Satunnaismuuttujat ja todennäköisyysjakaumat

Koko: px
Aloita esitys sivulta:

Download "Satunnaismuuttujat ja todennäköisyysjakaumat"

Transkriptio

1 Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat ja jakaumat 3. Momettemäfukto ja karakterste fukto 4. Satuasmuuttuje muuoste jakaumat 5. Stokastka kovergesskästteet ja raja arvolauseet TKK Ilkka Mell 09

2 Satuasmuuttujat ja todeäkösyysjakaumat TKK Ilkka Mell 0

3 Satuasmuuttujat ja todeäkösyysjakaumat Ssällys 9. SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT: JOHDATTELEVIA ESIMERKKEJÄ SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT: MÄÄRITELMÄT SATUNNAISMUUTTUJA TODENNÄKÖISYYSJAKAUMA TODENNÄKÖISYYSJAKAUMAT TILASTOLLISINA MALLEINA 3 SATUNNAISMUUTTUJIEN TYYPPEJÄ DISKREETIT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT 4 JOHDATTELEVA ESIMERKKI 4 DISKREETTI SATUNNAISMUUUTTUJA 6 DISKREETIN SATUNNAISMUUTTUJAN PISTETODENNÄKÖISYYSFUNKTIO 7 DISKREETTI TODENNÄKÖISYYSJAKAUMA 8 PISTETODENNÄKÖISYYSFUNKTION KUVAAJA 8 DISKREETTI TODENNÄKÖISYYSJAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 9 TODENNÄKÖISYYKSIEN VERTAILU 30 DISKREETTIEN TODENNÄKÖISYYSJAKAUMIEN PARAMETROINTI 30 HAVAINNOLLISTUS: GEOMETRINEN JAKAUMA 30 DISKREETTEJÄ TODENNÄKÖISYYSJAKAUMIA JATKUVAT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT 35 JOHDATTELEVA ESIMERKKI. 35 JATKUVA SATUNNAISMUUTTUJA 36 JATKUVAN SATUNNAISMUUTTUJAN TIHEYSFUNKTIO 37 TIHEYSFUNKTION KUVAAJA 37 JATKUVA TODENNÄKÖISYYSJAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 37 TODENNÄKÖISYYKSIEN VERTAILU 39 JATKUVIEN TODENNÄKÖISYYSJAKAUMIEN PARAMETROINTI 39 HAVAINNOLLISTUS: EKSPONENTTIJAKAUMA 40 JATKUVIA TODENNÄKÖISYYSJAKAUMIA DISKREETIT JAKAUMAT VS JATKUVAT JAKAUMAT KERTYMÄFUNKTIO KERTYMÄFUNKTIO JA SEN OMINAISUUDET DISKREETIN JAKAUMAN KERTYMÄFUNKTIO 48 DISKREETIN JAKAUMAN PISTETODENNÄKÖISYYSFUNKTION JA KERTYMÄFUNKTION YHTEYS 49 DISKREETIN JAKAUMAN KERTYMÄFUNKTION KUVAAJA 49 DISKREETTI JAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 49 DISKREETIN JAKAUMAN PISTETODENNÄKÖISYYSFUNKTIO JA KERTYMÄFUNKTIO: HAVAINNOLLISTUS _ JATKUVAN JAKAUMAN KERTYMÄFUNKTIO 5 JATKUVAN JAKAUMAN TIHEYSFUNKTION JA KERTYMÄFUNKTION YHTEYS 5 JATKUVAN JAKAUMAN KERTYMÄFUNKTION KUVAAJA 5 JATKUVA JAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 5 JATKUVAN JAKAUMAN TIHEYSFUNKTIO JA KERTYMÄFUNKTIO: HAVAINNOLLISTUS 5. JAKAUMIEN TUNNUSLUVUT 54 TKK Ilkka Mell

4 Satuasmuuttujat ja todeäkösyysjakaumat.. ODOTUSARVO 55 JOHDATTELEVA ESIMERKKI 55 DISKREETIN SATUNNAISMUUTTUJAN ODOTUSARVO 57 JATKUVAN SATUNNAISMUUTTUJAN ODOTUSARVO 58.. ODOTUSARVON OMINAISUUDET 6 ODOTUSARVON OLEMASSAOLO 6 ODOTUSARVO TODENNÄKÖISYYSJAKAUMAN TODENNÄKÖISYYSMASSAN PAINOPISTEENÄ 6 VAKION ODOTUSARVO 6 LINEAARIMUUNNOKSEN ODOTUSARVO 6 ODOTUSARVON TULKINTA JAKAUMAN SIJAINTIPARAMETRINA 6 SUMMAN JA EROTUKSEN ODOTUSARVOT 64 LINEAARIKOMBINAATION ODOTUSARVO YLEINEN ODOTUSARVO 64 DISKREETIN SATUNNAISMUUTTUJAN FUNKTION ODOTUSARVO 64 JATKUVAN SATUNNAISMUUTTUJAN FUNKTION ODOTUSARVO VARIANSSI JA STANDARDIPOIKKEAMA 65 VARIANSSI 65 VARIANSSIN VAIHTOEHTOINEN LASKUKAAVA 65 STANDARDIPOIKKEAMA 66 VARIANSSIN JA STANDARDIPOIKKEAMAN DIMENSIOT 66 VARIANSSIN JA STANDARDIPOIKKEAMAN TULKINTA 66 DISKREETIN SATUNNAISMUUTTUJAN VARIANSSI 67 JATKUVAN SATUNNAISMUUTTUJAN VARIANSSI VARIANSSIN OMINAISUUDET 69 VARIANSSIN OLEMASSAOLO 69 VAKION VARIANSSI 70 LINEAARIMUUNNOKSEN VARIANSSI 70 STANDARDOINTI 7 SUMMAN JA EROTUKSEN VARIANSSI 7 LINEAARIKOMBINAATION VARIANSSI 7 EMPIIRISEN JAKAUMAN ODOTUSARVO JA VARIANSSI 73 ARITMEETTISEN KESKIARVON ODOTUSARVO JA VARIANSSI MARKOVIN JA TSHEBYSHEVIN EPÄYHTÄLÖT 74 MARKOVIN EPÄYHTÄLÖ 74 TSHEBYSHEVIN EPÄYHTÄLÖ MOMENTIT 77 MOMENTTIEN OLEMASSAOLO VINOUS JA HUIPUKKUUS 78 VINOUS 78 HUIPUKKUUS KVANTIILIT 80 KVANTIILIN MÄÄRITELMÄ 80 KVANTIILIEN OMINAISUUKSIA 80 KVANTIILIT JA TILASTOLLISET TAULUKOT 80 PROSENTTIPISTEET 8 DESIILIT 8 KVARTILIT 8 MEDIAANI 8.0. MOODI 83.. SUURTEN LUKUJEN LAKI 84. MONIULOTTEISET SATUNNAISMUUTTUJAT JA JAKAUMAT 87 TKK Ilkka Mell

5 Satuasmuuttujat ja todeäkösyysjakaumat.. JOHDANTO 88.. KAKSIULOTTEISET SATUNNAISMUUTTUJAT DISKREETIT KAKSIULOTTEISET JAKAUMAT 88 DISKREETIT KAKSIULOTTEISET JAKAUMAT JA TAPAHTUMIEN TODENNÄKÖISYYKSIEN MÄÄRÄÄMINEN 89 DISKREETIT KAKSIULOTTEISET JAKAUMAT JA SYMMETRISET TODENNÄKÖISYYSKENTÄT JATKUVAT KAKSIULOTTEISET JAKAUMAT 94 JATKUVAT KAKSIULOTTEISET JAKAUMAT JA TAPAHTUMIEN TODENNÄKÖISYYKSIEN MÄÄRÄÄMINEN KAKSIULOTTEISTEN JAKAUMIEN KERTYMÄFUNKTIOT 95 DISKREETIN KAKSIULOTTEISEN JAKAUMAN KERTYMÄFUNKTIO 95 JATKUVAN KAKSIULOTTEISEN JAKAUMAN KERTYMÄFUNKTIO KAKSIULOTTEISTEN JAKAUMIEN REUNAJAKAUMAT JA RIIPPUMATTOMUUS 96 DISKREETIN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMAT 96 JATKUVAN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMAT 99 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS 99 USEAMMAN SATUNNAISMUUTTUJAN RIIPPUMATTOMUUS 00 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA TAPAHTUMIEN TODENNÄKÖISYYS 0.7. KAKSIULOTTEISTEN JAKAUMIEN ODOTUSARVOT 03 DISKREETIN KAKSIULOTTEISEN JAKAUMAN YLEINEN ODOTUSARVO 03 JATKUVAN KAKSIULOTTEISEN JAKAUMAN YLEINEN ODOTUSARVO 03 JATKUVAN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMIEN ODOTUSARVOT ODOTUSARVON OMINAISUUDET 04 ODOTUSARVO PAINOPISTEENÄ 04 SUMMAN JA EROTUKSEN ODOTUSARVOT 04 LINEAARIKOMBINAATION ODOTUSARVO 05 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA TULON ODOTUSARVO KAKSIULOTTEISTEN JAKAUMIEN VARIANSSIT JA STANDARDIPOIKKEAMAT 07 REUNAJAKAUMIEN VARIANSSIT 07 VAIHTOEHTOISET LASKUKAAVAT VARIANSSEILLE 07 STANDARDIPOIKKEAMAT 07 VARIANSSIN JA STANDARDIPOIKKEAMAN TULKINTA 07 VARIANSSIN JA STANDARDIPOIKKEAMAN DIMENSIOT 08 DISKREETIN KAKSIULOTTEISEN JAKAUMAN VARIANSSIT 08 JATKUVAN KAKSIULOTTEISEN JAKAUMAN VARIANSSIT 0.0. KOVARIANSSI 0 VAIHTOEHTOINEN LASKUKAAVA KOVARIANSSILLE KOVARIANSSIN TULKINTA DISKREETIN KAKSIULOTTEISEN JAKAUMAN KOVARIANSSI JATKUVAN KAKSIULOTTEISEN JAKAUMAN KOVARIANSSI.. KOVARIANSSIN OMINAISUUDET SATUNNAISMUUTTUJIEN LINEAARIMUUNNOSTEN KOVARIANSSI SATUNNAISMUUTTUJIEN SUMMAN JA EROTUKSEN VARIANSSIT KORRELOIMATTOMUUS 3 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA KOVARIANSSI 4 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN JA EROTUKSEN VARIANSSI 4.. KORRELAATIO 4 KORRELAATIOKERTOIMEN DIMENSIO 5.3. KORRELAATIOKERTOIMEN OMINAISUUDET 5 KORRELAATIO JA KOVARIANSSI 5 SATUNNAISMUUTTUJIEN LINEAARIMUUNNOSTEN KORRELAATIO 5 KORRELAATIOKERTOIMEN TULKINTA KORRELOIMATTOMUUS.4. EHDOLLISET JAKAUMAT 4 TKK Ilkka Mell 3

6 Satuasmuuttujat ja todeäkösyysjakaumat EHDOLLINEN TODENNÄKÖISYYS 4 EHDOLLISET JAKAUMAT 4 EHDOLLISET JAKAUMAT JA EHTOMUUTTUJA 4 EHDOLLISET JAKAUMAT JA RIIPPUMATTOMUUS 4.5. EHDOLLISET ODOTUSARVOT JA VARIANSSIT 5 DISKREETIN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET ODOTUSARVOT 5 JATKUVAN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET ODOTUSARVOT 5 EHDOLLISET ODOTUSARVOT JA EHTOMUUTTUJAT 5 EHDOLLISET ODOTUSARVOT JA RIIPPUMATTOMUUS 6 DISKREETIN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET VARIANSSIT 6 JATKUVAN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET VARIANSSIT 6 EHDOLLISET VARIANSSIT JA EHTOMUUTTUJAT 6 EHDOLLISET VARIANSSIT JA RIIPPUMATTOMUUS 7 ITEROIDUN ODOTUSARVON LAIT 7 REGRESSIOFUNKTIOT JA KÄYRÄT 8 REGRESSIOFUNKTIOT JA ENNUSTAMINEN 8 HAVAINNOLLISTUKSIA 9 3. MOMENTTIEMÄFUNKTIO JA KARAKTERISTINEN FUNKTIO MOMENTTIEMÄFUNKTIO 4 MOMENTTIEMÄFUNKTION OLEMASSAOLO 4 DISKREETIN JAKAUMAN MOMENTTIEMÄFUNKTIO 4 JATKUVAN JAKAUMAN MOMENTTIEMÄFUNKTIO 43 MOMENTTIEMÄFUNKTION YKSIKÄSITTEISYYS 43 MOMENTTIEMÄFUNKTIO JA SATUNNAISMUUTTUJAN MOMENTIT 43 MOMENTTIEMÄFUNKTION TAYLORIN SARJAKEHITELMÄ 44 SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN MOMENTTIEMÄFUNKTIO 45 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN SUMMAN MOMENTTIEMÄFUNKTIO 46 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISEN KESKIARVON MOMENTTIEMÄFUNKTIO 47 MOMENTTIEMÄFUNKTIOIDEN KONVERGENSSI KARAKTERISTINEN FUNKTIO 50 KARAKTERISTISEN FUNKTION OLEMASSAOLO 50 INVERSIOTEOREEMA 50 DISKREETIN SATUNNAISMUUTTUJAN KARAKTERISTINEN FUNKTIO 50 JATKUVAN SATUNNAISMUUTTUJAN KARAKTERISTINEN FUNKTIO 5 KARAKTERISTISEN FUNKTION YKSIKÄSITTEISYYS 5 KARAKTERISTINEN FUNKTIO JA MOMENTTIEMÄFUNKTIO 5 KARAKTERISTISEN FUNKTION OMINAISUUDET 5 KARAKTERISTINEN FUNKTIO JA SATUNNAISMUUTTUJAN MOMENTIT 5 KARATERISTISEN FUNKTION TAYLORIN SARJAKEHITELMÄ 53 SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN KARAKTERISTINEN FUNKTIO 53 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN KARAKTERISTINEN FUNKTIO 54 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN SUMMAN KARAKTERISTINEN FUNKTIO 54 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISEN KESKIARVON KARAKTERISTINEN FUNKTIO 54 KARAKTERISTISTEN FUNKTIOIDEN KONVERGENSSI 55 TKK Ilkka Mell 4

7 Satuasmuuttujat ja todeäkösyysjakaumat 4. SATUNNAISMUUTTUJIEN MUUNNOSTEN JAKAUMAT SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN JAKAUMA SATUNNAISMUUTTUJAN MONOTONISEN MUUNNOKSEN JAKAUMA 59 LINEAARIMUUNNOKSEN JAKAUMA 6 CAUCHY JAKAUMA SATUNNAISMUUTTUJAN EI MONOTONISTEN MUUNNOSTEN JAKAUMAT 63 χ () JAKAUMAN TIHEYSFUNKTIO KAKSIULOTTEISTEN SATUNNAISMUUTTUJIEN MUUNNOSTEN JAKAUMAT 65 NORMAALIJAKAUTUNEIDEN SATUNNAISLUKUJEN GENEROINTI RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN JAKAUMA 68 χ (N) JAKAUMAN TIHEYSFUNKTIO RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN OSAMÄÄRÄN JAKAUMA 73 F JAKAUMAN TIHEYSFUNKTIO 74 T JAKAUMAN TIHEYSFUNKTIO RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MINIMIN JA MAKSIMIN JAKAUMAT 80 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MINIMIN JAKAUMA 80 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MAKSIMIN JAKAUMA 8 5. STOKASTIIKAN KONVERGENSSIKÄSITTEET JA RAJA ARVOLAUSEET SATUNNAISMUUTTUJIEN JONOT VARMA KONVERGENSSI MELKEIN VARMA KONVERGENSSI KVADRAATTINEN KONVERGENSSI 87 SOVELLUS: RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISTEN KESKIARVOJEN MUODOSTAMAN JONON KVADRAATTINEN KONVERGENSSI STOKASTINEN KONVERGENSSI 88 SOVELLUS: RIIPPUMATTOMIEN SAMAA NORMAALIJAKAUMAA NOUDATTAVIEN SATUNNAIS MUUTTUJIEN ARITMEETTISTEN KESKIARVOJEN MUODOSTAMAN JONON STOKASTINEN KONVERGENSSI JAKAUMAKONVERGENSSI 90 MOMENTTIEMÄFUNKTIOIDEN KONVERGENSSI JA JAKAUMAKONVERGENSSI 9 KARAKTERISTISTEN FUNKTIOIDEN KONVERGENSSI JA JAKAUMAKONVERGENSSI STOKASTIIKAN KONVERGENSSIKÄSITTEIDEN YHTEYDET SUURTEN LUKUJEN LAIT 94 VAHVA SUURTEN LUKUJEN LAKI 94 HEIKKO SUURTEN LUKUJEN LAKI 94 SUURTEN LUKUJEN LAIT: KOMMENTTEJA 95 SUURTEN LUKUJEN LAKI: SUHTEELLISEN FREKVENSSIN ASYMPTOOTTINEN KÄYTTÄYTYMINEN KESKEINEN RAJA ARVOLAUSE 97 LINDEBERGIN JA LEVYN LAUSE 98 LINDEBERGIN JA LEVYN LAUSE: KOMMENTTEJA 30 LIAPUNOVIN LAUSE 30 LIAPUNOVIN LAUSE: KOMMENTTEJA 304 LINDEBERGIN JA FELLERIN LAUSE 304 KESKEINEN RAJA ARVOLAUSE: KOMMENTTEJA 305 KESKEINEN RAJA ARVOLAUSE SEKÄ BINOMIJAKAUMAN, HYPERGEOMETRISEN JAKAUMAN JA POISSON JAKAUMAN ASYMPTOOTTISET JAKAUMAT 306 TKK Ilkka Mell 5

8 Satuasmuuttujat ja todeäkösyysjakaumat TKK Ilkka Mell 6

9 9. Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Johdatteleva esmerkkejä 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Määrtelmät 9.3. Dskreett satuasmuuttujat ja todeäkösyysjakaumat 9.4. Jatkuvat satuasmuuttujat ja todeäkösyysjakaumat 9.5. Dskreett jakaumat vs jatkuvat jakaumat Jos satuaslmötä halutaa malltaa matemaattsest, lmö tulosvahtoehdot o osattava kuvata ja lmö tulosvahtoehtoh o osattava lttää todeäkösyydet umeersessa (matemaattste kaavoje) muodossa. Tämä vaatmukse täyttäme johtaa satuasmuuttuja ja se todeäkösyysjakauma kästtes. Tämä luvu tavotteea o esttää satuasmuuttuja ja se todeäkösyysjakauma määrtelmät ja perusomasuudet. Rajotumme tässä estyksessä pelkästää dskreette ja jatkuve satuasmuuttuje kästtelyy. Toteamme, että dskreett jakaumat vodaa määrtellä atamalla de pstetodeäkösyysfuktot, ku taas jatkuvat jakaumat vodaa määrtellä atamalla de theysfuktot. Avasaat: Dskreett jakauma, Dskreett satuasmuuttuja, Ekspoettjakauma, Fukto, Geometre jakauma, Jatkuva jakauma, Jatkuva satuasmuuttuja, Otosavaruus, Perusjoukko, Pkkfukto, Pstetodeäkösyysfukto, Satuasmuuttuja, Tapahtuma, Theysfukto, Todeäkösyys, Todeäkösyysjakauma, Todeäkösyyskettä, Todeäkösyysmall, Todeäkösyysmtta, Tulosvahtoehto TKK Ilkka Mell 7

10 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Johdatteleva esmerkkejä Jos satuaslmötä halutaa malltaa matemaattsest, lmö tulosvahtoehdot o osattava kuvata umeersessa muodossa. Tämä tapahtuu lttämällä tulosvahtoehtoh reaalarvoe fukto, jota kutsutaa satuasmuuttujaks. Tulosvahtoehtoje todeäkösyydet kuvataa lttämällä todeäkösyydet tulosvahtoehtoja vastaav satuasmuuttuja arvoh. Satuasmuuttuja arvot yhdessä h ltettyje todeäkösyykse kassa määrttelevät satuasmuuttuja todeäkösyysjakauma. Todeäkösyysjakauma kuvaa stä, mte satuaslmö tulosvahtoehtoh lttyvä todeäkösyysmassa jakautuu tulosvahtoehtoh lttyvä satuasmuuttuja arvoalueelle. Jos satuaslmö tulosvahtoehtoja umeersessa muodossa kuvaava satuasmuuttuja ja se todeäkösyysjakauma tuetaa, halltaa kakke ko. satuaslmöö lttyve tapahtume todeäkösyydet. Esmerkk. Rahahetto satuaslmöä. Tarkastellaa rahahettoa satuaslmöä. Alkestapahtumat: Otosavaruus: Kruua, Klaava S = {Kruua, Klaava} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood seuraavalla tavalla: ξ(kruua) = ξ(klaava) = 0 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku rahaa hetetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos raha o vrheetö, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Pr( ξ = ) = Pr( ξ = 0) = Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall rahahetolle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa Beroull jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk. Lapse sukupuole määräytyme satuaslmöä. Tarkastellaa lapse sukupuole määräytymstä satuaslmöä. TKK Ilkka Mell 8

11 9. Satuasmuuttujat ja todeäkösyysjakaumat Alkestapahtumat: Otosavaruus: Tyttö, Poka S = {Tyttö, Poka} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood seuraavalla tavalla: ξ(tyttö) = ξ(poka) = 0 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku lapse sukupuol määräytyy sukusoluje yhtyessä. Huomaa, että ξ o kutek fuktoa täys määrätty. Tehdää seuraava, Suome väklukutlastoh vuoslta perustuva oletus stä todeäkösyyksstä, jolla ξ saa arvosa: Pr(ξ = ) = Pr(ξ = 0) = Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall lapse sukupuole määräytymselle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa Beroull jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 3. Nopahetto satuaslmöä. Tarkastellaa opahettoa satuaslmöä. Alkestapahtumat: Slmäluvut,, 3, 4, 5, 6 Otosavaruus: S = {Slmäluku =,, 3, 4, 5, 6} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee slmälukuu ltetää vastaava kokoasluku: ξ(slmäluku ) =, =,, 3, 4, 5, 6 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku oppaa hetetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oppa o vrheetö, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Pr( ξ = ) =, =,,3, 4,5,6 6 Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyys TKK Ilkka Mell 9

12 9. Satuasmuuttujat ja todeäkösyysjakaumat jakauma muodostavat tlastollse mall el todeäkösyysmall opahetolle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa dskreetks tasaseks jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 4. Tostuva opahetto. Hetetää oppaa tostuvast ja tarkastellaa satuaslmöä se heto järjestysumeroa, jolla saadaa esmmäse kuutoe. Alkestapahtumat: Nde hettoje järjestysumerot, jolla vodaa saada. kuutoe:,, 3, Otosavaruus: S = {Heto järjestysumero =,, 3, } Otosavaruus o tässä umerotuvast ääretö joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee järjestysumeroo ltetää vastaava kokoasluku: ξ(heto järjestysumero ) =, =,, 3, Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku oppaa hetetää tostuvast. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oppa o vrheetö ja hetot ovat tosstaa rppumattoma, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: 5 Pr( ξ = ) =, =,,3, K 6 6 Oletus perustuu seuraavaa päättelyketjuu (ks. tarkemm esmerkkä tämä luvu kappaleessa Dskreett satuasmuuttujat ja de todeäkösyysjakaumat): () Jos kuutoe saadaa esmmäse kerra. hetossa, stä ee o täytyyt tapahtua ( ) hettoa, jossa e ole saatu kuutosta. () Jos oppa o vrheetö, jokase slmäluvu todeäkösyys o /6, jollo todeäkösyys slle, että e saada kuutosta o 5/6. () Koska hetot oletett tosstaa rppumattomks, todeäkösyys slle, että saadaa es ( ) e kuutosta ja vasta. hetto ataa kuutose o rppumattome tapahtume tulosääö ojalla Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall tostuvalle opahetolle, ku satuaslmöä tarkastellaa esmmäse kuutose järjestysumeroa. TKK Ilkka Mell 0

13 9. Satuasmuuttujat ja todeäkösyysjakaumat Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa geometrseks jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 5. Oepyörä pyöräytys satuaslmöä. Tarkastellaa oepyörä pyöräytystä satuaslmöä. Oletetaa, että oepyörä keskpsteesee o asetettu vapaast pyörvä osot, jota pyöräytetää pelssä ja tarkastellaa satuaslmöä kulmaa, joka osot pysähdyttyää muodostaa lähtöasetoosa verrattua. Alkestapahtumat: Kulmat välllä [0, 360 ) Otosavaruus: S = {Kulma x x [0, 360 )} Otosavaruus o tässä ylumerotuvast ääretö joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee kulmaa x ltetää vastaava reaalluku x: ξ(kulma x) = x Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku osotta pyöräytetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oepyörä tom vrheettömäst, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Jos [ ab, ] [0,360) b a Pr( ξ [ ab, ]) = 360 Tämä perustuu vaatmuksee (ks. tarkemm esmerkkä kappaleessa Jatkuvat satuasmuuttujat ja de todeäkösyysjakaumat), joka mukaa todeäkösyys slle, että osot pysähtyy vällle [a, b] e saa rppua väl sjasta oepyörä kehällä, vaa aoastaa väl ptuudesta. Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall oepyörä pyöräytykselle satuaslmöä. Koska satuasmuuttuja ξ saa kakk reaallukuarvot välllä [0, 360), stä saotaa jatkuvaks. Satuasmuuttuja ξ oudattaa jatkuvaa jakaumaa, jota kutsutaa jatkuvaks tasaseks jakaumaks; lsätetoja: ks. lukua Jatkuva jakauma. TKK Ilkka Mell

14 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Määrtelmät Satuasmuuttuja Olkoo ( S, F,Pr) todeäkösyyskettä, jossa ss S =otosavaruus (perusjoukko) F = otosvaruude S osajoukkoje joukossa määrtelty σ algebra Pr = σ algebra F alkolle määrtelty todeäkösyysmtta Jos ξ o otosavaruude S reaalarvoe (ja mtalle) fukto el ξ : S ξ o satuasmuuttuja. Satuasmuuttuja ξ määrtelmästä seuraa, että jos Ks. kuvaa okealla. s S ξ() s Satuasmuuttuja lttää satuaslmö tulosvahtoehtoh reaalluvut ta umeerset koodt. Ste satuasmuuttuja kuvaa satuaslmö tulosvahtoehtoja umeersessa muodossa. O syytä huomata, että satuasmuuttuja o fuktoa täys määrätty, mutta sattuma määrää mkä fukto arvosta realsotuu. Huomautus: Saa satuasmuuttuja o termä sä melessä epäostuut, että se e kerro stä oleasta asaa, että satuasmuuttuja o fukto. Jotta reaalarvoe fukto kelpas satuasmuuttujaks, se o oltava mtalle. Ste mkä tahasa otosavaruude reaalarvoe fukto e kelpaa satuasmuuttujaks. Vodaa osottaa, että s. dskreett ja jatkuvat satuasmuuttujat jota tässä estyksessä pelkästää kästellää ovat mtallsa fuktota. Emme täsmeä mtallsuude kästettä tässä estyksessä. Todeäkösyysjakauma Satuasmuuttuja ξ todeäkösyysjakaumalla tarkotetaa kuvaukse ξ : S S reaallukuje joukkoo dusomaa todeäkösyysmttaa. Todeäkösyysjakauma kuvaa koko otosavaruude S todeäkösyysmassa (= ) jakautumsta otosavaruudessa S määrtelly satuasmuuttuja ξ arvoalueella. Todeäkösyysjakauma merktys satuaslmö tlastollsea malla o sä, että kakke satuaslmö tapahtume todeäkösyydet halltaa täydellsest, jos satuaslmö tulosvahtoehtoja kuvaava satuasmuuttuja ja se todeäkösyysjakauma tuetaa. s ξ R ξ(s) TKK Ilkka Mell

15 9. Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyysjakaumat tlastollsa mallea Tlastotetee kehttää ja soveltaa matemaattsa meetelmä ja malleja, jode avulla jostak reaalmaalma lmöstä pyrtää tekemää johtopäätöksä lmötä kuvaave umeerste tetoje perusteella sellasssa tlatessa, jossa lmöh (ta tä kuvaav tetoh) lttyy epävarmuutta ja satuasuutta. Tlastollste meetelme ja malle avulla pyrtää erottamaa ja kuvaamaa lmöde (ta okeamm: lmötä kuvaave tetoje) sääömukaset ja satuaset prteet. Koska tlastotetee tutkm lmöh (ta tä kuvaav tetoh) lttyy epävarmuutta ja satuasuutta, tlastollset meetelmät ja mallt perustuvat todeäkösyyslasketaa. Satuaslmöde tlastollset mallt kuvaavat lmöde tulosvahtoehdot ja de todeäkösyydet matemaattsessa muodossa. Satuaslmö tlastollsessa mallssa el todeäkösyysmallssa o oltava seuraavat osat: () () Ilmö tulosvahtoehtoja umeersessa muodossa kuvaava satuasmuuttuja. Todeäkösyysmassa jakautumsta satuasmuuttuja arvoalueelle kuvaava todeäkösyysjakauma. Ku satuaslmölle kostruodaa tlastollsa malleja, vaadtaa tlastotetee ja todeäkösyyslaskea tetoje lsäks hyvä tetoja lmötä selttävästä taustateorasta. Taustateora tuottaa se teteeala, joka alueesee lmö kuuluu. Esmerkk: Taloudellste lmöde tlastollsessa aalyysssa el ekoometrassa taustateoraa o taloustede. Tlastolle tutkmus o parhammllaa tlastotetee, todeäkösyyslaskea ja tutkmukse kohteea olevaa lmötä selttävä taustateora yhtespelä. Teoreettse tlastotetee tehtävää o kostruoda tutkmukse kohteea olevlle satuas lmölle tlastollsa malleja, jotka selttävät lmöstä saatuje havatoje käyttäytymse. Emprse tlastotetee tehtävää o selvttää, ovatko kostruodut tlastollset mallt sopu soussa havatoje kassa. Huomaa, että tlastolle mall o teoreette oletus, joka ptää asettaa test havatoje tutkmukse kohteea olevasta lmöstä tuottamaa formaatota vastaa; lsätetoja tlastollssta mallesta: ks. mostetta Tlastollset meetelmät. Satuasmuuttuje tyyppejä Satuasmuuttuja määrtelt edellä mtallsea fuktoa otosavaruudesta reaallukuje joukkoo. Mtallset fuktot vovat olla fuktoa hyv momutkasa. Kakssa tlastotetee tavaomasssa sovelluksssa tullaa kutek yleesä hyv tomee seuraave satuasmuuttuje tyyppe kassa: () () Dskreett satuasmuuttujat. Jatkuvat satuasmuuttujat. Satuasmuuttujaa o dskreett, jos se arvoalue o dskreett joukko el se arvoalue muodostuu erllsstä reaalaksel pstestä. Dskreet satuasmuuttuja arvoalue o aa joko äärelle ta korketaa umerotuvast ääretö. Dskreet satuasmuuttuja todeäkösyysjakauma määrttelee alkestapahtume todeäkösyydet. Kakke mude tapahtume todeäkösyydet saadaa alkestapahtume todeäkösyyksstä todeäkösyyde laskusäätöje avulla. TKK Ilkka Mell 3

16 9. Satuasmuuttujat ja todeäkösyysjakaumat Satuasmuuttujaa o jatkuva, jos se arvoalue o jok reaalaksel osaväl. Jatkuva satuasmuuttuja arvoalue o reaallukuje jouko osavälä ylumerotuva. Jatkuva satuasmuuttuja todeäkösyysjakauma määrttelee satuasmuuttuja arvoalueesee kuuluve reaalaksel väle todeäkösyydet. Kakke mude tapahtume todeäkösyydet saadaa väle todeäkösyyksstä todeäkösyyde laskusäätöje avulla. Rajotumme jatkossa pelkästää dskreette ja jatkuve satuasmuuttuje kästtelyy Dskreett satuasmuuttujat ja todeäkösyysjakaumat Johdatteleva esmerkk Kuva okealla esttää oepyörää, joka pta o jaettu vtee sektor A, B, C, D, E Alla olevassa taulukossa o estetty sektorede ptaaloje osuudet oepyörä kokoaspta alasta: Sektor % A 30 B 5 C 0 D 5 E 0 Summa 00 D 5 % C 0 % E 0 % B 5 % A 30 % Oepyörä keskpsteesee o ktetty vapaast pyörvä osot. Tarkastellaa pelä, jossa osotta pyöräytetää ja pelaaja yrttää arvata mh sektoresta A, B, C, D, E osot pysähtyy. Pel o satuaslmö, joho lttyvä otosavaruus el mahdollste tulosvahtoehtoje joukko o S = {Sektort A, B, C, D, E} Oletetaa, että todeäkösyydet, jolla osot pysähtyy sektoreh A, B, C, D, E suhtautuvat tossa kute sektorede pta alat. Tällö vomme asettaa: Pr(A) = 0.30 Pr(B) = 0.5 Pr(C) = 0.0 Pr(D) = 0.5 Pr(E) = 0.0 Määrtellää satuasmuuttuja ξ, joka lttää tulosvahtoehtoh A, B, C, D, E reaalluvut seuraavalla tavalla: A B TKK Ilkka Mell 4

17 9. Satuasmuuttujat ja todeäkösyysjakaumat C 3 D 4 E 5 Satuasmuuttuja ξ saa arvosa seuraavlla todeäkösyyksllä: Pr(ξ = ) = 0.30 = Pr(A) Pr(ξ = ) = 0.5 = Pr(B) Pr(ξ = 3) = 0.0 = Pr(C) Pr(ξ = 4) = 0.5 = Pr(D) Pr(ξ = 5) = 0.0 = Pr(E) Saomme, että satuasmuuttuja ξ o dskreett, koska ξ saa va erllsä arvoja. Kutsumme satuasmuuttuja ξ arvoh lttyvä todeäkösyyksä pstetodeäkösyyksks, koska e lttyvät erlls pstes reaalaksellla. Dskreet satuasmuuttuja ξ arvot ja h lttyvät pstetodeäkösyydet muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Dskreet satuasmuuttuja ξ todeäkösyysjakaumaa vodaa kuvata se pstetodeäkösyysfuktolla. Dskreet satuasmuuttuja ξ pstetodeäkösyysfukto kertoo mte koko otosavaruude todeäkösyysmassa (= ) jakautuu satuasmuuttuja ξ mahdollslle arvolle. O helppo ähdä, että pstetodeäkösyysfukto f o fuktoa epäjatkuva ja saa postvsa arvoja va erllsssä pstessä. Esmerk tapauksessa satuasmuuttuja ξ pstetodeäkösyysfukto f vodaa määrtellä seuraavalla tavalla: f() = Pr(ξ = ) = 0.30 = Pr(A) f() = Pr(ξ = ) = 0.5 = Pr(B) f(3) = Pr(ξ = 3) = 0.0 = Pr(C) f(4) = Pr(ξ = 4) = 0.5 = Pr(D) f(5) = Pr(ξ = 5) = 0.0 = Pr(E) Olkoo x o dskreet satuasmuuttuja ξ mahdolle arvo ja Pr( ξ = x) = px olkoo vastaava pstetodeäkösyys. Satuasmuuttuja ξ pstetodeäkösyysfuktota vodaa kuvata graafsest pkkfuktolla, joka saadaa yhdstämällä psteet ja tossa jaolla. (x, 0) (x, p x ) Alla oleva kuva esttää esmerkssä määrtelly dskreet satuasmuuttuja ξ todeäkösyysjakauma pstetodeäkösyysfuktota vastaavaa pkkfuktota. TKK Ilkka Mell 5

18 9. Satuasmuuttujat ja todeäkösyysjakaumat Pkke ptuudet kuvassa vastaavat ss tä todeäkösyyksä, jolla satuasmuuttuja ξ saa arvosa: p = f() = Pr(ξ = ) = 0.30 = Pr(A) p = f() = Pr(ξ = ) = 0.5 = Pr(B) p 3 = f(3) = Pr(ξ = 3) = 0.0 = Pr(C) p 4 = f(4) = Pr(ξ = 4) = 0.5 = Pr(D) p 5 = f(5) = Pr(ξ = 5) = 0.0 = Pr(E) Pstetotodeäkösyysfukto (, p ) (, p ) (3, p 3 ) (4, p 4 ) (5, p 5 ) Dskreett satuasmuuuttuja Olkoo otosavaruus S äärelle ta umerotuvast ääretö. Tällö vomme merktä jos S o äärelle ja S = s s K s {,,, } S = { s, s, s, K} 3 jos S o umerotuvast ääretö. Olkoo ξ : S satuasmuuttuja el otosavaruude (mtalle) kuvaus reaallukuje joukkoo. Jos otosavaruus S o äärelle ta umerotuvast ääretö, jollo myös fukto ξ arvoalue o äärelle ta umerotuvast ääretö, saomme, että satuasmuuttuja ξ o dskreett. Dskreett satuasmuuttujat lttyvät sellas todeäkösyyslaskea sovelluks, jossa tarkastellaa dskreettejä suureta. Dskreettejä suureta ovat esmerkks seuraavat: Laatuerot (koodattua umeersks) Luokttelut ja ryhmttelyt (koodattua umeersks) Järjestysluvut Lukumäärät Esmerkk. Laaduvalvota. Koe tekee erästä tuotetta sarjatuotatoa kpl pävässä. Oletetaa, että osa tuottesta o vallsa ja vallset tuotteet sytyvät valmstusprosess akaa täys sattumavarasest. Oletetaa edellee, että vallste tuottede suhteelle osuus valmstetusta tuottesta o keskmäär p. Tällö vomme ataa luvulle p todeäkösyystulka: p = todeäkösyys, että satuasest valttu tuote o valle Vodaa osottaa, että vallste tuottede lukumäärä pävä akaa tehtyje tuottede joukossa o dskreett satuasmuuttuja, joka oudattaa bomjakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma TKK Ilkka Mell 6

19 9. Satuasmuuttujat ja todeäkösyysjakaumat Esmerkk. Laaduvalvota. Koe tekee erästä tuotetta sarjatuotatoa kpl pävässä. Oletetaa, että osa tuottesta o vallsa ja vallset tuotteet sytyvät valmstusprosess akaa täys sattumavarasest. Oletetaa edellee, että vallste tuottede suhteelle osuus valmstetusta tuottesta o keskmäär p. Tällö vomme ataa luvulle p todeäkösyystulka: p = todeäkösyys, että satuasest valttu tuote o valle Pomtaa tuotteta tarkastettavaks, kues löydetää esmmäe valle. Vodaa osottaa, että esmmäse vallse tuottee järjestysumero tarkastettuje tuottede joukossa o dskreett satuasmuuttuja, joka oudattaa geometrsta jakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 3. Joo. Oletetaa, että palvelujooo tulee asakkata keskmäär k kappaletta akaykskköä kohde. Vodaa osottaa, että tety edellytyks jollak akavälllä jooo tuleve asakkade lukumäärä o dskreett satuasmuuttuja, joka oudattaa Posso jakaumaa; lsätetoja: ks. luvu Dskreettejä jakauma. Huomautus: Jos jollak akavälllä jooo tuleve asakkade lukumäärä oudattaa Possojakaumaa, aka, joka seuraava asakkaa tuloa jooo joudutaa odottamaa o jatkuva satuasmuuttuja, joka oudattaa ekspoettjakaumaa; lsätetoja: ks. lukua Jatkuva jakauma. Esmerkk 4. Järve kalakaa koo laskeme. Pyydystetää järvestä joukko kaloja elävä, merktää pyydystetyt kalat ja lasketaa e takas järvee. Pyydystetää järvestä jok aja kuluttua uus joukko kaloja. Vodaa osottaa, että merkttyje kaloje lukumäärä uudessa pyyssä o tety edellytyks dskreett satuasmuuttuja, joka oudattaa hypergeometrsta jakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma. Huomautus: Kuvattua merktä takaspyyt meetelmää sovelletaa todellak (sopvast modfotua) rsta ja kalakatoje laskemsee. Dskreet satuasmuuttuja pstetodeäkösyysfukto Olkoo ξ : S dskreett satuasmuuttuja ja olkoo T satuasmuuttuja ξ saame äärelle ta umerotuvast ääretö arvoje joukko. Jos satuasmuuttuja ξ saame arvoje joukko T o äärelle, vomme krjottaa T = {x, x,, x } Jos satuasmuuttuja ξ saame arvoje joukko T o umerotuvast ääretö, krjotamme T = {x, x, x 3, } TKK Ilkka Mell 7

20 9. Satuasmuuttujat ja todeäkösyysjakaumat Reaalarvoe fukto f määrttelee dskreet satuasmuuttujaξ pstetodeäkösyysfukto, jos seuraavat kolme ehtoa pätevät: () f( x ) 0 kaklle x T () f( x ) = Pr( ξ = x ) kaklle x T (3) f( x ) = x T Saomme, että todeäkösyys Pr( ξ = x ) = f( x ) = p, x T o satuasmuuttuja ξ arvoa x vastaava pstetodeäkösyys. Ehdo () mukaa pstetodeäkösyysfukto f o kakkalla e egatve. Ehdo () mukaa pstetodeäkösyysfukto f arvot pstessä x ovat todeäkösyyksä. Ehdo (3) mukaa kakke pstetodeäkösyykse summa =. Olkoo f dskreet satuasmuuttuja ξ pstetodeäkösyysfukto, T satuasmuuttuja ξ saame arvoje joukko ja Pr( ξ = x ) = f( x ) = p, x T satuasmuuttuja ξ arvoa x vastaava pstetodeäkösyys. Satuasmuuttuja ξ pstetodeäkösyysfukto vodaa määrtellä kaklle reaalluvulle kaavalla p, x T f( x) = Pr( ξ = x) = 0, x T Nä määrteltyä pstetodeäkösyysfukto f o epäjatkuva fukto, jossa o epäjatkuvuuskohta jokaselle x T. Dskreett todeäkösyysjakauma Jos f o dskreet satuasmuuttuja ξ : S pstetodeäkösyysfukto, saomme, että satuasmuuttuja ξ oudattaa dskreettä todeäkösyysjakaumaa, joka pstetodeäkösyysfuktoa o f. Dskreet satuasmuuttuja ξ pstetodeäkösyysfukto f kertoo mte koko otosavaruude S todeäkösyysmassa (= ) jakautuu satuasmuuttuja ξ saamlle arvolle. Pstetodeäkösyysfukto avulla vodaa määrätä kakk ko. satuaslmöö lttyvät todeäkösyydet. Pstetodeäkösyysfukto kuvaaja Olkoo f dskreet satuasmuuttuja ξ pstetodeäkösyysfukto, T satuasmuuttuja ξ saame arvoje joukko ja f( x ) = Pr( ξ = x ) = p, x T TKK Ilkka Mell 8

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien

Lisätiedot

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Satunnaismuuttujat ja todennäköisyysjakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Todennäköisyyslaskenta

Todennäköisyyslaskenta Todennäköisyyslaskenta Ilkka Mellin 1. korjattu painos Ilkka Mellin I Ilkka Mellin II Esipuhe Tämä moniste pyrkii antamaan perustiedot todennäköisyyslaskennasta. Monisteen ensisijaisena tavoitteena on

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 8. harjoitukset / Ratkaisut Aiheet: Otos ja otosjakaumat Avainsanat: Mat-1.60 Sovellettu todeäkösyyslasketa Mat-1.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Otos ja otosjakaumat Avasaat: Artmeette keskarvo, Beroull-jakauma, Beroull-koe, χ -jakauma, Frekvess, Frekvessjakauma,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen

Lisätiedot

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:

Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan: Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3

Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

D ( ) Var( ) ( ) E( ) [E( )]

D ( ) Var( ) ( ) E( ) [E( )] Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö

Varma tapahtuma, Yhdiste, Yhdistetty tapahtuma, Yhteenlaskusääntö Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Unioni, Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Alkeistapahtuma, Ehdollinen todennäköisyys,

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin

Lisätiedot

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit

Liite 2: Verkot ja todennäköisyyslaskenta. Todennäköisyyslaskenta ja puudiagrammit Ilkka Mellin Todennäköisyyslaskenta Liite 2: Verkot ja todennäköisyyslaskenta Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyslaskenta ja puudiagrammit >> Puutodennäköisyydet

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-200 Todennäköisyyslaskenta Tentti 29.04.20 / Kimmo Vattulainen Funktiolaskin sallittu.. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi kuutosen. A aloittaa

Lisätiedot

V ar(m n ) = V ar(x i ).

V ar(m n ) = V ar(x i ). Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot

Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit. Todennäköisyyslaskenta ja puudiagrammit: Esitiedot TKK (c) Ilkka Mellin (2004) 1 Todennäköisyyslaskenta ja puudiagrammit iite: Todennäköisyyslaskenta ja puudiagrammit TKK (c) Ilkka Mellin (2004) 2 Todennäköisyyslaskenta ja puudiagrammit: Mitä opimme? Verkkoteoria

Lisätiedot

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme?

Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet. Konvergenssikäsitteet ja raja-arvolauseet: Mitä opimme? TKK (c) Ilkka Mell (004) Kovergesskästteet ja raja-arvolauseet Kovergesskästtetä Suurte lukuje lat Keskee raja-arvolause Keskese raja-arvolausee seurauksa Johdatus todeäkösyyslasketaa Kovergesskästteet

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

3.7 Todennäköisyysjakaumia

3.7 Todennäköisyysjakaumia MAB5: Todennäköisyyden lähtökohdat 4 Luvussa 3 Tunnusluvut perehdyimme jo jakauman käsitteeseen yleensä ja normaalijakaumaan vähän tarkemmin. Lähdetään nyt tutustumaan binomijakaumaan ja otetaan sen jälkeen

Lisätiedot

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,

Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1, Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on

Lisätiedot

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu

Tilastollinen päättely. 5. Väliestimointi Johdanto Luottamusvälien konstruointi Luottamusvälien vertailu ilastollinen päättely 5.. Johdanto Estimointi, Joukkoestimointi, Kriittinen alue, uottamusjoukko, uottamustaso, uottamusväli, Otos, Parametri, Peittotodennäköisyys, Piste-estimointi, Väliestimaatti, Väliestimaattori,

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

Satunnaislukujen generointi

Satunnaislukujen generointi Satunnaislukujen generointi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Satunnaislukujen generointi 1/27 Kevät 2003 Lähteet Knuth, D., The Art of Computer Programming,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä

TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa

Lisätiedot

(x, y) 2. heiton tulos y

(x, y) 2. heiton tulos y Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 2, 4, 6, 8, 11 Pistetehtävät: 3, 5, 9, 12 Ylimääräiset tehtävät: 7, 10, 13 Aiheet: Joukko-oppi Todennäköisyys ja sen määritteleminen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 2

031021P Tilastomatematiikka (5 op) viikko 2 031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja.

Miten hyvin mallit kuvaavat todellisuutta? Tarvitaan havaintoja. Luku 1 Johdanto 1.1 Todennäköisyys ja tilastotiede Kurssi käsittelee todennäköisyyslaskentaa ja tilastotiedettä. Laaditaan satunnaisilmiöille todennäköisyysmalleja. Miten hyvin mallit kuvaavat todellisuutta?

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Teema 7: Todennäköisyyksien laskentaa

Teema 7: Todennäköisyyksien laskentaa Teema 7: Todennäköisyyksien laskentaa Teemassa 6 tutustuttiin todennäköisyyden ja satunnaisuuden käsitteisiin sekä todennäköisyyslaskennan perusteisiin. Seuraavaksi tätä aihepiiriä syvennetään perehtymällä

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 3

031021P Tilastomatematiikka (5 op) viikko 3 031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

9. laskuharjoituskierros, vko 12-13, ratkaisut

9. laskuharjoituskierros, vko 12-13, ratkaisut 9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslaskenta B Mat-1.2620 Sovellettu todennäköisslaskenta B 1. välikoe 08.03.2011 / Kibble Kirjoita selvästi jokaiseen koepaperiin seuraavat tiedot: Mat-1.2620 SovTnB 1. vk 08.03.2011 opiskelijanumero + kirjain TEKSTATEN

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat:

Mat Tilastollinen päättely 7. harjoitukset / Tehtävät. Hypoteesien testaus. Avainsanat: Mat-.36 Tlastollnen päättely 7. harjotukset Mat-.36 Tlastollnen päättely 7. harjotukset / Tehtävät Aheet: Avansanat: ypoteesen testaus. lajn vrhe,. lajn vrhe, arhaton test, ylkäysalue, ylkäysvrhe, ypotees,

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot