Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Koko: px
Aloita esitys sivulta:

Download "Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä"

Transkriptio

1 Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto

2 ii Ohjelmien versiotietoja: JMP:

3 Luku 1 Regressio 1.1 Matriisilaskentaa ja multinormaalijakauma Ei esimerkkiä. 1.2 Lineaarinen regressiomalli Laskut voidaan tehdä JMP-ohjelmalla seuraavasti. Uusi taulu saadaan valitsemalla File New.Kirjoitetaan data tauluun: Sitten valitaan Analyze Fit Model ja annetaan faktorit ja vaste: 1

4 2 LUKU 1. REGRESSIO Sitten Run Model antaa halutut parametrit (ja paljon muuta): Matriisi C ei tule näkyviin, mutta korrelaatiomatriisik,joka lasketaanc:stä kaavasta k ij = c ij cii cjj saadaan valitsemalla Response Y:n viereisestä valikosta Estimates Correlation of Estimates. Samasta valikosta saadaan mallin muodostama pinta valitsemalla Factor Profiling Contour Profiler.

5 1.2. LINEAARINEN REGRESSIOMALLI 3 Ennustetut datan vasteen arvot ŷ saadaan näkyville kopioimalla malli tauluun valitsemalla Response Y:n viereisestä valikosta Save Columns Prediction Formula. Residuaali kopioidaan puolestaan valitsemalla Save Columns Residuals.Estimoitu standardivirhe kopioidaan valitsemalla Save Columns StdErr Pred Formula. Sitten kirjoitetaan halutut faktorit uudelle taulun riville ja ohjelma laskee vaste-ennusteen:

6 4 LUKU 1. REGRESSIO

7 1.3. HYPOTEESIEN TESTAAMINEN Hypoteesien testaaminen JMP-ohjelmalla mallin sovitus ja testaus suoritetaan seuraavasti. Data kirjoitetaan tauluun kuten 1.2 kohdan esimerkissä. Sitten Analyze Fit Model. Faktori X1*X2 saadaan malliin aktivoimalla Select Columns -listasta X1 ja X2, jonka jälkeen painetaancross. X2*X2 saadaan aktivoimallax2 sekä Select Columns että Construct Model Effects -listoista, jonka jälkeen Cross. Viimeinen faktori syntyy kun X2 aktivoidaanselect Columns -listasta jax1*x2 Construct Model Effects -listasta, jonka jälkeen Cross.Jotta faktorit tulisivat malliin sellaisenaan on poistettava optio, joka vähentäätoisen tai korkeamman asteen faktorien termeistä niiden keskiarvot. Tämä onnistuu valitsemalla Model Specification:n viereisestä valikosta Center Polynomials. Sitten Run Model.

8 6 LUKU 1. REGRESSIO Lopuksi kuva saadaan Response Y:n viereisestä valikosta valitsemalla Factor Profiling Contour Profiler.

9 1.4. MALLIN EPÄSOPIVUUDEN TESTAUS TOISTOKOKEIN Mallin epäsopivuuden testaus toistokokein JMP tulostaa varianssianalyysitaulun automaattisesti regressioanalyysia suoritettaessa (joka siis tehdään kuten kohdan 1.2 esimerkissä), mikäli datassa on toistoja ja SSLOF:lla on vapausasteita ainakin yksi. JMP:n tulostus antaa myös suureen Max RSq, joka kertoo kuinka suureen determinaatiokertoimeen R 2 päästäisiin nykyisistämuuttujista(tässä x 1 ja x 2 )muodostettuja faktoreita lisäämällä. Suure lasketaan kaavasta: Max RSq =1 SSPE SST. Huomaa, että kohdan 1.3. esimerkissä onkin päästy determinaatiokertoimen R 2 arvoon

10 8 LUKU 1. REGRESSIO 1.5 Mallin riittävyys Kun mallin sovitus on suoritettu uudelleen järjestetyllädatalla, residuaalin kuvaajan ennustetun vasteen tai järjestyksen funktiona saa Response Y:n vierestä valitsemalla Row Diagnostics Plot Residual by Predicted tai Plot Residual by Row. Residuaali kopioidaan tauluun valitsemalla Response Y:n vierestä Save Columns Residuals. Kun halutaan tarkistaa ulkolaiset saadaan studentoitu residuaali kopioitua tauluun valitsemalla Response Y:n vierestä Save Columns Studentized Residuals.

11 1.5. MALLIN RIITTÄVYYS 9 Residuaalin jakaumaa tarkastellaan valitsemalla Analyze Distribution. Valitaan oikea sarake jaok.saadussa ikkunassa Residual Y:n viereisestä valikosta valitaan Normal Quantile Plot. Normaalitodennäköisyyskuviossa akselit ovat erilailla kuin Matlabissa.

12 10 LUKU 1. REGRESSIO

13 Luku 2 KOESUUNNITTELUT 2.1 Datan muunnokset JMP-ohjelmalla standardointi ja koodaus tapahtuvat toisiinsa nähden hiukan eri tavalla. Standardointi onnistuu kun luodaan uudet sarakkeet, joihin lasketaan arvot standardointikaavan avulla. Sarakkeen ominaisuuksiin päästään kaksoisklikkaamalla otsikkoa. Sieltä valitaan New Property Formula: Sitten Edit Formula ja syötetään kaava. Standardoinnin kaava löytyy valmiiksiohjelmointuna Statistical Col Standardize: 11

14 12 LUKU 2. KOESUUNNITTELUT Kunsama menettely on toistettu faktorille x 2 näkyy taulussa standardoinnin tulos: Mallin sovitus kuten aikaisemmin, Analyze Fit Model ja faktorien valinta:

15 2.1. DATAN MUUNNOKSET 13 Mallin tulostuksessa on laitettu myös näkyviin Correlation of Estimates, josta standardoinnin hyötyjä voi tarkastella: Koodaus tapahtuu automaattisesti kun alkuperäisen datan sarakkeen ominaisuuksista valitaan New Property Coding: Kun sama on tehty myös faktorin x 2 arvoille, sujuu mallin sovitus tuttuun tapaan, josta tulostus:

16 14 LUKU 2. KOESUUNNITTELUT

17 2.2. ORTOGONAALISUUS JA KIERTOSYMMETRISYYS Ortogonaalisuus ja kiertosymmetrisyys JMP-ohjelmassa ortogonaalisuuden näkee korrelaatiomatriiseista (alkuperäinen, standardoitu ja koodattu data): Kiertosymmetrisyys ei näy korrelaatiomatriisista, eikä sitäsaamuutenkaan helposti näkyviin.

18 16 LUKU 2. KOESUUNNITTELUT 2.3 Simplex-koe Simplex-suunnittelua ei JMP anna. Plackett-Burman suoritetaan seuraavasti. Valitaan DOE Screening Design ja lisätään 9 jatkuvaa faktoria. Sitten Continue ja suunnittelun valinta. Ja taas Continue.

19 2.3. SIMPLEX-KOE 17 Codes-kohdassa näkyy suunnittelu koodeina ( vastaa 1:tä ja +1:tä). Datamatriisin ensimmäistä, vakiota vastaavaa saraketta ei näytetä.

20 18 LUKU 2. KOESUUNNITTELUT Make Table antaa suunnittelun tauluna.

21 2.3. SIMPLEX-KOE 19 Huomaa, ettäkyseinen suunnittelu on eri kuin Matlabilla suoritettu. Erilaisia Hadamardin matriiseja on monia. Toisaalta sarakkaiden valinnan voi suorittaa monella eri tavalla. Ortogonaalisuus säilyy valinnasta riippumatta, mutta muut kriteerit, kuten esimerkiksi kattavuus saattaa muuttua.

22 20 LUKU 2. KOESUUNNITTELUT 2.4 Kahden tason kokeet Valitaan DOE Screening Design ja lisätään malliin 5 jatkuvaa faktoria: Sitten Continue.Valitaan haluttu suunnittelu ja taas Continue. Oletuksena JMP antaa suunnittelun, jossa on kielletty faktorit x 1 x 2 x 3 x 4 ja

23 2.4. KAHDEN TASON KOKEET 21 x 2 x 3 x 5.Huomaa, että kun faktorien järjestys muutetaan esimerkiksi 1, 2, 3, 4, 5 5, 3, 4, 2, 1 ja järjestetään kokeet uudelleen, suunnittelu on sama kuin aikaisemmin. Vaihdetaan mallin generointisäännöt kiellettyjen faktorien x 1 x 2 x 4, x 1 x 3 x 5 mukaiseksi. Säännöt vaikuttavat Apply:n jälkeen.

24 22 LUKU 2. KOESUUNNITTELUT Nyt koodit vastaavat esimerkin alun datamatriisia.

25 2.4. KAHDEN TASON KOKEET 23 Make Table antaa taulun sunnittelusta.

26 24 LUKU 2. KOESUUNNITTELUT 2.5 Toisen kertaluvun regressiomalli Ei laskettu JMP:llä. 2.6 CCD-kokeet JMP:ssä CCD-kokeen suunnittelu tapahtuu kätevästi. Valitaan DOE Response Surface Design. Suunnittelussa on automaattisesti 2 faktoria. Continue:n jälkeen päästään valitsemaan suunnittelua. Valitaan CCD-Orthogonal ja Continue. Seuraavassa ruudussa voidaan tarkastella valintoja. Samoista α-arvoista (eli Axial Value) huomataan, ettäsuunnittelu on myös kiertosymmetrinen.

27 2.6. CCD-KOKEET 25 Make Table antaa suunnittelun tauluna. Aksiaaliosa on eri järjestyksessä.

28 26 LUKU 2. KOESUUNNITTELUT 2.7 Optimaaliset kokeet Ei laskettu JMP:llä.

29 Luku 3 VASTEEN OPTIMOINTI 3.1 Gradienttimenetelmä JMP:llä onkätevä ensin toteuttaa kahden tason täydellinen koesuunnittelu. Tämä tapahtuu valitsemalla DOE Screening Design.Käyttöalueet kannattaa määrittää faktoreihin, jolloin JMP antaa suoraan suoritettavien kokeiden tasot. Make Table antaa suunnittelun taulun. Vasteen paikalle kirjoitetaan kokeissa saadut arvot. 27

30 28 LUKU 3. VASTEEN OPTIMOINTI Sitten sovitetaan malli kuten ennenkin. Koodausta ei tarvitse erikseen sarakkeille valita, se tapahtuu automaattisesti. JMP antaa lähes kaiken tarpeellisen. Toisen vaiheen koesuunnittelu sujuu kuten ensimmäinenkin.

31 3.1. GRADIENTTIMENETELMÄ 29

32 30 LUKU 3. VASTEEN OPTIMOINTI 3.2 Ääriarvotarkastelu Ensimmäisen kertaluvun mallin sovitus sujuu kuten ennenkin, josta tuloste. Toisen kertaluvun mallille kannattaa ensin tehdä CCD-koesuunnittelu, jolloin kaikki sujuu lähes automaattisesti. Valitaan DOE Response Surface Design ja syötetään tarvittavat tiedot.

33 3.2. ÄÄRIARVOTARKASTELU 31 Make Table antaa taulun johon kirjoitetaan suoritetuissa kokeissa saadut vasteen arvot. Sitten Analyze Fit Model.Malli on määritelty valmiiksi.

34 32 LUKU 3. VASTEEN OPTIMOINTI Run Model:in jälkeen pääsemme tarkastelemaan tuloksia. Tulosteessa näkyy automaattisesti maksimipiste, vaste ja vielä kanonisen muodon kertoimet (ominaisarvot) ja pääakselien suunnatkin (ominaisvektorit).

35 3.2. ÄÄRIARVOTARKASTELU 33

36 34 LUKU 3. VASTEEN OPTIMOINTI 3.3 Harjuanalyysi Ei laskettu JMP:llä.

