Satunnaismuuttujat ja todennäköisyysjakaumat

Koko: px
Aloita esitys sivulta:

Download "Satunnaismuuttujat ja todennäköisyysjakaumat"

Transkriptio

1 Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyyslasketa: Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 0. Kertymäfukto. Jakaume tuusluvut. Moulotteset satuasmuuttujat ja jakaumat 3. Momettemäfukto ja karakterste fukto 4. Satuasmuuttuje muuoste jakaumat 5. Stokastka kovergesskästteet ja raja arvolauseet TKK Ilkka Mell 09

2 Satuasmuuttujat ja todeäkösyysjakaumat TKK Ilkka Mell 0

3 Satuasmuuttujat ja todeäkösyysjakaumat Ssällys 9. SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT: JOHDATTELEVIA ESIMERKKEJÄ SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT: MÄÄRITELMÄT SATUNNAISMUUTTUJA TODENNÄKÖISYYSJAKAUMA TODENNÄKÖISYYSJAKAUMAT TILASTOLLISINA MALLEINA 3 SATUNNAISMUUTTUJIEN TYYPPEJÄ DISKREETIT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT 4 JOHDATTELEVA ESIMERKKI 4 DISKREETTI SATUNNAISMUUUTTUJA 6 DISKREETIN SATUNNAISMUUTTUJAN PISTETODENNÄKÖISYYSFUNKTIO 7 DISKREETTI TODENNÄKÖISYYSJAKAUMA 8 PISTETODENNÄKÖISYYSFUNKTION KUVAAJA 8 DISKREETTI TODENNÄKÖISYYSJAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 9 TODENNÄKÖISYYKSIEN VERTAILU 30 DISKREETTIEN TODENNÄKÖISYYSJAKAUMIEN PARAMETROINTI 30 HAVAINNOLLISTUS: GEOMETRINEN JAKAUMA 30 DISKREETTEJÄ TODENNÄKÖISYYSJAKAUMIA JATKUVAT SATUNNAISMUUTTUJAT JA TODENNÄKÖISYYSJAKAUMAT 35 JOHDATTELEVA ESIMERKKI. 35 JATKUVA SATUNNAISMUUTTUJA 36 JATKUVAN SATUNNAISMUUTTUJAN TIHEYSFUNKTIO 37 TIHEYSFUNKTION KUVAAJA 37 JATKUVA TODENNÄKÖISYYSJAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 37 TODENNÄKÖISYYKSIEN VERTAILU 39 JATKUVIEN TODENNÄKÖISYYSJAKAUMIEN PARAMETROINTI 39 HAVAINNOLLISTUS: EKSPONENTTIJAKAUMA 40 JATKUVIA TODENNÄKÖISYYSJAKAUMIA DISKREETIT JAKAUMAT VS JATKUVAT JAKAUMAT KERTYMÄFUNKTIO KERTYMÄFUNKTIO JA SEN OMINAISUUDET DISKREETIN JAKAUMAN KERTYMÄFUNKTIO 48 DISKREETIN JAKAUMAN PISTETODENNÄKÖISYYSFUNKTION JA KERTYMÄFUNKTION YHTEYS 49 DISKREETIN JAKAUMAN KERTYMÄFUNKTION KUVAAJA 49 DISKREETTI JAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 49 DISKREETIN JAKAUMAN PISTETODENNÄKÖISYYSFUNKTIO JA KERTYMÄFUNKTIO: HAVAINNOLLISTUS _ JATKUVAN JAKAUMAN KERTYMÄFUNKTIO 5 JATKUVAN JAKAUMAN TIHEYSFUNKTION JA KERTYMÄFUNKTION YHTEYS 5 JATKUVAN JAKAUMAN KERTYMÄFUNKTION KUVAAJA 5 JATKUVA JAKAUMA JA REAALIAKSELIN VÄLIEN TODENNÄKÖISYYDET 5 JATKUVAN JAKAUMAN TIHEYSFUNKTIO JA KERTYMÄFUNKTIO: HAVAINNOLLISTUS 5. JAKAUMIEN TUNNUSLUVUT 54 TKK Ilkka Mell

4 Satuasmuuttujat ja todeäkösyysjakaumat.. ODOTUSARVO 55 JOHDATTELEVA ESIMERKKI 55 DISKREETIN SATUNNAISMUUTTUJAN ODOTUSARVO 57 JATKUVAN SATUNNAISMUUTTUJAN ODOTUSARVO 58.. ODOTUSARVON OMINAISUUDET 6 ODOTUSARVON OLEMASSAOLO 6 ODOTUSARVO TODENNÄKÖISYYSJAKAUMAN TODENNÄKÖISYYSMASSAN PAINOPISTEENÄ 6 VAKION ODOTUSARVO 6 LINEAARIMUUNNOKSEN ODOTUSARVO 6 ODOTUSARVON TULKINTA JAKAUMAN SIJAINTIPARAMETRINA 6 SUMMAN JA EROTUKSEN ODOTUSARVOT 64 LINEAARIKOMBINAATION ODOTUSARVO YLEINEN ODOTUSARVO 64 DISKREETIN SATUNNAISMUUTTUJAN FUNKTION ODOTUSARVO 64 JATKUVAN SATUNNAISMUUTTUJAN FUNKTION ODOTUSARVO VARIANSSI JA STANDARDIPOIKKEAMA 65 VARIANSSI 65 VARIANSSIN VAIHTOEHTOINEN LASKUKAAVA 65 STANDARDIPOIKKEAMA 66 VARIANSSIN JA STANDARDIPOIKKEAMAN DIMENSIOT 66 VARIANSSIN JA STANDARDIPOIKKEAMAN TULKINTA 66 DISKREETIN SATUNNAISMUUTTUJAN VARIANSSI 67 JATKUVAN SATUNNAISMUUTTUJAN VARIANSSI VARIANSSIN OMINAISUUDET 69 VARIANSSIN OLEMASSAOLO 69 VAKION VARIANSSI 70 LINEAARIMUUNNOKSEN VARIANSSI 70 STANDARDOINTI 7 SUMMAN JA EROTUKSEN VARIANSSI 7 LINEAARIKOMBINAATION VARIANSSI 7 EMPIIRISEN JAKAUMAN ODOTUSARVO JA VARIANSSI 73 ARITMEETTISEN KESKIARVON ODOTUSARVO JA VARIANSSI MARKOVIN JA TSHEBYSHEVIN EPÄYHTÄLÖT 74 MARKOVIN EPÄYHTÄLÖ 74 TSHEBYSHEVIN EPÄYHTÄLÖ MOMENTIT 77 MOMENTTIEN OLEMASSAOLO VINOUS JA HUIPUKKUUS 78 VINOUS 78 HUIPUKKUUS KVANTIILIT 80 KVANTIILIN MÄÄRITELMÄ 80 KVANTIILIEN OMINAISUUKSIA 80 KVANTIILIT JA TILASTOLLISET TAULUKOT 80 PROSENTTIPISTEET 8 DESIILIT 8 KVARTILIT 8 MEDIAANI 8.0. MOODI 83.. SUURTEN LUKUJEN LAKI 84. MONIULOTTEISET SATUNNAISMUUTTUJAT JA JAKAUMAT 87 TKK Ilkka Mell

5 Satuasmuuttujat ja todeäkösyysjakaumat.. JOHDANTO 88.. KAKSIULOTTEISET SATUNNAISMUUTTUJAT DISKREETIT KAKSIULOTTEISET JAKAUMAT 88 DISKREETIT KAKSIULOTTEISET JAKAUMAT JA TAPAHTUMIEN TODENNÄKÖISYYKSIEN MÄÄRÄÄMINEN 89 DISKREETIT KAKSIULOTTEISET JAKAUMAT JA SYMMETRISET TODENNÄKÖISYYSKENTÄT JATKUVAT KAKSIULOTTEISET JAKAUMAT 94 JATKUVAT KAKSIULOTTEISET JAKAUMAT JA TAPAHTUMIEN TODENNÄKÖISYYKSIEN MÄÄRÄÄMINEN KAKSIULOTTEISTEN JAKAUMIEN KERTYMÄFUNKTIOT 95 DISKREETIN KAKSIULOTTEISEN JAKAUMAN KERTYMÄFUNKTIO 95 JATKUVAN KAKSIULOTTEISEN JAKAUMAN KERTYMÄFUNKTIO KAKSIULOTTEISTEN JAKAUMIEN REUNAJAKAUMAT JA RIIPPUMATTOMUUS 96 DISKREETIN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMAT 96 JATKUVAN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMAT 99 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS 99 USEAMMAN SATUNNAISMUUTTUJAN RIIPPUMATTOMUUS 00 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA TAPAHTUMIEN TODENNÄKÖISYYS 0.7. KAKSIULOTTEISTEN JAKAUMIEN ODOTUSARVOT 03 DISKREETIN KAKSIULOTTEISEN JAKAUMAN YLEINEN ODOTUSARVO 03 JATKUVAN KAKSIULOTTEISEN JAKAUMAN YLEINEN ODOTUSARVO 03 JATKUVAN KAKSIULOTTEISEN JAKAUMAN REUNAJAKAUMIEN ODOTUSARVOT ODOTUSARVON OMINAISUUDET 04 ODOTUSARVO PAINOPISTEENÄ 04 SUMMAN JA EROTUKSEN ODOTUSARVOT 04 LINEAARIKOMBINAATION ODOTUSARVO 05 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA TULON ODOTUSARVO KAKSIULOTTEISTEN JAKAUMIEN VARIANSSIT JA STANDARDIPOIKKEAMAT 07 REUNAJAKAUMIEN VARIANSSIT 07 VAIHTOEHTOISET LASKUKAAVAT VARIANSSEILLE 07 STANDARDIPOIKKEAMAT 07 VARIANSSIN JA STANDARDIPOIKKEAMAN TULKINTA 07 VARIANSSIN JA STANDARDIPOIKKEAMAN DIMENSIOT 08 DISKREETIN KAKSIULOTTEISEN JAKAUMAN VARIANSSIT 08 JATKUVAN KAKSIULOTTEISEN JAKAUMAN VARIANSSIT 0.0. KOVARIANSSI 0 VAIHTOEHTOINEN LASKUKAAVA KOVARIANSSILLE KOVARIANSSIN TULKINTA DISKREETIN KAKSIULOTTEISEN JAKAUMAN KOVARIANSSI JATKUVAN KAKSIULOTTEISEN JAKAUMAN KOVARIANSSI.. KOVARIANSSIN OMINAISUUDET SATUNNAISMUUTTUJIEN LINEAARIMUUNNOSTEN KOVARIANSSI SATUNNAISMUUTTUJIEN SUMMAN JA EROTUKSEN VARIANSSIT KORRELOIMATTOMUUS 3 SATUNNAISMUUTTUJIEN RIIPPUMATTOMUUS JA KOVARIANSSI 4 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN JA EROTUKSEN VARIANSSI 4.. KORRELAATIO 4 KORRELAATIOKERTOIMEN DIMENSIO 5.3. KORRELAATIOKERTOIMEN OMINAISUUDET 5 KORRELAATIO JA KOVARIANSSI 5 SATUNNAISMUUTTUJIEN LINEAARIMUUNNOSTEN KORRELAATIO 5 KORRELAATIOKERTOIMEN TULKINTA KORRELOIMATTOMUUS.4. EHDOLLISET JAKAUMAT 4 TKK Ilkka Mell 3

6 Satuasmuuttujat ja todeäkösyysjakaumat EHDOLLINEN TODENNÄKÖISYYS 4 EHDOLLISET JAKAUMAT 4 EHDOLLISET JAKAUMAT JA EHTOMUUTTUJA 4 EHDOLLISET JAKAUMAT JA RIIPPUMATTOMUUS 4.5. EHDOLLISET ODOTUSARVOT JA VARIANSSIT 5 DISKREETIN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET ODOTUSARVOT 5 JATKUVAN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET ODOTUSARVOT 5 EHDOLLISET ODOTUSARVOT JA EHTOMUUTTUJAT 5 EHDOLLISET ODOTUSARVOT JA RIIPPUMATTOMUUS 6 DISKREETIN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET VARIANSSIT 6 JATKUVAN KAKSIULOTTEISEN JAKAUMAN EHDOLLISET VARIANSSIT 6 EHDOLLISET VARIANSSIT JA EHTOMUUTTUJAT 6 EHDOLLISET VARIANSSIT JA RIIPPUMATTOMUUS 7 ITEROIDUN ODOTUSARVON LAIT 7 REGRESSIOFUNKTIOT JA KÄYRÄT 8 REGRESSIOFUNKTIOT JA ENNUSTAMINEN 8 HAVAINNOLLISTUKSIA 9 3. MOMENTTIEMÄFUNKTIO JA KARAKTERISTINEN FUNKTIO MOMENTTIEMÄFUNKTIO 4 MOMENTTIEMÄFUNKTION OLEMASSAOLO 4 DISKREETIN JAKAUMAN MOMENTTIEMÄFUNKTIO 4 JATKUVAN JAKAUMAN MOMENTTIEMÄFUNKTIO 43 MOMENTTIEMÄFUNKTION YKSIKÄSITTEISYYS 43 MOMENTTIEMÄFUNKTIO JA SATUNNAISMUUTTUJAN MOMENTIT 43 MOMENTTIEMÄFUNKTION TAYLORIN SARJAKEHITELMÄ 44 SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN MOMENTTIEMÄFUNKTIO 45 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN SUMMAN MOMENTTIEMÄFUNKTIO 46 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISEN KESKIARVON MOMENTTIEMÄFUNKTIO 47 MOMENTTIEMÄFUNKTIOIDEN KONVERGENSSI KARAKTERISTINEN FUNKTIO 50 KARAKTERISTISEN FUNKTION OLEMASSAOLO 50 INVERSIOTEOREEMA 50 DISKREETIN SATUNNAISMUUTTUJAN KARAKTERISTINEN FUNKTIO 50 JATKUVAN SATUNNAISMUUTTUJAN KARAKTERISTINEN FUNKTIO 5 KARAKTERISTISEN FUNKTION YKSIKÄSITTEISYYS 5 KARAKTERISTINEN FUNKTIO JA MOMENTTIEMÄFUNKTIO 5 KARAKTERISTISEN FUNKTION OMINAISUUDET 5 KARAKTERISTINEN FUNKTIO JA SATUNNAISMUUTTUJAN MOMENTIT 5 KARATERISTISEN FUNKTION TAYLORIN SARJAKEHITELMÄ 53 SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN KARAKTERISTINEN FUNKTIO 53 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN KARAKTERISTINEN FUNKTIO 54 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN SUMMAN KARAKTERISTINEN FUNKTIO 54 RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISEN KESKIARVON KARAKTERISTINEN FUNKTIO 54 KARAKTERISTISTEN FUNKTIOIDEN KONVERGENSSI 55 TKK Ilkka Mell 4

7 Satuasmuuttujat ja todeäkösyysjakaumat 4. SATUNNAISMUUTTUJIEN MUUNNOSTEN JAKAUMAT SATUNNAISMUUTTUJAN LINEAARIMUUNNOKSEN JAKAUMA SATUNNAISMUUTTUJAN MONOTONISEN MUUNNOKSEN JAKAUMA 59 LINEAARIMUUNNOKSEN JAKAUMA 6 CAUCHY JAKAUMA SATUNNAISMUUTTUJAN EI MONOTONISTEN MUUNNOSTEN JAKAUMAT 63 χ () JAKAUMAN TIHEYSFUNKTIO KAKSIULOTTEISTEN SATUNNAISMUUTTUJIEN MUUNNOSTEN JAKAUMAT 65 NORMAALIJAKAUTUNEIDEN SATUNNAISLUKUJEN GENEROINTI RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN SUMMAN JAKAUMA 68 χ (N) JAKAUMAN TIHEYSFUNKTIO RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN OSAMÄÄRÄN JAKAUMA 73 F JAKAUMAN TIHEYSFUNKTIO 74 T JAKAUMAN TIHEYSFUNKTIO RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MINIMIN JA MAKSIMIN JAKAUMAT 80 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MINIMIN JAKAUMA 80 RIIPPUMATTOMIEN SATUNNAISMUUTTUJIEN MAKSIMIN JAKAUMA 8 5. STOKASTIIKAN KONVERGENSSIKÄSITTEET JA RAJA ARVOLAUSEET SATUNNAISMUUTTUJIEN JONOT VARMA KONVERGENSSI MELKEIN VARMA KONVERGENSSI KVADRAATTINEN KONVERGENSSI 87 SOVELLUS: RIIPPUMATTOMIEN SAMOIN JAKAUTUNEIDEN SATUNNAISMUUTTUJIEN ARITMEETTISTEN KESKIARVOJEN MUODOSTAMAN JONON KVADRAATTINEN KONVERGENSSI STOKASTINEN KONVERGENSSI 88 SOVELLUS: RIIPPUMATTOMIEN SAMAA NORMAALIJAKAUMAA NOUDATTAVIEN SATUNNAIS MUUTTUJIEN ARITMEETTISTEN KESKIARVOJEN MUODOSTAMAN JONON STOKASTINEN KONVERGENSSI JAKAUMAKONVERGENSSI 90 MOMENTTIEMÄFUNKTIOIDEN KONVERGENSSI JA JAKAUMAKONVERGENSSI 9 KARAKTERISTISTEN FUNKTIOIDEN KONVERGENSSI JA JAKAUMAKONVERGENSSI STOKASTIIKAN KONVERGENSSIKÄSITTEIDEN YHTEYDET SUURTEN LUKUJEN LAIT 94 VAHVA SUURTEN LUKUJEN LAKI 94 HEIKKO SUURTEN LUKUJEN LAKI 94 SUURTEN LUKUJEN LAIT: KOMMENTTEJA 95 SUURTEN LUKUJEN LAKI: SUHTEELLISEN FREKVENSSIN ASYMPTOOTTINEN KÄYTTÄYTYMINEN KESKEINEN RAJA ARVOLAUSE 97 LINDEBERGIN JA LEVYN LAUSE 98 LINDEBERGIN JA LEVYN LAUSE: KOMMENTTEJA 30 LIAPUNOVIN LAUSE 30 LIAPUNOVIN LAUSE: KOMMENTTEJA 304 LINDEBERGIN JA FELLERIN LAUSE 304 KESKEINEN RAJA ARVOLAUSE: KOMMENTTEJA 305 KESKEINEN RAJA ARVOLAUSE SEKÄ BINOMIJAKAUMAN, HYPERGEOMETRISEN JAKAUMAN JA POISSON JAKAUMAN ASYMPTOOTTISET JAKAUMAT 306 TKK Ilkka Mell 5

8 Satuasmuuttujat ja todeäkösyysjakaumat TKK Ilkka Mell 6

9 9. Satuasmuuttujat ja todeäkösyysjakaumat 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Johdatteleva esmerkkejä 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Määrtelmät 9.3. Dskreett satuasmuuttujat ja todeäkösyysjakaumat 9.4. Jatkuvat satuasmuuttujat ja todeäkösyysjakaumat 9.5. Dskreett jakaumat vs jatkuvat jakaumat Jos satuaslmötä halutaa malltaa matemaattsest, lmö tulosvahtoehdot o osattava kuvata ja lmö tulosvahtoehtoh o osattava lttää todeäkösyydet umeersessa (matemaattste kaavoje) muodossa. Tämä vaatmukse täyttäme johtaa satuasmuuttuja ja se todeäkösyysjakauma kästtes. Tämä luvu tavotteea o esttää satuasmuuttuja ja se todeäkösyysjakauma määrtelmät ja perusomasuudet. Rajotumme tässä estyksessä pelkästää dskreette ja jatkuve satuasmuuttuje kästtelyy. Toteamme, että dskreett jakaumat vodaa määrtellä atamalla de pstetodeäkösyysfuktot, ku taas jatkuvat jakaumat vodaa määrtellä atamalla de theysfuktot. Avasaat: Dskreett jakauma, Dskreett satuasmuuttuja, Ekspoettjakauma, Fukto, Geometre jakauma, Jatkuva jakauma, Jatkuva satuasmuuttuja, Otosavaruus, Perusjoukko, Pkkfukto, Pstetodeäkösyysfukto, Satuasmuuttuja, Tapahtuma, Theysfukto, Todeäkösyys, Todeäkösyysjakauma, Todeäkösyyskettä, Todeäkösyysmall, Todeäkösyysmtta, Tulosvahtoehto TKK Ilkka Mell 7

10 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Johdatteleva esmerkkejä Jos satuaslmötä halutaa malltaa matemaattsest, lmö tulosvahtoehdot o osattava kuvata umeersessa muodossa. Tämä tapahtuu lttämällä tulosvahtoehtoh reaalarvoe fukto, jota kutsutaa satuasmuuttujaks. Tulosvahtoehtoje todeäkösyydet kuvataa lttämällä todeäkösyydet tulosvahtoehtoja vastaav satuasmuuttuja arvoh. Satuasmuuttuja arvot yhdessä h ltettyje todeäkösyykse kassa määrttelevät satuasmuuttuja todeäkösyysjakauma. Todeäkösyysjakauma kuvaa stä, mte satuaslmö tulosvahtoehtoh lttyvä todeäkösyysmassa jakautuu tulosvahtoehtoh lttyvä satuasmuuttuja arvoalueelle. Jos satuaslmö tulosvahtoehtoja umeersessa muodossa kuvaava satuasmuuttuja ja se todeäkösyysjakauma tuetaa, halltaa kakke ko. satuaslmöö lttyve tapahtume todeäkösyydet. Esmerkk. Rahahetto satuaslmöä. Tarkastellaa rahahettoa satuaslmöä. Alkestapahtumat: Otosavaruus: Kruua, Klaava S = {Kruua, Klaava} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood seuraavalla tavalla: ξ(kruua) = ξ(klaava) = 0 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku rahaa hetetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos raha o vrheetö, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Pr( ξ = ) = Pr( ξ = 0) = Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall rahahetolle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa Beroull jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk. Lapse sukupuole määräytyme satuaslmöä. Tarkastellaa lapse sukupuole määräytymstä satuaslmöä. TKK Ilkka Mell 8

11 9. Satuasmuuttujat ja todeäkösyysjakaumat Alkestapahtumat: Otosavaruus: Tyttö, Poka S = {Tyttö, Poka} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood seuraavalla tavalla: ξ(tyttö) = ξ(poka) = 0 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku lapse sukupuol määräytyy sukusoluje yhtyessä. Huomaa, että ξ o kutek fuktoa täys määrätty. Tehdää seuraava, Suome väklukutlastoh vuoslta perustuva oletus stä todeäkösyyksstä, jolla ξ saa arvosa: Pr(ξ = ) = Pr(ξ = 0) = Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall lapse sukupuole määräytymselle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa Beroull jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 3. Nopahetto satuaslmöä. Tarkastellaa opahettoa satuaslmöä. Alkestapahtumat: Slmäluvut,, 3, 4, 5, 6 Otosavaruus: S = {Slmäluku =,, 3, 4, 5, 6} Otosavaruus o tässä äärelle joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee slmälukuu ltetää vastaava kokoasluku: ξ(slmäluku ) =, =,, 3, 4, 5, 6 Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku oppaa hetetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oppa o vrheetö, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Pr( ξ = ) =, =,,3, 4,5,6 6 Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyys TKK Ilkka Mell 9

12 9. Satuasmuuttujat ja todeäkösyysjakaumat jakauma muodostavat tlastollse mall el todeäkösyysmall opahetolle satuaslmöä. Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa dskreetks tasaseks jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 4. Tostuva opahetto. Hetetää oppaa tostuvast ja tarkastellaa satuaslmöä se heto järjestysumeroa, jolla saadaa esmmäse kuutoe. Alkestapahtumat: Nde hettoje järjestysumerot, jolla vodaa saada. kuutoe:,, 3, Otosavaruus: S = {Heto järjestysumero =,, 3, } Otosavaruus o tässä umerotuvast ääretö joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee järjestysumeroo ltetää vastaava kokoasluku: ξ(heto järjestysumero ) =, =,, 3, Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku oppaa hetetää tostuvast. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oppa o vrheetö ja hetot ovat tosstaa rppumattoma, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: 5 Pr( ξ = ) =, =,,3, K 6 6 Oletus perustuu seuraavaa päättelyketjuu (ks. tarkemm esmerkkä tämä luvu kappaleessa Dskreett satuasmuuttujat ja de todeäkösyysjakaumat): () Jos kuutoe saadaa esmmäse kerra. hetossa, stä ee o täytyyt tapahtua ( ) hettoa, jossa e ole saatu kuutosta. () Jos oppa o vrheetö, jokase slmäluvu todeäkösyys o /6, jollo todeäkösyys slle, että e saada kuutosta o 5/6. () Koska hetot oletett tosstaa rppumattomks, todeäkösyys slle, että saadaa es ( ) e kuutosta ja vasta. hetto ataa kuutose o rppumattome tapahtume tulosääö ojalla Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall tostuvalle opahetolle, ku satuaslmöä tarkastellaa esmmäse kuutose järjestysumeroa. TKK Ilkka Mell 0

13 9. Satuasmuuttujat ja todeäkösyysjakaumat Koska satuasmuuttuja ξ saa va erllsä arvoja, stä saotaa dskreetks. Satuasmuuttuja ξ oudattaa dskreettä jakaumaa, jota kutsutaa geometrseks jakaumaks; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 5. Oepyörä pyöräytys satuaslmöä. Tarkastellaa oepyörä pyöräytystä satuaslmöä. Oletetaa, että oepyörä keskpsteesee o asetettu vapaast pyörvä osot, jota pyöräytetää pelssä ja tarkastellaa satuaslmöä kulmaa, joka osot pysähdyttyää muodostaa lähtöasetoosa verrattua. Alkestapahtumat: Kulmat välllä [0, 360 ) Otosavaruus: S = {Kulma x x [0, 360 )} Otosavaruus o tässä ylumerotuvast ääretö joukko. Määrtellää reaalarvoe fukto ξ, joka lttää otosavaruude S alkoh umeerse kood ste, että jokasee kulmaa x ltetää vastaava reaalluku x: ξ(kulma x) = x Fuktota ξ kutsutaa satuasmuuttujaks, koska sattuma määrää mkä fukto arvosta realsotuu, ku osotta pyöräytetää. Huomaa, että ξ o kutek fuktoa täys määrätty. Jos oepyörä tom vrheettömäst, vomme tehdä seuraava oletukse stä todeäkösyyksstä, jolla ξ saa arvosa: Jos [ ab, ] [0,360) b a Pr( ξ [ ab, ]) = 360 Tämä perustuu vaatmuksee (ks. tarkemm esmerkkä kappaleessa Jatkuvat satuasmuuttujat ja de todeäkösyysjakaumat), joka mukaa todeäkösyys slle, että osot pysähtyy vällle [a, b] e saa rppua väl sjasta oepyörä kehällä, vaa aoastaa väl ptuudesta. Satuasmuuttuja ξ arvot yhdessä h ltettyje todeäkösyykse kassa muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Satuasmuuttuja ξ ja se todeäkösyysjakauma muodostavat tlastollse mall el todeäkösyysmall oepyörä pyöräytykselle satuaslmöä. Koska satuasmuuttuja ξ saa kakk reaallukuarvot välllä [0, 360), stä saotaa jatkuvaks. Satuasmuuttuja ξ oudattaa jatkuvaa jakaumaa, jota kutsutaa jatkuvaks tasaseks jakaumaks; lsätetoja: ks. lukua Jatkuva jakauma. TKK Ilkka Mell

14 9. Satuasmuuttujat ja todeäkösyysjakaumat 9.. Satuasmuuttujat ja todeäkösyysjakaumat: Määrtelmät Satuasmuuttuja Olkoo ( S, F,Pr) todeäkösyyskettä, jossa ss S =otosavaruus (perusjoukko) F = otosvaruude S osajoukkoje joukossa määrtelty σ algebra Pr = σ algebra F alkolle määrtelty todeäkösyysmtta Jos ξ o otosavaruude S reaalarvoe (ja mtalle) fukto el ξ : S ξ o satuasmuuttuja. Satuasmuuttuja ξ määrtelmästä seuraa, että jos Ks. kuvaa okealla. s S ξ() s Satuasmuuttuja lttää satuaslmö tulosvahtoehtoh reaalluvut ta umeerset koodt. Ste satuasmuuttuja kuvaa satuaslmö tulosvahtoehtoja umeersessa muodossa. O syytä huomata, että satuasmuuttuja o fuktoa täys määrätty, mutta sattuma määrää mkä fukto arvosta realsotuu. Huomautus: Saa satuasmuuttuja o termä sä melessä epäostuut, että se e kerro stä oleasta asaa, että satuasmuuttuja o fukto. Jotta reaalarvoe fukto kelpas satuasmuuttujaks, se o oltava mtalle. Ste mkä tahasa otosavaruude reaalarvoe fukto e kelpaa satuasmuuttujaks. Vodaa osottaa, että s. dskreett ja jatkuvat satuasmuuttujat jota tässä estyksessä pelkästää kästellää ovat mtallsa fuktota. Emme täsmeä mtallsuude kästettä tässä estyksessä. Todeäkösyysjakauma Satuasmuuttuja ξ todeäkösyysjakaumalla tarkotetaa kuvaukse ξ : S S reaallukuje joukkoo dusomaa todeäkösyysmttaa. Todeäkösyysjakauma kuvaa koko otosavaruude S todeäkösyysmassa (= ) jakautumsta otosavaruudessa S määrtelly satuasmuuttuja ξ arvoalueella. Todeäkösyysjakauma merktys satuaslmö tlastollsea malla o sä, että kakke satuaslmö tapahtume todeäkösyydet halltaa täydellsest, jos satuaslmö tulosvahtoehtoja kuvaava satuasmuuttuja ja se todeäkösyysjakauma tuetaa. s ξ R ξ(s) TKK Ilkka Mell

15 9. Satuasmuuttujat ja todeäkösyysjakaumat Todeäkösyysjakaumat tlastollsa mallea Tlastotetee kehttää ja soveltaa matemaattsa meetelmä ja malleja, jode avulla jostak reaalmaalma lmöstä pyrtää tekemää johtopäätöksä lmötä kuvaave umeerste tetoje perusteella sellasssa tlatessa, jossa lmöh (ta tä kuvaav tetoh) lttyy epävarmuutta ja satuasuutta. Tlastollste meetelme ja malle avulla pyrtää erottamaa ja kuvaamaa lmöde (ta okeamm: lmötä kuvaave tetoje) sääömukaset ja satuaset prteet. Koska tlastotetee tutkm lmöh (ta tä kuvaav tetoh) lttyy epävarmuutta ja satuasuutta, tlastollset meetelmät ja mallt perustuvat todeäkösyyslasketaa. Satuaslmöde tlastollset mallt kuvaavat lmöde tulosvahtoehdot ja de todeäkösyydet matemaattsessa muodossa. Satuaslmö tlastollsessa mallssa el todeäkösyysmallssa o oltava seuraavat osat: () () Ilmö tulosvahtoehtoja umeersessa muodossa kuvaava satuasmuuttuja. Todeäkösyysmassa jakautumsta satuasmuuttuja arvoalueelle kuvaava todeäkösyysjakauma. Ku satuaslmölle kostruodaa tlastollsa malleja, vaadtaa tlastotetee ja todeäkösyyslaskea tetoje lsäks hyvä tetoja lmötä selttävästä taustateorasta. Taustateora tuottaa se teteeala, joka alueesee lmö kuuluu. Esmerkk: Taloudellste lmöde tlastollsessa aalyysssa el ekoometrassa taustateoraa o taloustede. Tlastolle tutkmus o parhammllaa tlastotetee, todeäkösyyslaskea ja tutkmukse kohteea olevaa lmötä selttävä taustateora yhtespelä. Teoreettse tlastotetee tehtävää o kostruoda tutkmukse kohteea olevlle satuas lmölle tlastollsa malleja, jotka selttävät lmöstä saatuje havatoje käyttäytymse. Emprse tlastotetee tehtävää o selvttää, ovatko kostruodut tlastollset mallt sopu soussa havatoje kassa. Huomaa, että tlastolle mall o teoreette oletus, joka ptää asettaa test havatoje tutkmukse kohteea olevasta lmöstä tuottamaa formaatota vastaa; lsätetoja tlastollssta mallesta: ks. mostetta Tlastollset meetelmät. Satuasmuuttuje tyyppejä Satuasmuuttuja määrtelt edellä mtallsea fuktoa otosavaruudesta reaallukuje joukkoo. Mtallset fuktot vovat olla fuktoa hyv momutkasa. Kakssa tlastotetee tavaomasssa sovelluksssa tullaa kutek yleesä hyv tomee seuraave satuasmuuttuje tyyppe kassa: () () Dskreett satuasmuuttujat. Jatkuvat satuasmuuttujat. Satuasmuuttujaa o dskreett, jos se arvoalue o dskreett joukko el se arvoalue muodostuu erllsstä reaalaksel pstestä. Dskreet satuasmuuttuja arvoalue o aa joko äärelle ta korketaa umerotuvast ääretö. Dskreet satuasmuuttuja todeäkösyysjakauma määrttelee alkestapahtume todeäkösyydet. Kakke mude tapahtume todeäkösyydet saadaa alkestapahtume todeäkösyyksstä todeäkösyyde laskusäätöje avulla. TKK Ilkka Mell 3

16 9. Satuasmuuttujat ja todeäkösyysjakaumat Satuasmuuttujaa o jatkuva, jos se arvoalue o jok reaalaksel osaväl. Jatkuva satuasmuuttuja arvoalue o reaallukuje jouko osavälä ylumerotuva. Jatkuva satuasmuuttuja todeäkösyysjakauma määrttelee satuasmuuttuja arvoalueesee kuuluve reaalaksel väle todeäkösyydet. Kakke mude tapahtume todeäkösyydet saadaa väle todeäkösyyksstä todeäkösyyde laskusäätöje avulla. Rajotumme jatkossa pelkästää dskreette ja jatkuve satuasmuuttuje kästtelyy Dskreett satuasmuuttujat ja todeäkösyysjakaumat Johdatteleva esmerkk Kuva okealla esttää oepyörää, joka pta o jaettu vtee sektor A, B, C, D, E Alla olevassa taulukossa o estetty sektorede ptaaloje osuudet oepyörä kokoaspta alasta: Sektor % A 30 B 5 C 0 D 5 E 0 Summa 00 D 5 % C 0 % E 0 % B 5 % A 30 % Oepyörä keskpsteesee o ktetty vapaast pyörvä osot. Tarkastellaa pelä, jossa osotta pyöräytetää ja pelaaja yrttää arvata mh sektoresta A, B, C, D, E osot pysähtyy. Pel o satuaslmö, joho lttyvä otosavaruus el mahdollste tulosvahtoehtoje joukko o S = {Sektort A, B, C, D, E} Oletetaa, että todeäkösyydet, jolla osot pysähtyy sektoreh A, B, C, D, E suhtautuvat tossa kute sektorede pta alat. Tällö vomme asettaa: Pr(A) = 0.30 Pr(B) = 0.5 Pr(C) = 0.0 Pr(D) = 0.5 Pr(E) = 0.0 Määrtellää satuasmuuttuja ξ, joka lttää tulosvahtoehtoh A, B, C, D, E reaalluvut seuraavalla tavalla: A B TKK Ilkka Mell 4

17 9. Satuasmuuttujat ja todeäkösyysjakaumat C 3 D 4 E 5 Satuasmuuttuja ξ saa arvosa seuraavlla todeäkösyyksllä: Pr(ξ = ) = 0.30 = Pr(A) Pr(ξ = ) = 0.5 = Pr(B) Pr(ξ = 3) = 0.0 = Pr(C) Pr(ξ = 4) = 0.5 = Pr(D) Pr(ξ = 5) = 0.0 = Pr(E) Saomme, että satuasmuuttuja ξ o dskreett, koska ξ saa va erllsä arvoja. Kutsumme satuasmuuttuja ξ arvoh lttyvä todeäkösyyksä pstetodeäkösyyksks, koska e lttyvät erlls pstes reaalaksellla. Dskreet satuasmuuttuja ξ arvot ja h lttyvät pstetodeäkösyydet muodostavat satuasmuuttuja ξ todeäkösyysjakauma. Dskreet satuasmuuttuja ξ todeäkösyysjakaumaa vodaa kuvata se pstetodeäkösyysfuktolla. Dskreet satuasmuuttuja ξ pstetodeäkösyysfukto kertoo mte koko otosavaruude todeäkösyysmassa (= ) jakautuu satuasmuuttuja ξ mahdollslle arvolle. O helppo ähdä, että pstetodeäkösyysfukto f o fuktoa epäjatkuva ja saa postvsa arvoja va erllsssä pstessä. Esmerk tapauksessa satuasmuuttuja ξ pstetodeäkösyysfukto f vodaa määrtellä seuraavalla tavalla: f() = Pr(ξ = ) = 0.30 = Pr(A) f() = Pr(ξ = ) = 0.5 = Pr(B) f(3) = Pr(ξ = 3) = 0.0 = Pr(C) f(4) = Pr(ξ = 4) = 0.5 = Pr(D) f(5) = Pr(ξ = 5) = 0.0 = Pr(E) Olkoo x o dskreet satuasmuuttuja ξ mahdolle arvo ja Pr( ξ = x) = px olkoo vastaava pstetodeäkösyys. Satuasmuuttuja ξ pstetodeäkösyysfuktota vodaa kuvata graafsest pkkfuktolla, joka saadaa yhdstämällä psteet ja tossa jaolla. (x, 0) (x, p x ) Alla oleva kuva esttää esmerkssä määrtelly dskreet satuasmuuttuja ξ todeäkösyysjakauma pstetodeäkösyysfuktota vastaavaa pkkfuktota. TKK Ilkka Mell 5

18 9. Satuasmuuttujat ja todeäkösyysjakaumat Pkke ptuudet kuvassa vastaavat ss tä todeäkösyyksä, jolla satuasmuuttuja ξ saa arvosa: p = f() = Pr(ξ = ) = 0.30 = Pr(A) p = f() = Pr(ξ = ) = 0.5 = Pr(B) p 3 = f(3) = Pr(ξ = 3) = 0.0 = Pr(C) p 4 = f(4) = Pr(ξ = 4) = 0.5 = Pr(D) p 5 = f(5) = Pr(ξ = 5) = 0.0 = Pr(E) Pstetotodeäkösyysfukto (, p ) (, p ) (3, p 3 ) (4, p 4 ) (5, p 5 ) Dskreett satuasmuuuttuja Olkoo otosavaruus S äärelle ta umerotuvast ääretö. Tällö vomme merktä jos S o äärelle ja S = s s K s {,,, } S = { s, s, s, K} 3 jos S o umerotuvast ääretö. Olkoo ξ : S satuasmuuttuja el otosavaruude (mtalle) kuvaus reaallukuje joukkoo. Jos otosavaruus S o äärelle ta umerotuvast ääretö, jollo myös fukto ξ arvoalue o äärelle ta umerotuvast ääretö, saomme, että satuasmuuttuja ξ o dskreett. Dskreett satuasmuuttujat lttyvät sellas todeäkösyyslaskea sovelluks, jossa tarkastellaa dskreettejä suureta. Dskreettejä suureta ovat esmerkks seuraavat: Laatuerot (koodattua umeersks) Luokttelut ja ryhmttelyt (koodattua umeersks) Järjestysluvut Lukumäärät Esmerkk. Laaduvalvota. Koe tekee erästä tuotetta sarjatuotatoa kpl pävässä. Oletetaa, että osa tuottesta o vallsa ja vallset tuotteet sytyvät valmstusprosess akaa täys sattumavarasest. Oletetaa edellee, että vallste tuottede suhteelle osuus valmstetusta tuottesta o keskmäär p. Tällö vomme ataa luvulle p todeäkösyystulka: p = todeäkösyys, että satuasest valttu tuote o valle Vodaa osottaa, että vallste tuottede lukumäärä pävä akaa tehtyje tuottede joukossa o dskreett satuasmuuttuja, joka oudattaa bomjakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma TKK Ilkka Mell 6

19 9. Satuasmuuttujat ja todeäkösyysjakaumat Esmerkk. Laaduvalvota. Koe tekee erästä tuotetta sarjatuotatoa kpl pävässä. Oletetaa, että osa tuottesta o vallsa ja vallset tuotteet sytyvät valmstusprosess akaa täys sattumavarasest. Oletetaa edellee, että vallste tuottede suhteelle osuus valmstetusta tuottesta o keskmäär p. Tällö vomme ataa luvulle p todeäkösyystulka: p = todeäkösyys, että satuasest valttu tuote o valle Pomtaa tuotteta tarkastettavaks, kues löydetää esmmäe valle. Vodaa osottaa, että esmmäse vallse tuottee järjestysumero tarkastettuje tuottede joukossa o dskreett satuasmuuttuja, joka oudattaa geometrsta jakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma. Esmerkk 3. Joo. Oletetaa, että palvelujooo tulee asakkata keskmäär k kappaletta akaykskköä kohde. Vodaa osottaa, että tety edellytyks jollak akavälllä jooo tuleve asakkade lukumäärä o dskreett satuasmuuttuja, joka oudattaa Posso jakaumaa; lsätetoja: ks. luvu Dskreettejä jakauma. Huomautus: Jos jollak akavälllä jooo tuleve asakkade lukumäärä oudattaa Possojakaumaa, aka, joka seuraava asakkaa tuloa jooo joudutaa odottamaa o jatkuva satuasmuuttuja, joka oudattaa ekspoettjakaumaa; lsätetoja: ks. lukua Jatkuva jakauma. Esmerkk 4. Järve kalakaa koo laskeme. Pyydystetää järvestä joukko kaloja elävä, merktää pyydystetyt kalat ja lasketaa e takas järvee. Pyydystetää järvestä jok aja kuluttua uus joukko kaloja. Vodaa osottaa, että merkttyje kaloje lukumäärä uudessa pyyssä o tety edellytyks dskreett satuasmuuttuja, joka oudattaa hypergeometrsta jakaumaa; lsätetoja: ks. lukua Dskreettejä jakauma. Huomautus: Kuvattua merktä takaspyyt meetelmää sovelletaa todellak (sopvast modfotua) rsta ja kalakatoje laskemsee. Dskreet satuasmuuttuja pstetodeäkösyysfukto Olkoo ξ : S dskreett satuasmuuttuja ja olkoo T satuasmuuttuja ξ saame äärelle ta umerotuvast ääretö arvoje joukko. Jos satuasmuuttuja ξ saame arvoje joukko T o äärelle, vomme krjottaa T = {x, x,, x } Jos satuasmuuttuja ξ saame arvoje joukko T o umerotuvast ääretö, krjotamme T = {x, x, x 3, } TKK Ilkka Mell 7

20 9. Satuasmuuttujat ja todeäkösyysjakaumat Reaalarvoe fukto f määrttelee dskreet satuasmuuttujaξ pstetodeäkösyysfukto, jos seuraavat kolme ehtoa pätevät: () f( x ) 0 kaklle x T () f( x ) = Pr( ξ = x ) kaklle x T (3) f( x ) = x T Saomme, että todeäkösyys Pr( ξ = x ) = f( x ) = p, x T o satuasmuuttuja ξ arvoa x vastaava pstetodeäkösyys. Ehdo () mukaa pstetodeäkösyysfukto f o kakkalla e egatve. Ehdo () mukaa pstetodeäkösyysfukto f arvot pstessä x ovat todeäkösyyksä. Ehdo (3) mukaa kakke pstetodeäkösyykse summa =. Olkoo f dskreet satuasmuuttuja ξ pstetodeäkösyysfukto, T satuasmuuttuja ξ saame arvoje joukko ja Pr( ξ = x ) = f( x ) = p, x T satuasmuuttuja ξ arvoa x vastaava pstetodeäkösyys. Satuasmuuttuja ξ pstetodeäkösyysfukto vodaa määrtellä kaklle reaalluvulle kaavalla p, x T f( x) = Pr( ξ = x) = 0, x T Nä määrteltyä pstetodeäkösyysfukto f o epäjatkuva fukto, jossa o epäjatkuvuuskohta jokaselle x T. Dskreett todeäkösyysjakauma Jos f o dskreet satuasmuuttuja ξ : S pstetodeäkösyysfukto, saomme, että satuasmuuttuja ξ oudattaa dskreettä todeäkösyysjakaumaa, joka pstetodeäkösyysfuktoa o f. Dskreet satuasmuuttuja ξ pstetodeäkösyysfukto f kertoo mte koko otosavaruude S todeäkösyysmassa (= ) jakautuu satuasmuuttuja ξ saamlle arvolle. Pstetodeäkösyysfukto avulla vodaa määrätä kakk ko. satuaslmöö lttyvät todeäkösyydet. Pstetodeäkösyysfukto kuvaaja Olkoo f dskreet satuasmuuttuja ξ pstetodeäkösyysfukto, T satuasmuuttuja ξ saame arvoje joukko ja f( x ) = Pr( ξ = x ) = p, x T TKK Ilkka Mell 8

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot

Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava. Kokonaistodennäköisyys ja Bayesin kaava: Esitiedot TKK (c) Ilkka Mell (2004) Kokoastodeäkösyys ja Kokoastodeäkösyys ja : Johdato Kokoastodeäkösyyde ja Bayes kaavoje systeemteoreette tulkta Johdatus todeäkösyyslasketaa Kokoastodeäkösyys ja TKK (c) Ilkka

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin

Lisätiedot

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2 TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?

Lisätiedot

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa Mat-.6 Sovellettu todennäköisyyslaskenta B Mat-.6 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Verkot ja todennäköisyyslaskenta Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Mat-2.091 Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat Mat-2.09 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Jatkuvat jakaumat Avainsanat: Binomijakauma, Eksponenttijakauma, Jatkuva tasainen jakauma, Kertymäfunktio, Mediaani, Normaaliapproksimaatio, Normaalijakauma,

Lisätiedot

B. Siten A B, jos ja vain jos x A x

B. Siten A B, jos ja vain jos x A x Mat-1.2600 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Johdanto Joukko-opin peruskäsitteet Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva

14 Jatkuva jakauma. Käsitellään kuitenkin ennen täsmällisiä määritelmiä johdatteleva 4 Jatkuva jakauma Edellä määriteltiin diskreetiksi satunnaismuuttujaksi sellainen, joka voi saada vain (hyppäyksittäin) erillisiä arvoja. Jatkuva satunnaismuuttuja voi saada mitä hyvänsä arvoja yleensä

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

Todennäköisyysjakaumia

Todennäköisyysjakaumia 8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen

Lisätiedot

Bernoullijakauma. Binomijakauma

Bernoullijakauma. Binomijakauma Beroulljaauma Beroull oe o ahde mahdollse ulostulo oe, jossa taahtumsta äytetää mtysä ostume ja eäostume. Esmerejä: rahahetto (ruua ta laava), lase sytymä (tyttö ta oa), helö verryhmä ( ta c ), oselja

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

031021P Tilastomatematiikka (5 op) viikot 5 6

031021P Tilastomatematiikka (5 op) viikot 5 6 031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan

Lisätiedot

Johdatus tn-laskentaan torstai 16.2.2012

Johdatus tn-laskentaan torstai 16.2.2012 Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla

Mat-2.108 Sovelletun matematiikan erikoistyö. Sijoitussalkun optimointi Black-Litterman -mallilla Mat-2.8 Sovelletu matematka erkostyö Sjotussalku optmot Black-Ltterma -malllla Kar Vatae (4753V) 9.5.24 Ssällysluettelo Johdato...2 2 Sjotussalku optmot Markowtz malllla...3 2. Sjotussalku optmot...5 2.2

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma

Diskreetit todennäköisyysjakaumat. Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Diskreetit todennäköisyysjakaumat Kertymäfunktio Odotusarvo Binomijakauma Poisson-jakauma Satunnaismuuttuja Satunnaisilmiö on ilmiö, jonka lopputulokseen sattuma vaikuttaa Satunnaismuuttuja on muuttuja,

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot

Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta. Verkot ja todennäköisyyslaskenta: Esitiedot T (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan T (c) Ilkka Mellin (2004) 2 : Mitä oimme? Verkkoteoria on hyödyllinen sovelletun matematiikan osa-alue, jolla on sovelluksia esimerkiksi logiikassa,

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö

Hanna-Kaisa Hurme Teräksen tilastollinen rakenneanalyysi Diplomityö Hanna-Kasa Hurme Teräksen tlastollnen rakenneanalyys Dplomtyö Tarkastajat: professor Kejo Ruohonen (TUT) ja dosentt Esko Turunen (TUT) Tarkastajat ja ahe hyväksytty Luonnonteteden ja ympärstöteknkan tedekuntaneuvoston

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Todennäköisyys ja tilastot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion 3 MAA Todennäköisyys ja tilastot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Todennäköisyys ja tilastot (MAA) Pikatesti ja kertauskokeet

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille

Todennäköisyyslaskenta sivuaineopiskelijoille Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys

Määritelmä 3.1 (Ehdollinen todennäköisyys) Olkoot A ja B otosavaruuden Ω tapahtumia. Jos P(A) > 0, niin tapahtuman B ehdollinen todennäköisyys Luku 3 Satunnaismuuttujat, ehdollistaminen ja riippumattomuus Tässä luvussa käsitellään satunnaismuuttujien ominaisuuksia ja täydennetään todennäköisyyslaskennan tietoja. Erityisesti satunnaismuuttujien

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Mallintamisesta. Mallintamisesta

Mallintamisesta. Mallintamisesta Laajasti ymmärtäen jonkin tarkasteltavan ilmiön kuvaamista (esim. matemaattista) kuhunkin tarkoitukseen (ennustaminen, analysointi, visualisointi) parhaiten sopivalla tavalla. Ilmiön pukemista helposti

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin!

Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! MAA6 Kurssikoe 1.11.14 Jussi Tyni ja Juha Käkilehto Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A-OSIO: Laske kaikki

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN VUO-KIINTEISTÖPALVELUT 50 VUOTTA Vuosaarelaset asunto-osakeyhtöt perustvat vuonna 1965 Vuosaaren Isännötsjätomsto Oy:n, joka tuott omstajlleen kohtuuhntasa

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot