien kanssa voidaan laskea inkrementaalisesti, kuten janan rasteroinnissa (DDA, Bresenham) kutakin juovaa leikkaa vain osa janoista; likimain sama aktiivinen janajoukko leikkaa myös seuraavaa juovaa (samassa x- järjestyksessä) singulariteettiongelma: montako leikkausta lasketaan, jos pyyhkäisyjuova kulkee monikulmion nurkan kautta? ratkaistaan tarkastelemalla janojen suuntia... x = Primitiivien toteutus / 31 Primitiivien toteutus / 32 Algoritmin runko TYPE points = ARRAY[1..max_points] OF integer; PROCEDURE fill_area_solid (count : integer; x, y : points); TYPE each_entry = RECORD y_top : integer; {larger y coordinate for line} x_int : real; {x that goes with larger y} delta_y : integer; {difference in y coordinates} x_change_per_scan: real {x change per unit change in y} ; list = ARRAY[0..max_points] OF each_entry; VAR sides : list; first_s, last_s, scan, bottomscan, x_int_count, r : integer; {fill_area_solid} sort_on_bigger_y(count, x, y, sides, bottomscan); first_s := 1; last_s := 1; {initialize pointers into sorted list} FOR scan := sides[1].y_top DOWNTO bottomscan DO update_first_and_last(sides, count, scan, first_s, last_s); process_x_intersections(sides, scan, first_s, last_s, x_int_count); draw_lines(sides, scan, x_int_count, first_s); update_sides_list(sides, first_s, last_s) ; {fill_area_solid} PROCEDURE sort_on_bigger_y (n : integer; x, y : points; VAR sides : list; VAR bottomscan : integer); VAR k, x1, y1, xpix, side_count : integer; FUNCTION next_y (k : integer) : integer; VAR i : integer; {returns next vertex y value which is not equal to y[k]} FOR i := k TO n DO IF y[i] <> y[k] THEN next_y := y[i]; ; Tietorakenteen pohjustus: PROCEDURE put_in_sides_list (VAR sides : list; entry, x1, y1, x2, y2, next_y : integer); VAR maxy : integer; x2_temp, x_change_temp : real; {make adjustments for problem vertices} x_change_temp := (x2 -x1) / (y2 -y1); x2_temp := x2; IF (y2 > y1) AND (y2 < next_y) THEN y2 := y2-1; x2_temp := x2_temp - x_change_temp ELSE IF (y2 < y1) AND (y2 > next_y) THEN y2 := y2 + 1; x2_temp := x2_temp + x_change_temp ; WHILE (entry > 1) AND (maxy > sides[entry -1].y_top) DO sides[entry] := sides[entry - 1]; entry := entry - 1 ; WITH sides[entry] DO {insert into sides list} y_top := maxy; delta_y := abs(y2 - y1) + 1; IF y1 > y2 THEN x_int := x1; maxy=y1; ELSE x_int := x2_temp; maxy:=y2 ; ; x_change_per_scan := x_change_temp {put_in_sides_list} samalla, kun järjestetään janat y -koordinaatin mukaan, ennaltaehkäistään singulariteettiongelmat lyhentämällä kuhunkin nurkkapisteeseen tulevaa janaa loppupäästään Primitiivien toteutus / 33 Primitiivien toteutus / 34 Tietorakenteen pohjustus (jatkuu) Aktiivisen janajoukon rajaaminen: F B Top scanline {sort_on_bigger_y} side_sount := 0; y1 := y[n]; x1 := x[n]; {initialize} bottomscan := y[n]; FOR k := 1 TO n DO IF y1 <> y[k] THEN {put non- horizontal edges in table} side_count := side_count + 1; {pass old point, current point, and y of next non-horizontal point} put_in_sides_list(sides, side_count, x1, y1, x[k], y[k], next_y(k)) ELSE {horizontal} FOR xpix := x1 TO x[k] DO setpixel (xpix, y1, fillcolor); IF y[k] < bottomscan THEN bottomscan := y[k]; y1 := y[k]; x1 := x[k] {save for next side} ; {sort_on_bigger_y} PROCEDURE update_first_and_last (sides : list; count, scan : integer; VAR first_s, last_s : integer); WHILE (sides[last_s + 1].y_top >= scan) AND (last_s < count) DO last_s := last_s + 1; WHILE sides[first_s].delta_y = 0 DO first_s := first_s + 1 ; E G A D C Scan line i AB BC EF FG GA CD DE Sorted Edge List Scan line i+1 first_s last_s Primitiivien toteutus / 35 Primitiivien toteutus / 36 6

7 VAR tmp : each_entry; tmp := s1; s1 := s2; s2 := tmp ; Leikkauspisteiden laskenta aktiivisille janoille: PROCEDURE process_x_intersections (sides : list; scan, first_s, last_s : integer; VAR x_int_count : integer); VAR k : integer; PROCEDURE swap(s1, s2 : each_entry); {swap reverses placement of two entries within the table sides} PROCEDURE sort_on_x (entry, first_s : integer); WHILE (entry > first_s) AND (sides[entry].x_int < sides[entry -1].x_int) DO swap(sides[entry], sides[entry - 1]); entry := entry - 1 ; {sort_on_x} {process_x_intersections} x_int_count := 0; FOR k := first_s TO last_s DO IF sides[k].delta_y > 0 THEN x_int_count := x_int_count + 1; sort_on_x(k, first_s) ; {process_x_intersections} Sisään jäävien juovan osien tulostaminen: PROCEDURE draw_lines (sides : list; scan, x_int_count, index : integer); VAR k, x, x1, x2 : integer; FOR k := 1 TO round(x_int_count / 2) DO ; {draw_lines} WHILE sides[index].delta_y = 0 DO index := index + 1; x1 := round(sides[index].x_int); index := index + 1; WHILE sides[index].delta_y = 0 DO index := index + 1; x2 := round(sides[index].x_int); index := index + 1; FOR x := x1 TO x2 DO set_pixel(x, scan, fill_color); index := index + 1 Primitiivien toteutus / 37 Primitiivien toteutus / 38 Aktiivisen janalistan päivitys: Päällekkäiset monikulmiot: prioriteettijärjestys PROCEDURE update_side_list (VAR sides : list); VAR k : integer; B B FOR k := first_s TO last_s DO WITH sides[k] DO IF delta_y > 0 THEN {determine next x_int, decrease delta_y} scan line delta_y := delta_y - 1; x_int := x_int - x_change_per_scan A C A C ; {update_side_list} päällekkäisyysjärjestys eri osissa pyyhkäisyjuovaa: A B C C C A B B A Yleinen koherenssiperiaate: geometristen objektien järjestäminen Y-suunnassa (pyyhkäisyjuovittain) X-suunnassa (kunkin juovan sisällä) P-suunnassa (prioriteetti eli "syvyys") saa aikaan sen, että joudutaan kulloinkin vertailemaan vain pienelläaktiivisella alueella olevia objekteja keskenään. Primitiivien toteutus / 39 Primitiivien toteutus / 40 Päällekkäisyys (jatkuu) Eri tekijöiden (XYP) käyttöjärjestys tuottaa eri algoritmeja, vaikuttaen tietorakenteeseen ohjelman tehokkuuteen / monimutkaisuuteen tulosten havainnollisuuteen (kasvaako kuva ylhäältä alas vai takaa eteenpäin) Näitä piilopinta-algoritmeja käsitellään kirjan luvussa 13 ja myöhemmällä luennolla. Rekursiivinen 4-naapurusto ja 8-naapurusto Reunojen määrittely? Mustetippa-algoritmi void boundaryfill(int x, int y, int fill, int boundary) { int current; } current = getpixel(x, y); if ((current!= boundary) && (current!= fill)) { setcolor(fill); setpixel(x, y); boundaryfill(x+1, y, fill, boundary); boundaryfill(x-1, y, fill, boundary); boundaryfill(x, y+1, fill, boundary); boundaryfill(x, y-1, fill, boundary); } Primitiivien toteutus / 41 Primitiivien toteutus / 42 7

8 Pisteen sijainti alueen suhteen Usein tarvitaan tietoa siitä, kuuluuko annettu piste mallin määrittämään alueeseen. Eri esitystavoille voidaan käyttää erilaisia menetelmiä: suoraan sijoittamalla koordinaatit epäyhtälöön esim. piste (2, 3) on 10-säteisen ympyrän sisällä: < 2 10 vertaamalla avaruusjakoon ja luetteloon alueen soluista tutkimalla ovatko pisteen parametrit rajatuilla väleillä edellyttää parametrikuvauksen käänteismuunnosta 1 f : ( x, y, z) ( u, v) tutkimalla geometrisesti, onko piste reunan sisä- vai ulkopuolella Point-in-polygon Odd-even rule, scan-line Asetetaan ääretön puolisuora tutkittavast pisteestä lähtien ja lasketaan sen leikkauspisteet alueen reunaviivan (tai pinnan) kanssa. Koska äärettämän kaukana oleva puolisuoran pää on alueen ulkopuolella ja reunan ylitys merkitsee aina siirtymistä joko ulkoa sisään tai sisältä ulos, niin pariton määrä leikkauksia merkitsee pisteen olevan alueen sisällä n=1 n=3 n=4 Primitiivien toteutus / 43 Primitiivien toteutus / 44 Point-in-polygon Normaalivektorit ristituloilla, vektorien suunnat Ongelmatapaukset itseään leikkaavat tai sulkeutumattomat reunat Primitiivien toteutus / 45 8

Luento 3: Tulostusprimitiivien toteutus

Luento 3: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 3: Tulostusprimitiivien toteutus Lauri Savioja 11/05 Primitiivien toteutus / 1 Suora ja ympyrä Antialiasointi Fill-algoritmit Point-in-polygon Sisältö

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

Luento 6: Tulostusprimitiivien toteutus

Luento 6: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Tulostusprimitiivien toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 ntialiasointi Fill-algoritmit Point-in-polygon Sisältö Primitiivien toteutus

Lisätiedot

Luento 2: 2D Katselu. Sisältö

Luento 2: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 2: 2D Katselu Lauri Savioja 11/07 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

Luento 2: Tulostusprimitiivit

Luento 2: Tulostusprimitiivit Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Tulostusprimitiivit Lauri Savioja 11/06 D primitiivit / 1 Sisältö Mallintamisen alkeita Perusprimitiivit (GKS) attribuutteineen Näyttömuisti D primitiivit

Lisätiedot

Luento 3: 2D Katselu. Sisältö

Luento 3: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 3: 2D Katselu Lauri Savioja 11/06 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

Sisältö. Luento 6: Piilopinnat. Peruskäsitteet (jatkuu) Peruskäsitteitä. Yksinkertaisia tapauksia. Yksinkertaiset tapaukset jatkuu

Sisältö. Luento 6: Piilopinnat. Peruskäsitteet (jatkuu) Peruskäsitteitä. Yksinkertaisia tapauksia. Yksinkertaiset tapaukset jatkuu Tietokonegrafiikka / perusteet T-111.300/301 4 ov / 2 ov Peruskäsitteitä Z-buffer Syvyyslajittelu Juovalajittelu Rekursiivinen aluejako Piiloviivat Sisältö Luento 6: Piilopinnat Marko Myllymaa 09/03 Piilopinnat

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita.

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. Grafiikka 205 9 Grafiikka Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. 9.1 Kolmio Seuraavana tutkimme kolmiota: Minkä tahansa kolmion ala saadaan kaavasta:

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Yleistä vektoreista GeoGebralla

Yleistä vektoreista GeoGebralla Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vektorit. Vektori LUVUN. YDINTEHTÄVÄT 0. Piste P jakaa janan BC suhteessa : eli kahteen yhtä suureen osaan. Siten CP CB u ja DP DC CP DC CBv u u v. Vastaavasti DQ DA AQ DA ABu v. 7 7 0. a) Pisteen koordinaatit

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Luento 6: Piilopinnat ja Näkyvyys

Luento 6: Piilopinnat ja Näkyvyys Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella

Lisätiedot

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö. Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2

Lisätiedot

origo III neljännes D

origo III neljännes D Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

Ratkaisut vuosien tehtäviin

Ratkaisut vuosien tehtäviin Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)

Lisätiedot

Ellipsit, hyperbelit ja paraabelit vinossa

Ellipsit, hyperbelit ja paraabelit vinossa Ellipsit, hyperbelit ja paraabelit vinossa Matti Lehtinen 1 Ellipsi, hyperbeli ja paraabeli suorassa Opimme lukion analyyttisen geometrian kurssilla ainakin, jos kävimme lukiota vielä muutama vuosi sitten

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Luento 6: Geometrinen mallinnus

Luento 6: Geometrinen mallinnus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja, Janne Kontkanen 11/2007 Geometrinen mallinnus / 1 Sisältö Mitä on geometrinen mallinnus tietokonegrafiikassa

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

Ratkaisuja, Tehtävät

Ratkaisuja, Tehtävät ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden

Lisätiedot

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia 10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45

Lisätiedot

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus. Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

4. Esittäminen ja visualisointi (renderöinti)

4. Esittäminen ja visualisointi (renderöinti) 4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)

Lisätiedot

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.

Lisätiedot

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

Tehtävien ratkaisut

Tehtävien ratkaisut Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla

Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla Peilaus pisteen ja suoran suhteen Pythonin Turtle moduulilla ALKUHARJOITUS Kynän ja paperin avulla peilaaminen koordinaatistossa a) Peilaa pisteen (0,0) suhteen koordinaatistossa sijaitseva - neliö, jonka

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

VEKTORIKARTTOJEN HYÖDYNTÄMINEN PAIKKATIETOSOVELLUKSISSA

VEKTORIKARTTOJEN HYÖDYNTÄMINEN PAIKKATIETOSOVELLUKSISSA VEKTORIKARTTOJEN HYÖDYNTÄMINEN PAIKKATIETOSOVELLUKSISSA Seppo Nevalainen 10. 12. 2001 Joensuun yliopisto Tietojenkäsittelytiede Pro gradu -tutkielma TIIVISTELMÄ Vektoriformaattia käytetään yleisesti karttakuvien

Lisätiedot

Muutoksen arviointi differentiaalin avulla

Muutoksen arviointi differentiaalin avulla Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien

Lisätiedot

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja

Lisätiedot

Differentiaaliyhtälöryhmä

Differentiaaliyhtälöryhmä Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

Luento 6: Geometrinen mallinnus

Luento 6: Geometrinen mallinnus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja 11/05 Geometrinen mallinnus / 1 Mitä on mallintaminen? Perusmenetelmät Mallihierarkiat Sisältö Geometrinen mallinnus

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi

Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn

Lisätiedot

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.

(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R. Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot