Koodaa tehtävän ratkaisu Matlab-ohjelmaa hyväksi käyttäen. Ratkaisumenetelminä käytä Newtonin menetelmää ja sekanttimenetelmää.

Koko: px
Aloita esitys sivulta:

Download "Koodaa tehtävän ratkaisu Matlab-ohjelmaa hyväksi käyttäen. Ratkaisumenetelminä käytä Newtonin menetelmää ja sekanttimenetelmää."

Transkriptio

1 Ohjelmointi ja Matlab syksy 010 Kotitehtävä palautettava mennessä Methyl alcohol can be synthesized by passing a mixture of CO and H over a suitable catalyst. For a feed mixture containing moles of hydrogen to 1 mole of carbon monoxide, x, the number of moles of hydrogen converted at 300 o C and 40 bar, is indicated by the following equation: 3 x x 49 = 0 x x (1) The solution to the problem corresponds to that value x at which to zero. 3 x x 49 x x reduces Koodaa tehtävän ratkaisu Matlab-ohjelmaa hyväksi käyttäen. Ratkaisumenetelminä käytä Newtonin menetelmää ja sekanttimenetelmää. Ongelmanratkaisu: Menetelmät: Newtonin menetelmä funktion nollakohdan etsimistä varten on seuraavanlainen x f ( xk ) '( x ) = k 1 x + k f () k Menetelmän käyttöön tarvitaan funktio, sen derivaatta (jonka laskeminen voi olla työlästä) sekä sopiva alkuarvaus x 0. Newtonin menetelmä voi divergoitua, jos alkuarvaus on kovin kaukana todellisesta nollakohdasta. Sekanttimenetelmä funktion nollakohdan etsimistä varten on seuraavanlainen x k+ 1 = x k ( k)( k k 1 ) ( ) ( ) f x x x f x f x k k 1 Menetelmän käyttöön tarvitaan funktio sekä kaksi alkuarvausta x 0 ja x 1. Derivaattaa ei tarvita. Molempia menetelmiä käytettäessä on syytä huomata, että (1) ei ole määritelty pisteessä x =. Funktiomme on seuraavanlainen Tarvittavat tiedot: 3 x x f ( x) = 49 x x (4) Funktion derivaatan laskemista varten muokataan funktio seuraavaan muotoon (vakion voimme jättää pois, koska sen derivaatta on nolla...) (3)

2 ( ) g x = x ( ) ( 3 x 3 ) x Tulon derivointisääntöä soveltamalla saamme ja edelleen (5) x x g' ( x) = ( 3 x) D 3 + D 3 ( 3 x) ( x) ( x) ( ) 3 ( ) ( 1) 3( ) ( 1) x x x x g' ( x) = ( 3 x) ( 3 x)( 1) ( x) ( x) ( x ) ( x) 3 ( x) ( x) ( ) ( ) x 3 3 g' ( x) = 1+ x x (8) Muoto (8) on tehtävän laskennan suhteen riittävän yksinkertaisessa muodossa, mutta (8) voidaan vielä sieventää muotoon g' ( x) 18 6x = ( x) 4 Nyt meillä on käytössämme funktio ja sen derivaatta. Vielä tarvitaan sopiva aloituspiste. Funktion arvot vaihtelevat rajusti ja funktiolla on epäjatkuvuuskohta. Eli tarvitsemme jonkinlaisen käsityksen funktion käyttäytymisestä. Matlabissa on sopiva mokkula tähän käyttötarkoitukseen eli fplotkomento. Haarukoimalla fplot-komennolla päädymme esim. seuraavanlaiseen tilanteeseen: (6) (7) (9) >> fplot ( '((3-x)/(-x))^ * (x/(-x)) - 49', [ ]) ; grid ;

3 Nollakohdan summittaisen paikan haarukointiin voi tietysti käyttää myös Excel-taulukkolaskentaohjelmaa. Nyt meillä on tiedossamme kaikki tarpeellinen koodausta varten. % K1_010_MetO.m % Hougen, Watson & Ragatz s. 1- % Matlab-koodi: % Laskee funktion arvot. fun = inline ( '((3-x)/(-x))^ * (x/(-x)) - 49', 'x') ; % Laskee derivaatan arvot. dfun = inline ( '(*(3-x)/((-x)^3))*(((3-x)/(-x))*(1+x)-x)', 'x') ; % Kuvaajan piirto. fplot ( fun, [ ]) ; grid ; % Newtonin menetelmä. % Tarvitsee KÄSIN lasketun derivaatan. disp ('Lasketaan Newtonin menetelmän avulla:') ; x = 1.8 ; % Aloituspiste. f = fun (x) ; % Funktion arvo aloituspisteessä. f_old = realmax ; disp ( [ x f ] ) ; while ( abs(f_old-f) > 1e-3 ), x = x - fun(x)/dfun(x) ; % Lasketaan uusi piste. f_old = f ; f = fun (x) ; % Funktion arvo uudessa pisteessä. disp ( [ x f ] ) ; end nollakohta = x % Sekanttimenetelmä. % Ei tarvitse derivaattaa. disp ('Lasketaan sekanttimenetelmän avulla:') ; x0 = 1.8 ; x1 = 1.85 ; % Aloituspisteet. f0 = fun (x0) ; f1 = fun (x1) ; % Funktion arvot aloituspisteissä. disp ( [ x0 f0 x1 f1 ] ) ; while ( abs(f0-f1) > 1e-3 ), t = (x1-x0)/(f1-f0) ; x = x - t * f1 ; % Lasketaan uusi piste. x0 = x1 ; x1 = x ; f0 = fun (x0) ; f1 = fun (x1) ; % Funktion arvot uusissa pisteissä. disp ( [ x0 f0 x1 f1 ] ) ; end nollakohta = x % Nollakohdan etsintä FZERO-funktion avulla. % ei toimi, jos aloituspiste on 0 tai disp ('Lasketaan FZERO-funktion avulla:') ; nollakohta = fzero ( ' (((3-x)/(-x))^ * (x/(-x) ) -49)', 1.9)

4 >> K1_010_MetO Lasketaan Newtonin menetelmän avulla: nollakohta = Lasketaan sekanttimenetelmän avulla: nollakohta = Lasketaan FZERO-funktion avulla: nollakohta = Eli : Methyl alcohol can be synthesized by passing a mixture of CO and H over a suitable catalyst. For a feed mixture containing moles of hydrogen to 1 mole of carbon monoxide, the number of moles of hydrogen converted at 300 o C and 40 bar is 1.8. Mikä on konversio? Tehtävän määrittelystä myös näemme, että 0< x <. Miksi? Menetelmien toiminnan vertailu: Newtonin menetelmä: Erittäin nopea, jos aloituspiste on lähellä todellista nollakohtaa Taipumus divergoitua eli ei löydä nollakohtaa, jos aloituspiste x 0 on huonosti valittu Tarvitsee derivaatan, jonka laskeminen käsin on työlästä ja virhealtista Numeerisen derivaatan käyttö on mahdollista (ks. opintojakso Numeeriset menetelmät ) Sekanttimenetelmä: Hitaampi kuin Newtonin menetelmä Ei tarvitse derivaattaa Aloituspisteiden ( x 0 ja x 1 ) valinta voi olla ongelmallista Matlabin fzero-funktio: testattu menetelmä yleensä on syytä käyttää testattuja menetelmiä idioottivarmaa numeerista nollakohdan hakumenetelmää ei olekaan... Lisää tietoa aiheesta: Oheinen moniste. Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.

5 1 Ohjelmointi ja Matlab syksy 010 Kotitehtävä palautettava mennessä In analyzing the equilibrium developed in the outgoing gas when a feed mixture of HO and CO in a molal ratio of 5 to 1 is passed though a bed of coke maintained at 1100 K and 10 bar, the following two independent equations are obtained: ( x y) x = (a) 1 x+ y 5 x ( )( ) ( 1 x+ y) ( x y)( 6 + y) = 1.01 x = moles of HO converted, per 6 moles of feed, according to the water-gas reaction, HO+ CO CO H + y = moles of CO converted, per 6 moles of feed, according to the reaction, C+ CO CO If the numerical values of x and y can be determined, the equilibrium gas composition may be calculated. Koodaa tehtävän ratkaisu Matlab-ohjelmaa hyväksi käyttäen. Ratkaisumenetelminä käytä Newtonin menetelmää (joka tässä tapauksessa tarkoittaa eri menetelmää kuin kotitehtävässä 1) ja Broydenin menetelmää. Menetelmien kuvaukset oheisessa paperissa. Menetelmät: Menetelmien kuvaukset ja ongelmanratkaisun problematiikka on kuvattu monisteessa (Systems_of_nonlinear_equations.pdf). (b) Tarvittavat tiedot: Sekä Newtonin menetelmässä että Broydenin menetelmässä tarvitaan Jacobin matriisia (esim. f1 f1 x1 x n J = fm fm x 1 xn Seuraavaksi on laskettava tarvittavat osittaisderivaatat. Nyt derivoitavat funktiot ovat (c) ( x y) ( x y) x ( 1 x+ y)( 5 x) f1, = 0.944

6 f ( x y) ( 1 x+ y) ( x y)( 6 + y), = 1.01 Nyt saamme ensimmäisestä funktiosta ja edelleen ( ) ( 1 )( 5 ) x y x x+ y x ( 1 x+ y)( 5 x) ( x y) x f 1 x = x x ( 1 x+ y)( 5 x) ( ) ( 1 )( 5 ) x y x x+ y x ( 1 x+ y)( 5 x) ( x y) x f 1 y y = y ( 1 x+ y)( 5 x) ( 1 x + y)( 5 x) ( x y) ( x y) x ( 6+ x y) ( 1 )( 5 ) = x x+ y x f1 ( 1 x + y)( 5 x) ( x) ( x y) x ( 10 x) ( 1 )( 5 ) = y x+ y x f1 Toisesta funktiosta saamme ja edelleen ( ) ( ) ( )( 6 ) 1 x+ y ( x y)( 6 + y) ( x y)( 6+ y) 1 x+ y f x = x x x y + y ( ) 1 x+ y ( x y)( 6 + y) ( x y)( 6+ y) ( 1 x+ y) f y y = y ( x y)( 6 + y) ( x y)( 6+ y) ( )( 1 x+ y) ( 1 x+ y) ( 6+ y) f = ( )( 6 ) x x y + y ( x y)( 6+ y) 4( 1 x+ y) ( 1 x+ y) ( x 6 y) f = ( )( 6 ) y x y + y Eo. yhtälöt voisi vielä sievennellä, mutta laskennan kannalta katsottuna se ei ole tarpeen (ks. miten Jacobin matriisi on koodattu Matlab-koodiksi).

7 3 Aloituspisteen valinta: Alkuperäisistä yhtälöistä näemme, että aloitusarvoina x ja y eivät voi olla samoja eikä x voi olla 5. Aloitusarvoiksi soveltunevat pienet kokonaisluvut, esim. x = 4 ja y = 3. Voisimme myös ratkaista sekä a:sta että b:stä y:t ja katsoa miten saadut funktiot käyttäytyvät, mutta tämä tapa on suhteellisen työläs. Matlab koodit: Ensiksi Newtonin menetelmä: % K_010_MetO_a.m % Newton's method. % , & Juha Jaako format compact ; clear all ; hold on ; disp ( 'Newtonin menetelmä' ) ; x = [ 4 3 ]' ; plot (x(1), x(), 'k*') ; axis ( [ ] ) ; % Määritellään funktiot (inline). f1 = inline ( '(((x-y)*x)/((1-x+*y)*(5-x))) ', 'x', 'y' ) ; f = inline ( '((1-x+*y)^/((x-y)*(6+y))) ', 'x', 'y' ) ; % Määritellään Jacobin matriisi (inline). % Ensimmäinen funktio. t1 = [ '((1-x+*y)*(5-x))' ] ; t = [ '((x-y)*x)' ] ; t3 = [ '(' t1 '^)' ] ; t4 = [ '(' t1 '*(*x-y)-' t '*(*x-*y-6))/' t3 ] ; J11 = inline ( t4, 'x', 'y' ) ; t5 = [ '(' t1 '*(-x)-' t '*(10-*x))/' t3 ] ; J1 = inline ( t5, 'x', 'y' ) ; % Toinen funktio. t1 = [ '((x-y)*(6+y))' ] ; t = [ '((1-x+*y)^)' ] ; t3 = [ '(' t1 '^)' ] ; t4 = [ '(' t1 '*((-)*(1-x+*y))-' t '*(6+y))/' t3 ] ; J1 = inline ( t4, 'x', 'y' ) ; t5 = [ '(' t1 '*(4*(1-x+*y))-' t '*((x-6-*y)))/' t3 ] ; J = inline ( t5, 'x', 'y' ) ; % Asetaan suppenemisparametrit. erosuure = realmax ; % Testisuureen alkuarvo. laskuri = 0 ; % Nollataan kierroslaskuri. TOLERANSSI = 1e-6 ; % Laskentatoleranssi. MAKSIMIKIERROKSET = 10 ; % Asetaan maksikierrosten määrä disp ( [ x' ] ) ; % Aloitetaan laskenta. while ( (erosuure > TOLERANSSI) & (laskuri < MAKSIMIKIERROKSET) ), %for i = 1 : 10, laskuri = laskuri + 1 ; % Kasvatetaan kierroslaskuria. f = [ f1(x(1),x()) ; f(x(1),x()) ] ;

8 4 J = [ J11(x(1),x()), J1(x(1),x()) ;... J1(x(1),x()), J(x(1),x()) ] ; sk = J \ (-f) ; % Lasketaan Newton-askel. s. 39 x = x + sk ; % Uuden pisteen päivityskaava. plot (x(1), x(), 'k*') ; text (x(1), x(), [ '\leftarrow' numstr(laskuri) ' ']) ; line ( [x(1), x(1)-sk(1)], [x(), x()-sk()] ) ; % Lasketaan uuden testisuureen arvo. erosuure = max (abs ([ f1(x(1),x()); f(x(1),x()) ] - f)) ; disp ( [ x' erosuure ] ) ; end % Tulostetaan ratkaisu. disp ( [ 'Ratkaisu:' ] ) ; disp ( x' ) ; disp ( [ 'Kierroksia:' ] ) ; disp (laskuri) ; hold off ; Kun ohjelma ajetaan komentoikkunasta, saamme >> K_010_MetO_a Newtonin menetelmä 4 3 (erosuure) Ratkaisu: Kierroksia: Ratkaisu löytyy vähin laskentakierroksin, joka johtuu siitä, että alkuarvauksemme oli hyvä. Ks. seuraava kuvio: Seuraavaksi Broydenin menetelmä: % K_010_MetO_b.m % Broyden's method.

9 5 % Juha Jaako format compact ; clear all ; disp ( 'Broydenin menetelmä' ) ; tol = ; xk = [ 4 3 ]' ; % Define functions. f1 = inline ( '(((x-y)*x)/((1-x+*y)*(5-x))) ', 'x', 'y' ) ; f = inline ( '((1-x+*y)^/((x-y)*(6+y))) ', 'x', 'y' ) ; % Define Jacobian. % First function. t1 = [ '((1-x+*y)*(5-x))' ] ; t = [ '((x-y)*x)' ] ; t3 = [ '(' t1 '^)' ] ; t4 = [ '(' t1 '*(*x-y)-' t '*(*x-*y-6))/' t3 ] ; J11 = inline ( t4, 'x', 'y' ) ; t5 = [ '(' t1 '*(-x)-' t '*(10-*x))/' t3 ] ; J1 = inline ( t5, 'x', 'y' ) ; % Second function. t1 = [ '((x-y)*(6+y))' ] ; t = [ '((1-x+*y)^)' ] ; t3 = [ '(' t1 '^)' ] ; t4 = [ '(' t1 '*((-)*(1-x+*y))-' t '*(6+y))/' t3 ] ; J1 = inline ( t4, 'x', 'y' ) ; t5 = [ '(' t1 '*(4*(1-x+*y))-' t '*((x-6-*y)))/' t3 ] ; J = inline ( t5, 'x', 'y' ) ; a = xk(1) ; b = xk() ; disp ( 'Initial Jacobian:' ) ; % Compute initial Jacobian. - Vaihtoehto 1. Bk = [ J11(a,b), J1(a,b) ; J1(a,b), J(a,b) ] % Initial Jacobian = identity matrix. - Vaihtoehto. %Bk = eye () disp (' ') ; test = realmax ; disp ( [ a b ] ) ; k = 0 ; % Iteration counter while (test > tol), %for i = 1 : 10, f = [ f1(a,b); f(a,b) ] ; sk = Bk \ (-f) ; xk = xk + sk ; a = xk(1) ; b = xk() ; yk = ([ f1(a,b); f(a,b) ] - f ) ; test = max(abs(yk)) ; disp ( [ a b test ] ) ; % Update Jacobian. Bk = Bk + ( (yk-bk*sk)*(sk') ) / ((sk')*sk) ; k = k + 1 ; end disp ( 'Vastaus:' ) ; disp (xk') ;

10 6 disp (k) ; Ajetaan Broydenin menetelmä ensin siten, että käytetään Jacobin matriisia aloituspisteessä [4, 3] ensimmäisenä arvona: >> K_010_MetO_b Broydenin menetelmä Initial Jacobian: Bk = Vastaus: Suppeneminen on hitaampaa kuin Newtonin menetelmässä. Ajetaan Broydenin menetelmää myös siten, että emme käytä Jacobin matriisia ollenkaan, Bk = eye () : >> K_010_MetO_b Broydenin menetelmä Initial Jacobian: Bk = Vastaus: Laskenta vie entistä enemmän kierroksia eli 1, kun käytämme samaa lopetusehtoa. Vastaus: The equilibrium gas composition: x : moles of HO converted = 3.85 y : moles of CO converted =.98

11 7 Mitä menetelmää sitten pitäisi käyttää epälineaarisen yhtälöryhmän ratkaisussa? (vrt. moniste Systems_of_nonlinear_equations.pdf). Yksikäsitteistä vastausta kysymykseen ei ole olemassa. Newton-tyyppiset menetelmät ovat epäluotettavia, jos aloituspiste on kaukana haetusta. Käyttämämme menetelmän tulisi olla luotettava ja helppokäyttöinen. Yksi vaihtoehto on seuraava koodi (Broydenin menetelmä): % K_010_MetO_b1.m % Broyden's method. % & Juha Jaako format compact ; clear all ; % Aloituspiste. x = [ 4 3 ]' ; % Määritellään funktiot. f1 = inline ( '(((x-y)*x)/((1-x+*y)*(5-x))) ', 'x', 'y' ) ; f = inline ( '((1-x+*y)^/((x-y)*(6+y))) ', 'x', 'y' ) ; % Aloitusmatriisina yksikkömatriisi. B = eye () ; % Suppenemisen vartiointi. test = realmax ; k = 0 ; maksimikierrokset = 50 ; tol = 1e-6 ; % Suppenemiskriteerin alkuarvo. % Kierroslaskuri. % Laskentakierrosten yläraja. % Lopetustoleranssi. while ((test > tol) & (k < maksimikierrokset)), f = [ f1(x(1),x()) ; f(x(1),x()) ] ; % Funktion arvo. s = B \ (-f) ; % Ratkaistaan lineaarinen yhtälöryhmä. x = x + s ; % Päivitetään ratkaisu. y = ([ f1(x(1),x()); f(x(1),x()) ] - f ) ; test = max(abs(y)) ; % Päivitetään suppenemiskriteeri. % Päivitä kerroimatriisi. B = B + ( (y-b*s)*(s') ) / ((s')*s) ; k = k + 1 ; % Päivitetään kierroslaskuri. end disp ( [ 'Vastaus: x = ' numstr(x(1)) ', y = ' numstr(x())] ) ; disp ([ 'Laskentakierroksia: ' numstr(k) ]) ; Tuloste: >> K_010_MetO_b1 Vastaus: x = , y =.9718 Laskentakierroksia: 1

12 Ohjelmointi ja Matlab syksy 010 Kotitehtävä palautettava Ohessa on pdf-tiedosto (Cubic_Spline_Interpolation.pdf), jossa on kuvattu, millaisia ovat kuutiolliset splinit. Seuraava data t = [ 1964 : 1 : 009 ] ; y = [, 8, 1, 10, 6, 1, 1, 13, 19, 35, 5, 34, 1, 8, 37,... 33, 4, 3, 33, 30, 5, 14,, 8, 5, 7, 34, 38, 44, 64,... 47, 44, 6, 41, 46, 53, 51, 60, 7, 85, 79, 79, 85, 83, 105, 78 ] ; kuvaa osastolta valmistuneiden diplomi-insinöörien määriä vuosina Kun sovitamme datan kuutiollisen splinin avulla, saamme seuraavan kuvaajan: Data points Cubic spline Kuvaaja syntyy seuraavan koodin avulla (K3_010_MetO_S.m): clear all;format compact;hold on;t=[1964:1:009]; y=[,8,1,10,6,1,1,13,19,35,5,34,1,8,37,... 33,4,3,33,30,5,14,,8,5,7,34,38,44,64,... 47,44,6,41,46,53,51,60,7,85,79,79,85,83,105,78 ] ; plot(t,y,'ko');s=length(t);b=[4,1,zeros(1,s-4)]; for i=:s-3,temp=[zeros(1,i-),1,4,1,zeros(1,s-4)];b=[b;temp(1:s-)]; end;b=[b;zeros(1,s-4),1,4];b=sparse(b);h=t()-t(1);k=6/(h^); for i=1:s-,z(i)=k*(y(i)-*y(i+1)+y(i+));end;z=z';m=b\z;m=[0;m;0]; for i=1:s-1,a(i)=(m(i+1)-m(i))/(6*h);b(i)=((m(i))/); c(i)=((y(i+1)-y(i))/h)-((m(i+1)+*m(i))/6)*h;d(i)=y(i); as=['(' numstr(a(i)) ')'];bs=['(' numstr(b(i)) ')']; cs= ['(' numstr(c(i)) ')'];ds=['(' numstr(d(i)) ')']; xi=numstr(t(i)); guns=[ as '*(x-' xi ')^3+' bs '*(x-' xi ')^+' cs '*(x-' xi ')+' ds ]; gun=inline( guns, 'x');fplot(gun,[ t(i) t(i+1) ],'k-'); end;axis([ ]);legend('Data points', 'Cubic spline') ; grid;hold off; Koodi on kuitenkin jätetty kommentoimatta ja se on ulkoasultaan sekä luettavuudeltaan huono. Tehtäväsi on kommentoida koodi (vihje: etsi pdf-tiedostosta se menetelmä, jota on käytetty koodauksen pohjana) sekä parantaa sen ulkoasua ja luettavuutta. Keksi parannuksia koodiin!

13 :34 C:\Users\Juha Jaako\AppData\Local\Microsoft\Windo...\K3_korjattu.m 1 of % Matlab-kurssi 010 % clear all ; format compact ; hold on ; % Maaritellaan t eli aika välille t = [1964 : 1 : 009] ; % Valmistuneiden maarat em. vuosina y = [, 8, 1, 10, 6, 1, 1, 13, 19, 35, 5, 34, 1, 8, 37,... 33, 4, 3, 33, 30, 5, 14,, 8, 5, 7, 34, 38, 44, 64,... 47, 44, 6, 41, 46, 53, 51, 60, 7, 85, 79, 79, 85, 83, 105, 78 ] ; % Piirretaan kuvaajaan aluksi valmistuneiden maarat mustina palloina ajan % ollessa x-akselilla plot (t, y, 'ko') ; % Lähdetaan muodostamaan annetuille tiedoille käyrää luonnollisten splinien % menetelmällä. Määritellaan muuttuja s muuttujan t pituuden mukaan eli % tästä saadaan alkuarvo pisteiden määrälle. Splinien muodostamiseen % tarkoitettujen matriisien koko tullaan määrittämään tämän mukaan. s = length(t) ; % Matriisin ensimmainen rivi, muotoa [ ] B = [4,1,zeros(1,s-4)] ; for i = :s-3, end ; % Matriisin "sisaosa" jossa 1,4,1-osa liukuu vasemmasta laidasta % oikeaan laitaan kierros kierrokselta. temp = [ zeros(1,i-),1,4,1,zeros(1,s-4) ] ; B = [B;temp(1:s-)]; % Matriisin viimeinen rivi, muotoa [ ] B = [ B;zeros(1,s-4),1,4 ] ; % Poistetaan turhat 0-elementit B=sparse(B) ; % Selvitetaan kahden edellisen arvon välinen ero, muuttuja h, % tässä tapauksessa kaikki arvot ovat vuoden ts. tasaisin valein % eli niiden valinen ero on aina 1. Ainakaan kaavan % mukaan, % jossa h = x(i) - x(i-1). Siis tällä koodilla ei pystytä laskemaan % epatasaisesti x-akselille sijoittuneita pisteita. (Nyt siis lasketaan % vain laiskasti vuosien 1965 ja 1964 erotus.) h = t() - t(1) ; k = 6/(h^) ; for i=1:s-, end ; % Rakennetaan matriisi z, joka sisaltaa yhdella rivilla kaikkien % menetelmassa kaytettyjen yi - *y - y3 - arvot. z(i) = k*(y(i) - *y(i+1) + y(i+)) ; z = z' ; % Transpoosi matriisista z M = B\z ; % Ratkaistaan M. M = [ 0 ; M ; 0 ] ; % Lisätään nollat alkuun ja loppuun. for i=1:s-1, % Ratkaistaan kierroksen splinin funktion kertoimien arvot a(i) = (M(i+1)-M(i))/(6*h) ; b(i) = ((M(i))/) ; c(i) = ((y(i+1)-y(i))/h)-((m(i+1)+*m(i))/6)*h ; d(i) = y(i) ; % Muutetaan luvut merkkijonoiksi. as = ['(' numstr(a(i)) ')'] ; bs = ['(' numstr(b(i)) ')'] ; cs = ['(' numstr(c(i)) ')'] ; ds = ['(' numstr(d(i)) ')'] ; % Muodostetaan kertoimista funktio josta voidaan jokaisella

14 :34 C:\Users\Juha Jaako\AppData\Local\Microsoft\Windo...\K3_korjattu.m of end ; % kierroksella ja t:n arvolla ratkaista y. xi = numstr (t(i)) ; guns=[ as '*(x-' xi ')^3+' bs '*(x-' xi ')^+' cs '*(x-' xi ')+' ds ] ; gun = inline( guns, 'x') ; % Piirretaan jokaisella kierroksella palanen splinia, edellisestä % pisteestä seuraavaan pisteeseen. fplot (gun, [ t(i) t(i+1) ], 'r-') ; % Määritetään akselit axis ([ ]) ; % Selvennetään kaavion merkit legend ('Data points', 'Cubic spline') ; % Selvennetään akselit ylabel ('Valmistuneiden maara') xlabel ('Vuosiluku') grid ; hold off ;

15 1 Ohjelmointi ja Matlab syksy 010 Kotitehtävä 4 Annettu Palautettava klo 3:59 mennessä (H 3.1) For n = 0, 1,..., 5, fit a polynomial of degree n by least squares to the following data: t y Make a plot of the original data points along with each resulting polynomial curve (you may make separate graphs for each curve or a single graph containing all of the curves). Which polynomial would you say captures the general trend of the data better? Obviously, this is a subjective question, and its answer depends on both the nature of the given data (e.g., the uncertainty of the data values) and the purpose of the fit. Explain your assumptions in answering. Use Matlab. Ratkaisu: Piirretään ensin datapisteet koordinaatistoon: >> clear all >> t = [ ] ; >> y = [ ] ; >> plot (t, y, 'ko') ; axis ( [ ] ) ; grid on ; Kuvion perusteella näyttää siltä, että polynomimalli sopii hyvin käyttötarkoitukseemme. On vain valittava sopivin pienimmän neliösumman mielessä.

16 Pienimmän neliösumman menetelmän (PNS, method of least squares, least squares, esim: käyttöä olitte jo harjoitelleet tehdyn harjoitteen puitteissa, jolloin havaittiin, että Matlabia käyttäen ongelman ratkaisu (parametrien suhteen lineaarisessa tapauksessa) ei ole kovin vaikeaa. Koodataan seuraava koodi, joka piirtää kaikki sovitukset samaan kuvioon (voi myös käyttää subplot -komentoja ja piirtää kuusi erillistä pikkukuviota tai piirtää kuusi erillistä isoa kuviota): % K4_010_MetO.m % Pienimmän neliösumman menetelmä. % & (c) Juha Jaako format compact ; clear all ; % Pito päälle (sallii kuvaa kohti useita piirtokomentoja). hold on ; % Mittaustiedot. t = [ ] ; y = [ ] ; % Piirretään mittaustiedot koordinaatistoon. plot (t, y, 'ko') ; % Datapisteet kuvioon. grid on ; % Ruudukko kuvioon. % Lisätään akselitiedot. axis ( [ ] ) ; % Määritellään akselit: t ; y xlabel ( '\it t' ) ; % Teksti x-akselille. ylabel ( '\it y' ) ; % Teksti y-akselille. title ( 'Polynomisovitus: n = 0, 1,..., 5') ; % Kuvion otsikko. %%% Polynomit : n = 0, 1,, 3, 4, 5 % Tähän voisi tehdä for... end -silmukan. % n = 0 : y = a0 A = [ones(length(t),1)] ; b = y' ; x = A \ b ; a0 = x ; yp = [ '(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'k--' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma0 = sum ((y - temp).^) % n = 1 : y = a1*t + a0 % PNS-matriisi : A x = b A = [t', ones(length(t),1)] ; b = y' ; x = A \ b ; a1 = x(1) ; a0 = x() ; yp = [ '(' numstr(a1) ')*t+(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'b--' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma1 = sum ((y - temp).^)

17 3 % n = : y = a*t^ + a1*t + a0 % PNS-matriisi : A x = b A = [(t.^)', t', ones(length(t),1)] ; b = y' ; x = A \ b ; a = x(1) ; a1 = x() ; a0 = x(3) ; yp = [ '(' numstr(a) ')*t^+(' numstr(a1) ')*t+(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'r--' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma = sum ((y - temp).^) % n = 3 : y = a3*t^3 + a*t^ + a1*t + a0 % PNS-matriisi : A x = b A = [(t.^3)', (t.^)', t', ones(length(t),1)] ; b = y' ; x = A \ b ; a3 = x(1) ; a = x() ; a1 = x(3) ; a0 = x(4) ; yp = [ '(' numstr(a3) ')*t^3+(' numstr(a) ')*t^+('... numstr(a1) ')*t+(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'k.-' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma3 = sum ((y - temp).^) % n = 4 : y = a4*t^4 + a3*t^3 + a*t^ + a1*t + a0 % PNS-matriisi : A x = b A = [(t.^4)', (t.^3)', (t.^)', t', ones(length(t),1)] ; b = y' ; x = A \ b ; a4 = x(1) ; a3 = x() ; a = x(3) ; a1 = x(4) ; a0 = x(5) ; yp = [ '(' numstr(a4) ')*t^4+(' numstr(a3) ')*t^3+(' numstr(a)... ')*t^+(' numstr(a1) ')*t+(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'b.-' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma4 = sum ((y - temp).^) % n = 5 : y = a5*t^5 + a4*t^4 + a3*t^3 + a*t^ + a1*t + a0 % PNS-matriisi : A x = b A = [(t.^5)', (t.^4)', (t.^3)', (t.^)', t', ones(length(t),1)] ; b = y' ; x = A \ b ; a5 = x(1) ; a4 = x() ; a3 = x(3) ; a = x(4) ; a1 = x(5) ; a0 = x(6) ; yp = [ '(' numstr(a5) ')*t^5+(' numstr(a4) ')*t^4+(' numstr(a3)... ')*t^3+(' numstr(a) ')*t^+(' numstr(a1) ')*t+(' numstr(a0) ')' ] ; yf = inline (yp, 't') ; disp (yf) ; fplot (yf, [ 0 7], 'r.-' ) ; % Neliösumman arvo. temp = [ yf(t(1)), yf(t()), yf(t(3)), yf(t(4)), yf(t(5)), yf(t(6)) ] ; neliosumma5 = sum ((y - temp).^) % Selitteet. legend ( 'datapisteet', 'n=0', 'n=1', 'n=', 'n=3', 'n=4', 'n=5', ) ; % Pito pois. hold off ;

18 4 Saamme seuraavan kuvion datapisteet n=0 n=1 n= n=3 n=4 n=5 Polynomisovitus: n = 0, 1,..., 5 y t ja tulosteen, josta näkyvät myös lasketut malliparametrit ja neliösummat (ulkoasua muokattu): >> K4_010_MetO Inline function: yf(t) = (5.5833) neliosumma0 = Inline function: yf(t) = (1.7057)*t+(1.319) neliosumma1 = Inline function: yf(t) = ( )*t^+(.1789)*t+(1.0036) neliosumma = Inline function: yf(t) = ( )*t^3+( )*t^+(3.1557)*t+( ) neliosumma3 = Inline function: yf(t) = (0.1065)*t^4+(-0.991)*t^3+(.634)*t^+( )*t+( ) neliosumma4 = Inline function: yf(t) = ( )*t^5+( )*t^4+(-4.15)*t^3+(8.304)*t^+( )*t+(1) neliosumma5 = e-006 Yleensä sopivimman mallin valinta tapahtuu silmämääräisesti sekä laskemalla tunnuslukuja. Yleisin tunnusluku on selitysaste R tai neliösumman arvo. Selitysaste ilmoittaa, kuinka suuri murto-osa y:n arvoissa todetusta vaihtelusta voidaan selittää t:n arvoissa tapahtuneilla muutoksilla. Selitysasteet eri malleille ovat (miten lasketaan?): n R Neliösumma 0 << e-006 ~ 0

19 5 Yleensä mallia pidetään hyvänä, jos selitysaste on parempi kuin 0.9 (tai neliösumma ei ole kovin suuri). Nyt tilanne on malleilla n > 0 tämä. Lisäksi mallien selityaste kasvaa polynomin asteen kasvaessa. Arvolla n = 5 selitysaste on jopa 1 (miksi?). Katsotaan nyt mallien n = tilannetta. malli n = 0 : Kuvaajasta näemme, että malli kuvaa erittäin huonosti dataa (neliösumma suuri). Poistamme tilanteen n = 0 ja saamme seuraavan kuvion datapisteet n=1 n= n=3 n=4 n=5 Polynomisovitus: n = 1,..., 5 y t mallit n = 4 ja n = 5 : Kuvaajista näemme, että mallit kuvaavat dataa hyvin datapisteissä, kohtalaisesti datapisteiden välillä (interpolaatio) mutta erittäin huonosti välillä t > 5 (ekstrapolointi). Poistamme tilanteet n = 4 ja n = 5 ja saamme kuvion datapisteet n=1 n= n=3 Polynomisovitus: n = 1,..., 3 8 y t

20 6 mallit n = 1, n = ja n = 3 : Mallit kuvaavat hyvin dataa sekä datapisteiden välillä että välillä x > 5. Periaatteessa kaikki mallit käyvät, mutta koska yleensä pyritään käyttämään mahdollisimman yksinkertaista mallia, poistetaan tilanne n = 3 tarkastelusta. Saamme 14 1 datapisteet n=1 n= Polynomisovitus: n = 1, 10 8 y t Nyt on aika tavalla makuasia, käyttääkö mallia n = 1 vai n =. Kummallakin valinnalla on puolensa. y(t) = *t y(t) = *t^ *t n R Neliösumma

21 1 Ohjelmointi ja Matlab syksy 010 Kotitehtävä 5 palautettava klo 3:59 mennessä Suppose that in a certain city, the pollution level is measured at two-hour intervals, beginning at midnight. These measurements were recorded for a one-week period and stored in a Matlab matrix, the first line of which contains the pollution levels for day 1, the second line for day, and so on. For example, suppose the pollution matrix for a certain week contains the following data: A = [ 30, 30, 31, 3, 35, 40, 43, 44, 47, 45, 40, 38 ;... 33, 3, 30, 34, 40, 48, 46, 49, 53, 49, 45, 40 ;... 38, 35, 34, 37, 44, 50, 51, 54, 60, 58, 51, 49 ;... 49, 48, 47, 53, 60, 70, 73, 75, 80, 75, 73, 60 ;... 55, 54, 53, 65, 70, 80, 90, 93, 95, 94, 88, 6 ;... 73, 70, 65, 66, 71, 78, 74, 78, 83, 75, 66, 58 ;... 50, 47, 43, 35, 30, 33, 37, 43, 45, 5, 39, 31 ] ; A Matlab program (or programs) is (are) to be written to produce a weekly report displaying the pollution levels. Ongelman ratkaisu: Ensimmäinen ongelma mittausdataa käsiteltäessä on, että onko viikon ensimmäinen päivä maanantai (kuten Suomessa) vai sunnuntai (kuten Yhdysvalloissa). Tässä käsittelyssä on oletettu, että viikon ensimmäinen päivä on sunnuntai. Mikäli käytämme viikon ensimmäisenä päivänä maanantaita, niin koodeihin on tehtävä vastaavat muutokset. Millaisia raportteja mittausdatasta voi sitten tehdä? Tarjolla on useita vaihtoehtoja: erilaisia taulukoita, kuvaajia tai edellisten yhdistelmiä. Tässä esityksessä tehdään yksi taulukko ja neljä erilaista kuvaajaa: kellonaika vs. saastetaso eri päivinä (time of day vs. pollution level) viikonpäivä vs. saastetaso eri kellonaikoina (day of week vs. pollution level) koko viikko vs. saastetaso (whole week vs. pollution level) saastetason luokka vs. lukumäärä (values range vs. number of occurrences) Teemme ensiksi ohjelman (pollution_data.m), joka tallettaa datan (vektorin t ja matriisin A) datatiedostoon pollution_data.mat. % pollution_data.m % & (c) Juha Jaako clear all ; % Mittausajakohdat. t = [ 0,, 4, 6, 8, 10, 1, 14, 16, 18, 0, ] ; % Saastetaso. A = [ 30, 30, 31, 3, 35, 40, 43, 44, 47, 45, 40, 38 ; 33, 3, 30, 34, 40, 48, 46, 49, 53, 49, 45, 40 ; 38, 35, 34, 37, 44, 50, 51, 54, 60, 58, 51, 49 ; 49, 48, 47, 53, 60, 70, 73, 75, 80, 75, 73, 60 ; 55, 54, 53, 65, 70, 80, 90, 93, 95, 94, 88, 6 ; 73, 70, 65, 66, 71, 78, 74, 78, 83, 75, 66, 58 ; 50, 47, 43, 35, 30, 33, 37, 43, 45, 5, 39, 31 ] ; save pollution_data t A ; disp ( 'Tietojen tallennus tapahtui' ) ; Nyt voimme ladata mittausdatan aina tarvittaessa ohjelmaan load -komennolla.

22 Voimme esittää datan yksinkertaisessa taulukkomuodossa seuraavasti (esim. siirrettäväksi Wordtekstinkäsittelyohjelmaan): % pollution_table.m % & (c) Juha Jaako clear all ; format compact ; % Ladataan datatiedosto. load pollution_data t A ; % Matriisin koko. [rows, colunms ] = size (A) ; % Viikonpäivät. names = ( [ 'Sunday : ' ; 'Monday : ' ; 'Tuesday : ' ;... 'Wednesday : ' ; 'Thursday : ' ; 'Friday : ' ;... 'Saturday : ' ] ) ; % Tehdään taulukko näytölle; taulukon voi kirjoittaa myös tiedostoon. % Lasketaan taulukkoon myös kunkin päivän keskiarvot. disp ( ' ' ) ; disp ( 'Pollution Data for Week X' ) ; disp ( ' Time of Day' ) ; disp ( [ 'Day : ' sprintf('%3d', t) ' Mean' ]) ; disp ( ' ' ) ; for i = 1 : rows, disp([names(i,:) sprintf('%3d',a(i,:)) sprintf('%6.1f', mean(a(i,:)))]) ; end Tulosteena saamme: >> pollution_table Pollution Data for Week X Time of Day Day : Mean Sunday : Monday : Tuesday : Wednesday : Thursday : Friday : Saturday :

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät

Teknillinen tiedekunta, matematiikan jaos Numeeriset menetelmät Numeeriset menetelmät 1. välikoe, 14.2.2009 1. Määrää matriisin 1 1 a 1 3 a a 4 a a 2 1 LU-hajotelma kaikille a R. Ratkaise LU-hajotelmaa käyttäen yhtälöryhmä Ax = b, missä b = [ 1 3 2a 2 a + 3] T. 2.

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä /

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / Kevään 0 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / 8.7.0 a) b) c) a) Tehtävä Yhtälö ratkaistaan yleensä Solve-funktiolla: Solve x 3 x, x x 4 Joissakin tapauksissa

Lisätiedot

SIMULINK S-funktiot. SIMULINK S-funktiot

SIMULINK S-funktiot. SIMULINK S-funktiot S-funktio on ohjelmointikielellä (Matlab, C, Fortran) laadittu oma algoritmi tai dynaamisen järjestelmän kuvaus, jota voidaan käyttää Simulink-malleissa kuin mitä tahansa valmista lohkoa. S-funktion rakenne

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Operatioanalyysi 2011, Harjoitus 3, viikko 39

Operatioanalyysi 2011, Harjoitus 3, viikko 39 Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5 (Exercise 3.1.) 1 3.1. Find the (a) standard form, (b) slack form of the

Lisätiedot

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3 Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 811122P (5 op.) 12.12.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä

1.3Lohkorakenne muodostetaan käyttämällä a) puolipistettä b) aaltosulkeita c) BEGIN ja END lausekkeita d) sisennystä OULUN YLIOPISTO Tietojenkäsittelytieteiden laitos Johdatus ohjelmointiin 81122P (4 ov.) 30.5.2005 Ohjelmointikieli on Java. Tentissä saa olla materiaali mukana. Tenttitulokset julkaistaan aikaisintaan

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Matlabin perusteita Grafiikka

Matlabin perusteita Grafiikka BL40A0000 SSKMO KH 1 Seuraavassa esityksessä oletuksena on, että Matlabia käytetään jossakin ikkunoivassa käyttöjärjestelmässä (PC/Win, Mac, X-Window System). Käytettäessä Matlabia verkon yli joko tekstipäätteeltä,

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

Numeeriset menetelmät Pekka Vienonen

Numeeriset menetelmät Pekka Vienonen Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

I. AES Rijndael. Rijndael - Internal Structure

I. AES Rijndael. Rijndael - Internal Structure I. AES Rndael NOKIA T-79.53 Additional material Oct 3/KN Rndael - Internal Structure Rndael is an iterated block cipher with variable length block and variable key size. The number of rounds is defined

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5? Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1

. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matlab- ja Maple- ohjelmointi

Matlab- ja Maple- ohjelmointi Perusasioita 2. helmikuuta 2005 Matlab- ja Maple- ohjelmointi Yleistä losoaa ja erityisesti Numsym05-kurssin tarpeita palvellee parhaiten, jos esitän asian rinnakkain Maple:n ja Matlab:n kannalta. Ohjelmien

Lisätiedot

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1.

Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja 1 3 ja 9. Tarvitset myös luvusta 4 määritelmän 4.1. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 2 Ratkaisut palautettava viimeistään maanantaina 25.5.2015 klo 16.15. Tehtäväsarja I Kertaa tarvittaessa materiaalin lukuja

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 28.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 28.1.2009 1 / 28 Esimerkki: murtoluvun sieventäminen Kirjoitetaan ohjelma, joka sieventää käyttäjän antaman murtoluvun.

Lisätiedot

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.

Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

3.4 Rationaalifunktion kulku ja asymptootit

3.4 Rationaalifunktion kulku ja asymptootit .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Matematiikka B1 - avoin yliopisto

Matematiikka B1 - avoin yliopisto 28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Operatioanalyysi 2011, Harjoitus 4, viikko 40 Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Selvitä, mitä koodi tekee sekä kommentoi ja täydennä koodi. Työn arvostelussa kiinnitän erityistä huomiota työn raportoinnin kattavuuteen.

Selvitä, mitä koodi tekee sekä kommentoi ja täydennä koodi. Työn arvostelussa kiinnitän erityistä huomiota työn raportoinnin kattavuuteen. Ohjelmointi ja Matlab : syksy 0 : 5.9.-9.0.0 Kotitehtävä : Seuraavassa on esitetty Matlab-koodi, joka laskee jotakin. %om_0_k.m A=[,,0;-,,;0,,4];b=[;;3];n=length(b); for k=:n-,for i=k+:n,if A(i,k)~=0,

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

Luento 9: Newtonin iteraation sovellus: optimointiongelma

Luento 9: Newtonin iteraation sovellus: optimointiongelma Luento 9: Newtonin iteraation sovellus: optimointiongelma ilman rajoitusehtoja Optimointiongelmassa tehtävänä on löytää annetun reaaliarvoisen jatkuvan funktion f(x 1,x,,x n ) maksimi tai minimi jossain

Lisätiedot

1 Vrms 2 Skewness 3 Kurtosis 4 Amax 5 Amin. 11 A4xbf 12 A7xbf 13 A14xbf 14 A1xrotf 15 A2xrotf. 16 A3xrotf 17 A4xrotf 18 A1to4xrotf 19 Vrms10to100

1 Vrms 2 Skewness 3 Kurtosis 4 Amax 5 Amin. 11 A4xbf 12 A7xbf 13 A14xbf 14 A1xrotf 15 A2xrotf. 16 A3xrotf 17 A4xrotf 18 A1to4xrotf 19 Vrms10to100 JAVO mittaukset 4..006 -Primaari-ilmapuhallin I - keruutaajuus.56 x khz, kiihtyvyysmittaus - aikasarjan talletus, T 1s, 15 min välein, 500 kertaa 8 6 4 5 7 1 'PA fan 1, motor current' 'PA fan, motor current'

Lisätiedot

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Juuri- ja logaritmifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA8 Juuri- ja logaritmifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Juuri- ja logaritmifunktiot (MAA8) Pikatesti ja kertauskokeet

Lisätiedot

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon:

(s 2 + 9)(s 2 + 2s + 5) ] + s + 1. s 2 + 2s + 5. Tästä saadaan tehtävälle ratkaisu käänteismuuntamalla takaisin aikatasoon: TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2429 Systeemien Identifiointi 2 harjoituksen ratkaisut Yhtälö voitaisiin ratkaista suoraankin, mutta käytetään Laplace-muunnosta tehtävän ratkaisemisessa

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit

Lisätiedot

Matemaattiset ohjelmistot 1-2 ov, 2-3 op

Matemaattiset ohjelmistot 1-2 ov, 2-3 op Matemaattiset ohjelmistot 1-2 ov, 2-3 op Aloitustehtävät Perehdy netissä olevan oppaan http://mtl.uta.fi/opetus/matem_ohjelmistot/matlab lukuihin 0 Johdanto, 1 matriisit ja vektorit sekä 4 Ohjelmointi

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

S Laskennallinen Neurotiede

S Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7

A Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7 1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

BM20A0300, Matematiikka KoTiB1

BM20A0300, Matematiikka KoTiB1 BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota. MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja

Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Luento 10: Optimointitehtävien numeerinen ratkaiseminen; optimointi ilman rajoitusehtoja Seuraavassa esitetään optimointitehtävien numeerisia ratkaisumenetelmiä, eli optimointialgoritmeja, keittokirjamaisesti.

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 31.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 31.1.2011 1 / 41 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a

Kokelaan sukunimi ja kaikki etunimet selväsi kirjoitetuna. Kaava 1 b =2a 2 b =0,5a 3 b =1,5a 4 b = 1a. 4 5 b =4a 6 b = 5a 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 28.9.2016 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

Ohjelmointi 1 C#, kevät 2013, 2. tentti

Ohjelmointi 1 C#, kevät 2013, 2. tentti ITKP102 Ohjelmointi 1 C# 15.5.2013 1 / 6 Ohjelmointi 1 C#, kevät 2013, 2. tentti Tentaattori Antti-Jussi Lakanen Tässä tentissä saa olla mukana omia muistiinpanoja yhden arkin verran. Tentin valvojalla

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 1.2.2010 1 / 47 Sijoituksen arvokehitys, koodi def main(): print "Ohjelma laskee sijoituksen arvon kehittymisen."

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot