INFO / Matemaattinen Analyysi, k2016, L0

Koko: px
Aloita esitys sivulta:

Download "INFO / Matemaattinen Analyysi, k2016, L0"

Transkriptio

1 INFO / Matemaattinen Analyysi, k2016, L0

2 orms1010, Aikataulu 1 kevät 2016 ORMS1010 Matemaattinen analyysi, luennot Ke Viikot salissa F119 Ke Viikot 11 salissa F140 Ke Viikot salissa F119 To Viikot 09 salissa F141 To Viikot 10-11,13-17 salissa F119 Ti viikko 18 salissa F119

3 orms1010, Aikataulu 2 kevät 2016 ORMS1010 Matemaattinen analyysi Harjoitusryhmät R01 Ke Viikot 10-11, Salissa F250 Ti Viikko 18 Salissa F250 R02 To Viikko 10 To Viikko 11,14,17 To Viikko 13,15,16 Salissa F119 Salissa F250 Salissa F345

4 orms1010, Aikataulu 3

5 4 suorittamisen jälkeen Opiskelija osaa määrittää sileän monen muuttujan funktion lokaalit ääriarvokohdat ja niiden tyypit. Opiskelija osaa ratkaista sileän monen muuttujan funktion yhtälöillä-rajoitetun optimointitehtävän lagrangen kertojien avulla. Opiskelija tietää lagrangen kertojien taloudellisen tulkinnan. Opiskelija osaa muodostaa sileän monen muuttujan funktion epäyhtälöillä-rajoitetun optimointitehtävän välttämättömän ehdon.

6 5 suorittamisen jälkeen Opiskelija osaa linearisoida epälineaarisen sileän funktion annetun pisteen ympäristössä. Opiskelija tuntee kvadraattisen optimoinnin periaatteen. Opiskelija osaa ratkaista 1. kertaluvun separoituvan ja toisen kertaluvun lineaarisen vakiokertoimisen differentiaaliyhtälön. Opiskelija osaa selvittää dynaamisen mallin tasapainoratkaisun stabiilisuuden. Opiskelija osaa ratkaista lineaarisen differentiaaliyhtälön potenssisarjan avulla.

7 6 MATRIISIT: Lineaarinen riippumattomuus, Matriisin ominaisarvot, Matriisin definiittisyys, Neliömuodot, Matriisihajoitelmia. OPTIMOINTI: Gradientti, Optimin välttämätön ehto. Optimin riittävä ehto. Lagrangen kertojat. Yhtälö-rajoitetun optimointitehtävän ratkaseminen. Epäyhtälö-rajoitetun optimointitehtävän ratkaiseminen. Relaksaatio.

8 7 SARJAT: Reaaliluku-jonon suppeneminen. Cauchy n suppenemiskriteeri. Sarjan suppeneminen, ja sen testaaminen. Potenssisarjan suppeneminen, ja se n testaaminen. Taylorin sarja, McLaurinin sarja. Kahden muuttujan Taylorin polynomi. DIFFERENTIAALI-YHTÄLÖT: Differentiaaliyhtälön muodostaminen. Ensimmäisen kertaluvun separoituvan DY:n ratkaiseminen. Toisen kertaluvun lineaarisen vakiokertoimisen DY:n ratkaiseminen. Kahden muuttujan ensimmäisen kertaluvun lineaarisen DY-parin ratkaiseminen. Tasapainoratkaisun stabiilisuuden tutkiminen.

9 8 Alpha C. Ciang, Fundamental Methods of Mathematical Economics. McGraw-Hill, 3rd ed. or 4th ed. (Löytyy Tritonian kurssikirjastosta.) Sydsaeter K & Hammond P (2002): Essential Mathematics for Economic Analysis. Prentice-Hall. Sydsaeter K & Hammond P (2008): Further Mathematics for Economic Analysis, 2/E. Prentice-Hall.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

Alkeisryhmä Ke 18-19, 20-21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20

Alkeisryhmä Ke 18-19, 20-21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke 19-20 Alkeisryhmä Ke 18-19, 21 Jatkoryhmä 1 Ti 18-19 Jatkoryhmä 2 Ke

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

MATEMATIIKKA. Perusopinnot

MATEMATIIKKA. Perusopinnot MATEMATIIKKA Perusopinnot Algebra I Algebra I Koodi: MATH1010 Laajuus: 4 op Edellytykset: Matematiikan peruskurssi ja Lineaarialgebra Osaamistavoitteet: opiskelija oppii perustiedot algebran keskeisistä

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Työvuorosuunnittelun optimointi (valmiin työn esittely)

Työvuorosuunnittelun optimointi (valmiin työn esittely) Työvuorosuunnittelun optimointi (valmiin työn esittely) Pekka Alli 1.12.2015 Ohjaaja: Tuuli Haahtela Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta

Lisätiedot

TUT Open University Summer courses 2015

TUT Open University Summer courses 2015 TUT Open University Summer courses 2015 One credit costs 10 euros for Open University students. TUT s degree students can study summer courses for free. You can find exam dates and up to date information

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Logistinen regressio, separoivat hypertasot

Logistinen regressio, separoivat hypertasot Logistinen regressio, separoivat hypertasot Topi Sikanen Logistinen regressio Aineisto jakautunut K luokkaan K=2 tärkeä erikoistapaus Halutaan mallintaa luokkien vedonlyöntikertoimia (odds) havaintojen

Lisätiedot

Liite 3/10. Opetussuunnitelma 2015 2016: kurssikuvaukset Laitos: Perustieteiden korkeakoulun yhteiset Kielet: suomi, ruotsi, englanti

Liite 3/10. Opetussuunnitelma 2015 2016: kurssikuvaukset Laitos: Perustieteiden korkeakoulun yhteiset Kielet: suomi, ruotsi, englanti Liite 3/10 Opetussuunnitelma 2015 2016: kurssikuvaukset Laitos: Perustieteiden korkeakoulun yhteiset Kielet: suomi, ruotsi, englanti Eri-0.2160 Pienryhmän ohjaus V (1 op) Opetusperiodi: IV (2015-2016)

Lisätiedot

TTY Porin laitoksen optimointipalvelut yrityksille

TTY Porin laitoksen optimointipalvelut yrityksille TTY Porin laitoksen optimointipalvelut yrityksille Timo Ranta, TkT Frank Cameron, TkT timo.ranta@tut.fi frank.cameron@tut.fi Automaation aamukahvit 28.8.2013 Optimointi Tarkoittaa parhaan ratkaisun valintaa

Lisätiedot

MINTTU RAHKOLA AMK-INSINÖÖRIEN MATEMATIIKAN OSAAMINEN SIIRRYT- TÄESSÄ TTY:LLE MAISTERIVAIHEESEEN. Diplomityö

MINTTU RAHKOLA AMK-INSINÖÖRIEN MATEMATIIKAN OSAAMINEN SIIRRYT- TÄESSÄ TTY:LLE MAISTERIVAIHEESEEN. Diplomityö MINTTU RAHKOLA AMK-INSINÖÖRIEN MATEMATIIKAN OSAAMINEN SIIRRYT- TÄESSÄ TTY:LLE MAISTERIVAIHEESEEN Diplomityö Tarkastajat: Yliop.leh. Simo Ali-Löytty, leht. Terhi Kaarakka Tarkastajat ja aihe hyväksytty

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

R. Mäkinen NUMEERISET MENETELMÄT

R. Mäkinen NUMEERISET MENETELMÄT R. Mäkinen NUMEERISET MENETELMÄT 2011 2 Luku 1 Numeerisen matematiikan peruskäsitteitä The purpose of computing is insight, not numbers. R. W. Hamming Numeerinen analyysi tutkii algoritmeja luonnontieteissä,

Lisätiedot

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Marko Vauhkonen Kuopion yliopisto Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Sisältö Mallintamisesta mallien käyttötarkoituksia

Lisätiedot

Fysiikan opinnot Avoimen yliopiston opiskelijoille

Fysiikan opinnot Avoimen yliopiston opiskelijoille Fysiikan opinnot Avoimen yliopiston opiskelijoille Fysiikan laitos / Pia Saarinen www.helsinki.fi/yliopisto 4.9.2013 1 Fysiikan perusopinnot, 25 op - kokonaisuutena tai yksittäisinä kursseina 530281 Vuorovaikutukset

Lisätiedot

Tekijä / Author Kirjan nimi / The name of the book Painos / Edition Hinta / Price Alexander, Nobes Financial accounting, an international

Tekijä / Author Kirjan nimi / The name of the book Painos / Edition Hinta / Price Alexander, Nobes Financial accounting, an international Tekijä / Author Kirjan nimi / The name of the book Painos / Edition Hinta / Price Alexander, Nobes Financial accounting, an international introduction 4. 28 Anderson et al An Introduction to Management

Lisätiedot

OPTIMOINNIN PERUSTEET. Keijo Ruotsalainen

OPTIMOINNIN PERUSTEET. Keijo Ruotsalainen OPTIMOINNIN PERUSTEET Keijo Ruotsalainen 23. marraskuuta 2009 2 Johdanto Kurssin tavoitteena on tutustuttaa tavallisimpiin optimointi-algoritmeihin ja niiden käyttöön sovellutuksissa. Kurssimateriaali

Lisätiedot

Optimoinnin sovellukset

Optimoinnin sovellukset Optimoinnin sovellukset Timo Ranta Tutkijatohtori TTY Porin laitos OPTIMI 4.12.2014 Mitä optimointi on? Parhaan ratkaisun systemaattinen etsintä kaikkien mahdollisten ratkaisujen joukosta Tieteellinen

Lisätiedot

Tilayhtälötekniikasta

Tilayhtälötekniikasta Tilayhtälötekniikasta Tilayhtälöesityksessä it ä useamman kertaluvun differentiaaliyhtälö esitetään ensimmäisen kertaluvun differentiaaliyhtälöryhmänä. Jokainen ensimmäisen kertaluvun differentiaaliyhtälö

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

PETRI LAAKKONEN LASKENTATYÖKALUN KEHITTÄMINEN KANTAVIEN RAKENTEIDEN OPTIMOINTIIN

PETRI LAAKKONEN LASKENTATYÖKALUN KEHITTÄMINEN KANTAVIEN RAKENTEIDEN OPTIMOINTIIN PETRI LAAKKONEN LASKENTATYÖKALUN KEHITTÄMINEN KANTAVIEN RAKENTEIDEN OPTIMOINTIIN Diplomityö Tarkastajat: professori Keijo Ruohonen yliopistolehtori Sami Pajunen Tarkastaja ja aihe hyväksytty Automaatio-,

Lisätiedot

19 Sovellukset TI -86 F1 F2 F3 F4 F5. M1 M2 M3 M4 M5 Petoeläin-saalis-malli... 299

19 Sovellukset TI -86 F1 F2 F3 F4 F5. M1 M2 M3 M4 M5 Petoeläin-saalis-malli... 299 19 Sovellukset TI -86 Matemaattisten toimintojen käyttö matriiseissa... 284 Kuvaajien välisen alueen täyttäminen... 284 Integrointilaskennan perusteoreema... 286 Sähköpiirit... 287 Ohjelma: Sierpinskin

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.

Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa. Ohjeita Lukuvuoden 2015-2016 talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin

Lisätiedot

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003

TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 TMA.111 Matemaattinen analyysi c Matti Laaksonen, 2003 Vaasan Yliopisto, 2003 Teknillinen tiedekunta Matemaattisten tieteiden laitos PL 700 (Wolffintie 34) 65101 VAASA Vaasan yliopisto Matemaattinen analyysi

Lisätiedot

Polynomit, interpolaatio ja funktion approksimointi

Polynomit, interpolaatio ja funktion approksimointi Solmu 3/24 Polynomit, interpolaatio ja funktion approksimointi Heikki Apiola Lehtori Matematiikan laitos, Teknillinen korkeakoulu Johdanto, taustaa Kirjoitus liittyy aihepiiriin numeerinen analyysi, tieteellinen

Lisätiedot

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla

kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla 7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen

Lisätiedot

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD)

TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) TT00AA12-2016 - Ohjelmoinnin jatko (TT10S1ECD) Info 15/3/11 Mikko Vuorinen Metropolia Ammattikorkeakoulu 1 Sisältö 1) Info 2) Arvostelu 3) Kurssin sisältö 4) Alustava aikataulu 5) Projekti 6) Kertaustarve

Lisätiedot

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen

MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin

Lisätiedot

Esipuhe. Sirkka-Liisa Eriksson

Esipuhe. Sirkka-Liisa Eriksson 3 Esipuhe Matematiikka tieteiden kuningatar ja palvelija on lukioihin ja ammattikorkeakouluihin suunnattuun koulukohtaiseen valinnaiseen syventävään kurssiin perustuva kirja. Kirjan tarkoituksena on kerrata

Lisätiedot

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi

T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi T 61.152 Informaatiotekniikan seminaari: Kombinatorinen Optimointi Johdantoluento (22.1.2008) Nikolaj Tatti ntatti@cc.hut.fi Johdantoluento Kurssijärjestelyt ja vaatimukset. Kurssin sisällöstä. Hyvä esitelmä

Lisätiedot

ABSORBOIVIEN PINTOJEN OPTIMAALINEN SIJOITTELU 1 JOHDANTO 2 TAUSTAA. Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1

ABSORBOIVIEN PINTOJEN OPTIMAALINEN SIJOITTELU 1 JOHDANTO 2 TAUSTAA. Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1 Kai Saksela 1, Jonathan Botts 1, Lauri Savioja 1 1 Aalto-yliopiston tietotekniikan laitos PL 15500, 00076 AALTO etunimi.sukunimi@aalto.fi Tiivistelmä Tässä paperissa esitetään menetelmä, jonka avulla absorboivien

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS

HILBERTIN AVARUUDET 802652S MIKAEL LINDSTRÖM KEVÄÄN 2010 ANALYYSI 3 -LUENTOJEN PERUSTEELLA TOIMITTANEET TOMI ALASTE JA LAURI BERKOVITS HILBRTIN AVARUUDT 802652S MIKAL LINDSTRÖM KVÄÄN 2010 ANALYYSI 3 -LUNTOJN PRUSTLLA TOIMITTANT TOMI ALAST JA LAURI BRKOVITS Sisältö 1 Hilbertin Avaruudet 3 1.1 Normi- ja L p -avaruudet........................

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

OPTIMOINTITEHTÄVIEN RATKAISEMINEN

OPTIMOINTITEHTÄVIEN RATKAISEMINEN OPTIMOINTITEHTÄVIEN RATKAISEMINEN JUHA HAATAJA CSC Optimointitehtävien ratkaiseminen Optimointitehtävien ratkaiseminen Juha Haataja Tieteen tietotekniikan keskus CSC Tämän teoksen tekijänoikeudet kuuluvat

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

MAISTERIN TUTKINNON PEDAGOGISET OPINNOT (35 OP)

MAISTERIN TUTKINNON PEDAGOGISET OPINNOT (35 OP) MAISTERIN TUTKINNON PEDAGOGISET OPINNOT (35 OP) HUOM! Nämä opinnot ovat vain niille opiskelijoille, jotka ovat suorittaneet kandidaatin tutkinnon pedagogiset opinnot syyslukukaudella 2011! Tasatunnein

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Tähän kirjoitelmaan on poimittu joitakin kurssiin Integraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita.

Tähän kirjoitelmaan on poimittu joitakin kurssiin Integraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. Tähän kirjoitelmaan on poimittu joitakin kurssiin ntegraalilaskenta 2 liittyviä, kurssin luentomonistetta [2] täydentäviä asioita. 1. Differentiaalimuodon integraalista 1.1. Differentiaalien laskusääntöjä.

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Sarjat ja integraalit, kevät 2014

Sarjat ja integraalit, kevät 2014 Sarjat ja integraalit, kevät 2014 Peter Hästö 12. maaliskuuta 2014 Matemaattisten tieteiden laitos Osaamistavoitteet Kurssin onnistuneen suorittamisen jälkeen opiskelija osaa erottaa jatkuvuuden ja tasaisen

Lisätiedot

SEURAA OPETUSAIKATAULUA - MUUTOKSET NÄKYVÄT PUNAISELLA! KEVÄT 2016 2. lv. Seuraa opetusaikataulua todennäköisten päivitysten havaitsemiseksi.

SEURAA OPETUSAIKATAULUA - MUUTOKSET NÄKYVÄT PUNAISELLA! KEVÄT 2016 2. lv. Seuraa opetusaikataulua todennäköisten päivitysten havaitsemiseksi. KEVÄT 2016 Seuraa opetusaikataulua todennäköisten päivitysten havaitsemiseksi. Muutokset merkitään punaisella! TURUN YLIOPISTO 14122015 HOIT3101 HOIDON JA HOITOTIETEEN FILOSOFIA 2 6 op Opettajat: Helena

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

TENTEISSÄ SALLITTU KIRJALLISUUS (päivitetty 3.9.2013) Jos ei tenttiä mainittu, ei myöskään lisämateriaalia.

TENTEISSÄ SALLITTU KIRJALLISUUS (päivitetty 3.9.2013) Jos ei tenttiä mainittu, ei myöskään lisämateriaalia. TENTEISSÄ SALLITTU KIRJALLISUUS (päivitetty 3.9.2013) Jos ei tenttiä mainittu, ei myöskään lisämateriaalia. 460076A Ajoneuvo- ja työkonehydrauliikka Mobile hydraulics Esko Valtanen: Tekniikan taulukkokirja

Lisätiedot

Jouni Sampo. 5. helmikuuta 2014

Jouni Sampo. 5. helmikuuta 2014 B1 Jouni Sampo 5. helmikuuta 2014 Sisältö 1 Usean muuttujan funktioista 2 1.1 Raja arvot ja jatkuvuus............................... 2 1.2 Osittaisderivaatat................................... 4 1.3 Normaalivektori,

Lisätiedot

Kaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku

Kaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku Aalto-yliopisto Rasila/Murtola Mat-1.130 peruskurssi S3 Syksy 011 1. välikoe Ti 11.10.011 klo 16.00-19.00 Kokeessa saa käyttää ylioppilaskirjoituksessa sallittua laskinta mutta ei taulukkokirjaa. 1. (a)

Lisätiedot

Fysiikan opinnot Avoimen yliopiston opiskelijoille

Fysiikan opinnot Avoimen yliopiston opiskelijoille Fysiikan opinnot Avoimen yliopiston opiskelijoille 2.9.2014 1 Yliopiston lukuvuosi ja opetusperiodit 2014-2015 Yliopiston lukuvuosi 1.8. 31.7. Syyslukukausi I periodi: 1.9.-17.10. lukuvuoden avajaiset

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN Esa Makkonen Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 Tiivistelmii: Artikkelissa kehitetaan laskumenetelma, jonka avulla

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Kuulustelija(t) Huikku Jari Liski Matti. Vilmunen Jouko Airio Hannele Huvitus Mari Peltonen Berit Airio Hannele. Kuulustelija(t)

Kuulustelija(t) Huikku Jari Liski Matti. Vilmunen Jouko Airio Hannele Huvitus Mari Peltonen Berit Airio Hannele. Kuulustelija(t) Sivu 1 järjestys päivittäin MA 24.08.2015 22E12000 31C01300 31E00600 72A00100 72B00202 Laskentatoimi: Capital Budgeting Taloustiede: Energy and Environmental Economics Taloustiede: Open Economy Macroeconomics

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka D 2015

Mika Hirvensalo. Insinöörimatematiikka D 2015 Mika Hirvensalo Insinöörimatematiikka D 2015 Sisältö 1 Lineaarialgebran peruskäsitteitä............................................... 5 1.1 Lineaariset yhtälöryhmät..................................................

Lisätiedot

Konservatiivisten mekaanisten systeemien tasapainopisteet

Konservatiivisten mekaanisten systeemien tasapainopisteet Konservatiivisten mekaanisten systeemien tasapainopisteet Pro gradu-tutkielma Ville Hautamäki 165221 Itä-Suomen yliopisto 10. toukokuuta 2012 Sisältö 1 Johdanto 1 2 Differentiaaliyhtälöiden teoriaa 2 2.1

Lisätiedot

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä.

A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä. 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. HUUTOKAUPOISTA A. Huutokaupat ovat tärkeitä ainakin kolmesta syystä 1. Valtava määrä taloudellisia transaktioita tapahtuu huutokauppojen välityksellä. 2. Huutokauppapelejä voidaan käyttää taloustieteen

Lisätiedot

ma-pe 13:05-13:40 ma-pe 15:05-15:40 (Vornasta palataan joen eteläpuolta Pihkalan sillalle asti, jossa ajetaan joen pohjoispuolelle)

ma-pe 13:05-13:40 ma-pe 15:05-15:40 (Vornasta palataan joen eteläpuolta Pihkalan sillalle asti, jossa ajetaan joen pohjoispuolelle) Joukkoliikenteen (koulukuljetukset, asiointiliikenne) aikataulut Siikalatvan kunnassa ajalla 1.8.2015 31.7.2016 KESTILÄ Koulukuljetukset (koulupäivinä) Kestilä-Hyvölänranta-Kestilä ma-pe 8:05-8:45 ma-pe

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

RAKENNEPUTKET EN 1993 -KÄSIKIRJA (v.2012)

RAKENNEPUTKET EN 1993 -KÄSIKIRJA (v.2012) RAKENNEPUTKET EN 1993 -KÄSIKIRJA (v.2012) Täsmennykset ja painovirhekorjaukset 20.4.2016: Sivu 16: Kuvasta 1.1 ylöspäin laskien 2. kappale: Pyöreän putken halkaisija kalibroidaan lopulliseen mittaan ja...

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

Moniulotteiset aikasarjat

Moniulotteiset aikasarjat Moniulotteiset aikasarjat Pentti Saikkonen Syksy 2011 Päivitetty versio 17.1.2016 Sisältö 1. Johdanto 1 1.1. Taustaa 1 1.2. Stokastinen prosessi 2 2. Stationaariset prosessit 4 2.1. Määritelmiä 4 2.2.

Lisätiedot

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto Mikä on probabilistinen malli? Kutsumme probabilistisiksi malleiksi kaikkia

Lisätiedot

Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5

Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5 Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5 Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? Derivaatta a) 3x 2 Funktio

Lisätiedot

Lidskiin lause trace-luokan operaattoreille. Joona Lindström

Lidskiin lause trace-luokan operaattoreille. Joona Lindström Lidskiin lause trace-luokan operaattoreille Joona Lindström HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department

Lisätiedot

Matematiikka tai tilastotiede sivuaineena

Matematiikka tai tilastotiede sivuaineena Matematiikka tai tilastotiede sivuaineena Matematiikan sivuainekokonaisuudet Matematiikasta voi suorittaa 25, 60 ja 120 opintopisteen opintokokonaisuudet. Matematiikan 25 op:n opintokokonaisuus Pakolliset

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Tietotekniikka ei riitä palvelujen tuottavuus ratkaisee. Olli Martikainen 19.3.2013

Tietotekniikka ei riitä palvelujen tuottavuus ratkaisee. Olli Martikainen 19.3.2013 Tietotekniikka ei riitä palvelujen tuottavuus ratkaisee Olli Martikainen 19.3.2013 Miten tuottavuus syntyy? 1. Miten tuottavuus syntyy? Tuotanto voidaan kuvata työhön vaadittavien investointien ja itse

Lisätiedot

- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r.

- Zj + +i, virittämän suunnikkaan pinta-ala. 2x + Y: 4. 3x 2y:2 -x+y:-1. 3x + y:5. -x +2y:2. 4x + Y: 4. voitto : qr Aq+ rr q. : -!A_'r. Vaasan yliopisto, syksy 2014 Lineaarialgebra, MAH. lo4o 7. harjoitus, (viikko 2, 5.1.-9.1.2015 R01: ma 12-14 Dl15, R02: ke 14-16 D115, R03: to 10-12 F651 Viimeisellä luennolla käsiteltiin opetusmonisteen

Lisätiedot

MATEMATIIKKA. Perusopinnot

MATEMATIIKKA. Perusopinnot MATEMATIIKKA Perusopinnot Algebra I Algebra I Koodi: MATH1010 Laajuus: 4 op Edellytykset: Matematiikan peruskurssi ja Lineaarialgebra Osaamistavoitteet: opiskelija oppii perustiedot algebran keskeisistä

Lisätiedot

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely)

Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) Monte Carlo -menetelmä optioiden hinnoittelussa (valmiin työn esittely) 17.09.2015 Ohjaaja: TkT Eeva Vilkkumaa Valvoja: Prof. Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla.

Lisätiedot

SAS-ohjelmiston perusteet 2010

SAS-ohjelmiston perusteet 2010 SAS-ohjelmiston perusteet 2010 Luentorunko/päiväkirja Ari Virtanen 11.1.10 päivitetään luentojen edetessä Ilmoitusasioita Opintojakso suoritustapana on aktiivinen osallistuminen harjoituksiin ja harjoitustehtävien

Lisätiedot