805324A (805679S) Aikasarja-analyysi (Syksy 2016) Sari Lasanen
|
|
- Timo Jokinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 805324A (805679S) Aikasarja-analyysi (Syksy 2016) Sari Lasanen
2 1. Kurssin tiedot Osaamistavoitteet: Kurssin onnistuneen suorittamisen jälkeen opiskelija tuntee aikasarja-analyysin peruskäsitteet (mm. trendi, kausivaihtelu, syklisyys, autokovarianssi) sekä perusmenetelmät osaa mallintaa erilaisia aikasarjoja ja arvioida malleja kriittisesti hallitsee aikasarjojen tilastollisen ennustamisen alkeet kykenee käytännön laskentaan tilastollisten ohjelmistojen avulla omaa aikasarja-analyysin osalta valmiudet toimia datatieteen tehtävissä Kirjallisuus: Chatfield, C. The Analysis of Time Series, an Introduction. Chapman and Hall (2004) Shumway, R.H. and Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples. Springer (2011) Hamilton, J.D. Time series analysis. Princeton University Press (1994) Kurssin kotisivut: noppa.oulu.fi i
3 Luennoitsija: Sari Lasanen, huone MA332, Luennot Harjoitukset MA TO KE Tentti (24 pistettä) Yliopistotentti tehtävää a 6 pistettä: Määritelmät. Käsitteet. Todennäköisyyslaskenta. Harjoitustyö (24 pistettä). Joka harjoituksessa on harjoitustyöosio. Läsnäolopakkoa harjoituksissa ei ole. Yhteispisteet (max 48) Kurssiarvosana (1-5) 0-23 Hylätty ii
4 2. Johdanto Aikasarja syntyy, kun muuttujan arvoja kerätään peräkkäisillä ajanhetkillä. Lämpötila C Vuosi Kuva 2.1: Kuukauden keskilämpötila Nottingham Castlessa (R: nottem) Yllä olevasta kuvaajasta nähdään, että esimerkiksi tammikuun keskilämpötila vaihtelee vuodesta toiseen. Kun data sisältää epäsäännölistä ajallista vaihtelua, siirrytään datan tarkastelussa usein tilastollisiin menetelmiin, joissa dataa kuvaillaan säännöllisten mallien lisäksi myös satunnaismallien avulla. Aikasarja-analyysi käsittää aikasarjojen mallittamisen sekä tilastollisen päättelyn menetelmiä. 2.1 Aikasarja Tarkastellaan muuttujaa, jonka arvoa ajanhetkellä t merkitään X t. sano- Olkoon t k lukujono, jonka alkioille pätee t k < t k+1 kaikilla k. Lukujonoa X tk taan aikasarjaksi. Aikasarja on tasavälinen, jos t k+1 t k = t k +1 t k jokaisella k k. Tasavälisen aikasarjan aika-asteikko on mahdollista skaalata niin, että t 1 = 1, t 2 = 2, t 3 = 3,... Tällöin on luontevaa käyttää aikasarjasta merkintää X t, missä t = 1, 2, 3,... (2.1.1) Käytetään jatkossa teorian tarkastelussa merkintää (2.1.1)! Miten pitkä aika on eri havaintojen välillä? Onko ajalla t nyt yksikköä, kuten vuosi, kuukausi tai minuutti? Mitä ajattelet tästä? 1
5 Kuva 2.2: Esimerkki tasavälisistä ja epätasavälisistä ajanhetkistä. Huomautus Aikasarja voi olla kerätty esim. vuosittain, kuukausittain, päivittäin, tunneittain...,.. mikrosekunneittain. Muita kirjallisuudessa esiintyviä merkintätapoja: X k, x tk, X(k). Parametrin t ei aina tarvitse edustaa aikaa, vaan se voi olla esimerkiksi myös etäisyys. Soveltavassa kirjallisuudessa voi joskus kohdata aikasarjan, missä aikaparametri on jatkuva eli sallitaan kaikki t > 0. Tällaiset yhden muuttujan satunnaisfunktiot määritellään matematiikassa stokastisina prosesseina. Esimerkki 2.1. Tarkastellaan aikasarjaa X t = t + häiriö, missä eri t:n arvoilla olevat häiriötermit ovat keskenään riippumattomia U(0, 1) jakautuneita satunnaismuuttujia. Kun t = 2, niin X 2 = häiriö. Lisää kuvaan 2.3 suora y = x. Mikä on muutujan y arvo, kun x saa arvon 2 1 2? Mainitse jokin arvo, jota aikasarjan piste X 3, ei voi saada (todennäköisyydellä 1). Mikä on aikasarjan X t havaintojen aikaväli? Onko ajalle t annettu yksikköä? Time changes everything except something within us which is always surprised by change. Thomas Hardy 2
6 Taulukko 2.1: Esimerkki aikasarjasta X t t t Häiriö Aikasarja X t X t Aika t Kuva 2.3: Aikasarja X t = t + häiriö 2.2 Esimerkkejä aikasarjoista Aikasarjoja kerätään esimerkiksi taloudessa (esim. pörssikurssit, valuuttakurssit), luonnonilmiöissä ja -vaihteluissa (esim. ilmastodata, sää, kalakannat), kaupallisessa toiminnassa (tuotteen kysyntä, raaka-aineen hinta), yhteiskunnassa (esim. työllisyys, rikollisuustilastot), terveysalalla (potilaan verenpaine, syöpärekisterit), liikenteestä (ruuhkaisuus, onnettomuustilastot), digitaalisissa mittauksissa (sensoriin liitetyt dataloggerit). Aikasarja-analyysin tavoitteita: Eksploratiivinen analyysi (aikasarjan oleellisten piirteiden löytäminen ) Selittävät tekijät (kausivaihtelu,riippuvuuus toisesta aikasarjasta) Ennustaminen Without data you re just another person with an opinion. W. Edwards Deming 3
7 Esimerkki 2.2. Liikenneonnettomuuksissa menehtyneiden ajoneuvon kuljettajien kuukausittainen lukumäärä Iso-Britanniassa (R: UKDriverDeaths) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Lukumäärä X tk Aika t k Harvey, A. C. and Durbin, J. (1986) The effects of seat belt legislation on British road casualties: A case study in structural time series modelling. Journal of the Royal Statistical Society series B, 149, Wikipedia lainaus: In the UK, a requirement for anchorage points was introduced in 1965, followed by the requirement in 1968 to fit three-point belts in the front outboard positions on all new cars and all existing cars back to Successive UK Governments proposed, but failed to deliver, seat belt legislation throughout the 1970s. Front seat belts were compulsory equipment on all new cars registered in the UK from 1972, although it did not become compulsory for them to be worn until Rear seat belts were compulsory equipment from However, it has never been a legal requirement for cars registered before those dates to be fitted with seat belts. Vähentääkö turvavyölainsäädäntö autoilijoiden tieliikennekuolemia?...kuinka paljon? Esimerkki 2.3. Biologinen data kerätään usein aikasarjana. Data-analyysillä voidaan tehdä mm. lääketieteellisesti merkittäviä havaintoja kerätyistä aikasarjoista. Biologista dataa edustavat mm. puun vuosittainen kasvu ja potilaan päivittäinen verenpaine. Alla on kahden majavan kehon lämpö eri vuorokauden aikoina. 4
8 Taulukko 2.2: Majava 1 aikasarjan alku k = 1,..., 10 Aika t k 08:40 08:50 09:00 09:10 09:20 09:30 09:40 09:50 10:00 10:10 Aikasarja X tk Taulukko 2.3: Majava 2, aikasarjan alku k = 1,..., 10 Aika s k 09:30 09:40 09:50 10:00 10:10 10:20 10:30 10:40 10:50 11:00 Aikasarja Y sk lämpö Majava 1 Majava tunnit Majavan 1 ja Majavan 2 aikasarjoja on merkitty eri symboleilla: aikaa t k ja s k sekä aikasarjoja vastaavasti X k ja Y k. 1 Kunkin majavan data on tasavälisesti kerätty: t k t k 1 = s k s k 1 = 10 min jokaisella k = 1, 2, 3,... Majavaa 1 on seurattu kaummin kuin Majavaa 2: Majavan 1 data alkaa ajanhetkellä t 1 = 8 : 40 ja Majavan 2 data alkaa ajanhetkellä s 1 = 9 : Vältä vaikeudet: Varmista biologisen datan yhteydessä datan keruun eettisyys! Noudata aina datan käsittelyyn ja säilytykseen liittyvää ohjeistusta! (Luottamuksellisuus, yksityisyyden suoja) We are drowning in information and starving for knowledge. Rutherford D. Roger 1 Mitä muita oleellisesti erilaisia merkintätapoja voisi olla usealle aikasarjalle? 2 Voisiko tästä olla haittaa? 5
9 Esimerkki 2.4. Aikasarjoja kerätään paljon taloustieteessä: datan avulla pyritään ymmärtämään mm. markkinoiden käytöstä sekä esim.liiketaloudessa kehittämään hyödykkeiden tuotantoa kulutuksen mukaan. Kuva 2.4: Päivittäinen pörssi-indeksi (DAX) Frankfurtin pörssin sulkeutumisaikaan (R:EuStockMarkets). DAX Aika (Vuosina) Kuvaaja on epäsäännöllinen. Epäsäännöllisyyttä pyritään aikasarja-analyysissä mallintamaan satunnaisuuden avulla. The statistician cannot evade the responsibility for understanding the process he applies or recommends.- Sir Ronald A. Fisher Esimerkki 2.5. Tähtitiede on aikasarjojen suurtuottaja. Nasan arkistoissa odottaa EDELLEEN ensimmäinen aurinkokunnan ulkopuolinen eksokuu löytäjäänsä! Dataa löytyy täältä: Exoplanet archive Esimerkki 2.6. Bisnesanalytiikka. Google. Big data. 6
10 3. Aikasarjamalleja 3.1 Stokastiset prosessit Aikasarjojen mallitus perustuu stokastisiin prosesseihin. Määritelmä 3.1. Olkoon (Ω, Σ, P ) todennäköisyysavaruus. Olkoon I Z. Sanotaan, että kuvaus I Ω (t, ω) X t (ω) R on (diskreetti) stokastinen prosessi X t, jos kuvaus ω X t (ω) on satunnaismuuttuja jokaisella t I. Diskreetti stokastinen prosessi on erityisesti kokoelma samalla todennäköisyysavaruudella määriteltyjä satunnaismuuttujia. Indeksit t I ovat ajanhetkiä. Indeksijoukko I on tavallisesti joko N, jolloin stokastinen prosessi on tai Z, jolloin stokastinen prosessi on X 1, X 2, X 3,......, X 3, X 2, X 1, X 0, X 1, X 2, X 3,... Tärkeä esimerkki stokastisista prosesseista on valkoinen kohina. Määritelmä 3.2. Stokastista prosessia ε t sanotaan valkoiseksi kohinaksi, jos ε t ja ε s ovat tilastollisesti riippumattomia 1 kaikilla t s, E[ε t ] = 0 ja E[ε 2 t ] = σ 2 jokaisella t, missä σ > 0. Stokastisen prosessin ja satunnaisvektorien välinen suurin ero on, että stokastinen prosessi koostuu äärettömän monesta satunnaismuuttujasta. Esimerkki 3.1. Olkoon ε t Gaussinen valkoinen kohina, jolle ε t N0, 1) jokaisella t. Lasketaan todennnäköisyys sille, että ɛ t [ 1, 1] jokaisella t. Käytetään hyväksi eri komponenttien riippumattomuutta: P ( { 1 ɛ t 1}) = P ({ 1 ɛ 1 1} { 1 ɛ t 1}) t=1 Näin jatkamalla voidaan näyttää, että P ( { 1 ɛ t 1}) = t=1 t=2 = P ({ 1 ɛ 1 1})P ( { 1 ɛ t 1}) P ( 1 ɛ t 1) = t=1 t=2 ( 1 2π 1 1 Usein vaaditaan, että ε t ja ε s ovat pelkästään korreloimattomia 1 exp( 1 2 x2 )dx) = 0 7
11 Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t Aika t Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a <. Todennäköisyys sille, että Gaussisen valkoisen kohinan komponentit ovat yhtäaikaa rajoitettuja on siis nolla. Toisin sanoen P (sup t ɛ t < a) = 0. Valkoinen kohina on myös tässä mielessä hyvin epäsäännöllistä. Huomautus Stokastiselle prosessille ei voi kirjoittaa yhteistodennäköisyystiheysfunktiota samaaan tapaan kuin satunnaisvektoreille. Sen sijaan äärellisulotteisten reunajakaumien F Xt1,...,X tk tiheysfunktiot ovat määriteltävissä. Stokastisten prosessien olemassaolo voidaan näyttää äärellisulotteisten reunajakaumien avulla. Tämän havaitsi ensimmäisenä Kolmogorov, jonka mukaan tulos on nimetty. (Tulosta ei esitetä tällä kurssilla) Määritelmä 3.3. Olkoon X t, t I, stokastinen prosessi. Sanotaan, että µ t on stokastisen prosessin X t odotusarvo, jos µ t = E[X t ] jokaisella t I. Sanotaan, että C : I I R on stokastisen prosessin kovarianssifunktio, jos C(t, s) = E[(X t µ t )(X s µ s )] jokaisella t, s I. Sanotaan, että Γ t on stokasisen prosessin X t jokaisella t, t τ I. Γ t (τ) = C(t, t τ) autokovarianssifunktio, jos Esimerkki 3.2. Olkoon ε t valkoinen kohina, jolle ε t N(0, σ 2 ) jokaisella t = 1, 2, 3,.... Olkoon X t = 2 + t 2 + 3ε t. Laske prosessin X t odotusarvo ja kovarianssifunktio, mikäli mahdollista. 8
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Aika t
Kuva 3.1: Näyte Gaussisesta valkoisest kohinasta ε t N(0, 1) Valkoinen kohina ε t 2 1 0 1 2 Voimme tehdä saman laskun myös yleiselle välille [ a, a], missä 0 < a
9. Tila-avaruusmallit
9. Tila-avaruusmallit Aikasarjan stokastinen malli ja aikasarjasta tehdyt havainnot voidaan esittää joustavassa ja monipuolisessa muodossa ns. tila-avaruusmallina. Useat aikasarjat edustavat dynaamisia
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH
8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH Osa aikasarjoista kehittyy hyvin erityyppisesti erilaisissa tilanteissa. Esimerkiksi pörssikurssien epävakaus keskittyy usein lyhyisiin
Vastaavasti voidaan määritellä korkeamman kertaluvun autoregressiiviset prosessit.
Autokovarianssi: (kun τ 0) Γ t (τ) = E[(X t µ t )(X t τ µ t τ )] ( ) ( = E[ φ k ε t k φ j ε t τ j )] = = j=0 φ j+k E[ε t k ε t τ j ] k,j=0 φ j+k σ 2 δ k,τ+j k,j=0 = σ 2 φ j+k δ k,τ+j = = k,j=0 φ τ+2j I
6.2.3 Spektrikertymäfunktio
ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
6.5.2 Tapering-menetelmä
6.5.2 Tapering-menetelmä Määritelmä 6.7. Tapering on spektrin estimointimenetelmä, jossa estimaattori on muotoa f m (ω) = 1 m ( ) k w 2π m Γ(k)e ikω, k= m missä Γ on otosautokovarianssifunktio ja ikkunafunktio
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
Inversio-ongelmien laskennallinen peruskurssi Luento 7
Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan
ELEC-C5210 Satunnaisprosessit tietoliikenteessä
ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland esa.ollila@aalto.fi http://signal.hut.fi/~esollila/ Kevät 2017 E. Ollila
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 3 (2016) Tavoitteet (teoria): Hallita multinormaalijakauman määritelmä. Ymmärtää likelihood-funktion ja todennäköisyystiheysfunktion ero. Oppia kirjoittamaan
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
6.1 Autokovarianssifunktion karakterisaatio aikatasossa
6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio
HARJOITUS- PAKETTI A
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI A (6 pistettä) TUTA 19 Luento 3.Ennustaminen County General 1 piste The number of heart surgeries performed at County General Hospital
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
3. Teoriaharjoitukset
3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely
MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Ennustaminen ARMA malleilla ja Kalmanin suodin
Ennustaminen ARMA malleilla ja Kalmanin suodin MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja
44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
TN-IIa (MAT22001), syksy 2017
TN-IIa (MAT22001), syksy 2017 Petteri Piiroinen 4.9.2017 Todennäköisyyslaskennan IIa -kurssin asema opetuksessa Tilastotieteen pääaineopiskelijoille pakollinen aineopintojen kurssi. Suositus: toisen vuoden
Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Efficiency change over time
Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä
MS-C2111 Stokastiset prosessit
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos toimisto: Y241, vastaanotto: pe 13:30-14:30 2017, periodi I KURSSIN JÄRJESTELYT Kurssin järjestelyt Luennot ja harjoitusryhmät Luennot tiistaisin
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Johdatus monimuuttujamenetelmiin Luennot 30.10.13.12.-18 Tiistaina klo 12-14 (30.10., BF119-1) Keskiviikkoisin klo 10-12 (MA101,
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
Signaalimallit: sisältö
Signaalimallit: sisältö Motivaationa häiriöiden kuvaaminen ja rekonstruointi Signaalien kuvaaminen aikatasossa, determinisitinen vs. stokastinen Signaalien kuvaaminen taajuustasossa Fourier-muunnos Deterministisen
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto
Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
Finanssisitoumusten suojaamisesta
Finanssisitoumusten suojaamisesta Harri Nyrhinen Matematiikan ja tilastotieteen laitos Helsingin yliopisto Vakuutusmatematiikan seminaari 4.5.2017 Esitelmän sisältö Teoreettisluonteisia poimintoja kirjallisuudesta
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
4.2.2 Uskottavuusfunktio f Y (y 0 X = x)
Kuva 4.6: Elektroniikassa esiintyvän lämpökohinan periaate. Lämpökohinaa ε mallinnetaan additiivisella häiriöllä y = Mx + ε. 4.2.2 Uskottavuusfunktio f Y (y 0 X = x) Tarkastellaan tilastollista inversio-ongelmaa,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Määritelmä 17. Olkoon Ω joukko ja Σ sen jokin σ-algebra. Kuvaus P : Σ [0, 1] on todennäköisyysmitta (eng. probability measure), jos
0.02 0.04 0.06 0.08 f 0 5 0 5 0 Temperature Kuva 5.2: Tntf:n f kuvaaja: Lämpötilat välillä [5, 0] näyttävät epätodennäköisiltä. Lämpötila -2 näyttäisi todennäköisimmältä, mutta jakauma on leveä. Tämä heijastaa
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5
Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 5 1. Näytä, että X t := Bt 3 3tB t on martingaali Brownin liikkeen B historian suhteen. Ratkaisuehdotus:
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016)
805324A (805679S) Aikasarja-analyysi Harjoitus 5 (2016) Tavoitteet (teoria): Ymmärtää kausivaihtelun käsite ja sen yhteys otoshetkiin. Oppia käsittelemään periodogrammia.. Tavoitteet (R): Periodogrammin,
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
STOKASTISET PROSESSIT
TEORIA STOKASTISET PROSESSIT Satunnaisuutta sisältävän tapahtumasarjan kulkua koskevaa havaintosarjaa sanotaan aikasarjaksi. Sana korostaa empiirisen, kokeellisesti havaitun tiedon luonnetta. Aikasarjan
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
T Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi
T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Tilastollisen merkitsevyyden testaus (+ jatkuvan parametrin Bayes-päättely) Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Funktiot ja raja-arvo P, 5op
Funktiot ja raja-arvo 800119P, 5op Pekka Salmi 15. syyskuuta 2017 Pekka Salmi FUNK 15. syyskuuta 2017 1 / 122 Yleistä Luennot: ke 810, to 1214 (ensi viikosta lähtien) Luennoitsija: Pekka Salmi, MA327 Laskupäivä:
TietRa (Tietotyöratkaisujen ekosysteemi) 1.11.2014 Leena Kanerva, Erica Partners Oy
TietRa (Tietotyöratkaisujen ekosysteemi) 1.11.2014 Leena Kanerva, Erica Partners Oy Copyright Erica Partners Oy 2014 www.ericapartners.com TietRa (Tietotyöratkaisujen ekosysteemi) 65 henkilökohtaista asiakashaastattelua
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)
On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
6. Tietokoneharjoitukset
6. Tietokoneharjoitukset 6.1 Tiedostossa Const.txt on eräällä Yhdysvaltalaisella asuinalueella aloitettujen rakennusurakoiden määrä kuukausittain, aikavälillä 1966-1974. Urakoiden määrä on skaalattu asuinalueen