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka

Lisätiedot

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA. Keijo Ruohonen

TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA. Keijo Ruohonen TILASTOLLINEN KOKEIDEN SUUNNITTELU JA OTANTA Keijo Ruohonen 2000 Sisältö I REGRESSIO Regressiomalli 2 2 Mallin estimointi ja käyttö 7 3 Varianssianalyysi (ANOVA) 2 4 Mallin epäsopivuuden testaus toistokokein

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Laskuharjoitus 9, tehtävä 6

Laskuharjoitus 9, tehtävä 6 Aalto-yliopiston perustieteiden korkeakoulu Jouni Pousi Systeemianalyysin laboratorio Mat-2.4129 Systeemien identifiointi Laskuharjoitus 9, tehtävä 6 Tämä ohje sisältää vaihtoehtoisen tavan laskuharjoituksen

Lisätiedot

Harjoitusten 5 vastaukset

Harjoitusten 5 vastaukset Harjoitusten 5 vastaukset 1. a) Regressiossa (1 ) selitettävänä on y jaselittäjinävakiojax matriisin muuttujat. Regressiossa (1*) selitettävänä on y:n poikkeamat keskiarvostaan ja selittäjinä X matriisin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio

Tilastollisen analyysin perusteet Luento 9: Moniulotteinen lineaarinen. regressio Tilastollisen analyysin perusteet Luento 9: lineaarinen lineaarinen Sisältö lineaarinen lineaarinen lineaarinen Lineaarinen Oletetaan, että meillä on n kappaletta (x 1, y 1 ), (x 2, y 2 )..., (x n, y n

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Usean selittävän muuttujan regressioanalyysi

Usean selittävän muuttujan regressioanalyysi Tarja Heikkilä Usean selittävän muuttujan regressioanalyysi Yhden selittävän muuttujan regressioanalyysia on selvitetty kirjan luvussa 11, jonka esimerkissä18 muodostettiin lapsen syntymäpainolle lineaarinen

Lisätiedot

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu.

Excelin käyttö mallintamisessa. Regressiosuoran määrittäminen. Käsitellään tehtävän 267 ratkaisu. Excelin käyttö mallintamisessa Regressiosuoran määrittäminen Käsitellään tehtävän 267 ratkaisu. 1)Kirjoitetaan arvot taulukkoon syvyys (mm) ikä 2 4 3 62 6 11 7 125 2) Piirretään graafi, valitaan lajiksi

Lisätiedot

MICROSOFT EXCEL 2010

MICROSOFT EXCEL 2010 1 MICROSOFT EXCEL 2010 Taulukkolaskentaohjelman jatkokurssin tärkeitä asioita 2 Taulukkolaskentaohjelmalla voit Käyttää tietokonetta ruutupaperin ja taskulaskimen korvaajana Laatia helposti ylläpidettäviä

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

, Määrälliset tutkimusmenetelmät 2 4 op

, Määrälliset tutkimusmenetelmät 2 4 op 6206209, Määrälliset tutkimusmenetelmät 2 4 op Jyrki Reunamo, Helsingin yliopisto, Opettajankoulutuslaitos 19.2.2015 1 Varianssianalyysi (Pallant 2007, Tähtinen & Isoaho 2001) Verrataan ryhmien keskiarvoja.

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/

SIMULINK 5.0 Harjoitus. Matti Lähteenmäki 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2004 www.tpu.fi/~mlahteen/ SIMULINK 5.0 Harjoitus 2 Harjoitustehtävä. Tarkastellaan kuvan mukaisen yhden vapausasteen jousi-massa-vaimennin systeemin vaakasuuntaista pakkovärähtelyä,

Lisätiedot

4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta

4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta 4 Riippuvuus 1 Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta x 2 = sisaruksien luku- Tarkastellaan äidin ja lapsen pituuden välistä riippuvuutta havaintomatriisilla, joka on

Lisätiedot

Moottorin kierrosnopeus Tämän harjoituksen jälkeen:

Moottorin kierrosnopeus Tämän harjoituksen jälkeen: Moottorin kierrosnopeus Tämän harjoituksen jälkeen: osaat määrittää moottorin kierrosnopeuden pulssianturin ja Counter-sisääntulon avulla, osaat siirtää manuaalisesti mittaustiedoston LabVIEW:sta MATLABiin,

Lisätiedot

Kuvaajien piirtäminen OriginPro9-ohjelmalla

Kuvaajien piirtäminen OriginPro9-ohjelmalla Kuvaajien piirtäminen OriginPro9-ohjelmalla Helmikuu 2013 Jyväskylän yliopisto Fysiikan laitos Sisältö 1 Johdanto 3 2 Millainen on hyvä kuvaaja? 3 3 OriginPro9 peruskäyttö 4 3.1 Lineaarisen sovituksen

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

17 BUDJETOINTI. Asiakaskohtainen Budjetti. 17.1 Ylläpito-ohjelma. Dafo Versio 10 BUDJETOINTI. Käyttöohje. BudgCust. 17.1.1 Yleistä

17 BUDJETOINTI. Asiakaskohtainen Budjetti. 17.1 Ylläpito-ohjelma. Dafo Versio 10 BUDJETOINTI. Käyttöohje. BudgCust. 17.1.1 Yleistä 17 Asiakaskohtainen Budjetti 17.1 Ylläpito-ohjelma 17.1.1 Yleistä BudgCust Ohjelmalla avataan järjestelmään asiakaskohtaisia budjetteja, jotka annetaan kuukausitasolla (oletus). 17.1.2 Parametrit Ohjelmaa

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

I. Ristiintaulukointi Excelillä / Microsoft Office 2010

I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Savonia-ammattikorkeakoulu Liiketalous Kuopio Tutkimusmenetelmät Likitalo & Mäkelä I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Tässä ohjeessa on mainittu ensi Excelin valinnan/komennon englanninkielinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi ja vasteen optimointi

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi ja vasteen optimointi Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi ja vasteen optimointi Robert Piché ja Keijo Ruohonen Tampereen teknillinen yliopisto 200 Sisältö REGRESSIO Matriisilaskentaa

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

1 Funktiot, suurin (max), pienin (min) ja keskiarvo

1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1 Funktiot, suurin (max), pienin (min) ja keskiarvo 1. Avaa uusi työkirja 2. Tallenna työkirja nimellä perusfunktiot. 3. Kirjoita seuraava taulukko 4. Muista taulukon kirjoitusjärjestys - Ensin kirjoitetaan

Lisätiedot

YKSIKÖT Tarkista, että sinulla on valittuna SI-järjestelmä. Math/Units Ohjelma tulostaa/käyttää laskennassaan valittua järjestelmää.

YKSIKÖT Tarkista, että sinulla on valittuna SI-järjestelmä. Math/Units Ohjelma tulostaa/käyttää laskennassaan valittua järjestelmää. YKSIKÖT Tarkista, että sinulla on valittuna SI-järjestelmä. Math/Units Ohjelma tulostaa/käyttää laskennassaan valittua järjestelmää. HUOM! Käytettäessä yksikköjä on huomioitava dokumentissa käytettävät

Lisätiedot

Tilastotoiminnot. Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla:

Tilastotoiminnot. Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla: Tilastotoiminnot Seuraavien kahden esimerkin näppäinohjeet on annettu kunkin laskinmallin kohdalla: Muuttuja Frekvenssi 7 12 8 16 9 11 10 8 Tilastomoodin valinta. Tilastomuistin tyhjennys. Keskiarvon ja

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

KAAVAT. Sisällysluettelo

KAAVAT. Sisällysluettelo Excel 2013 Kaavat Sisällysluettelo KAAVAT KAAVAT... 1 Kaavan tekeminen... 2 Kaavan tekeminen osoittamalla... 2 Kaavan kopioiminen... 3 Kaavan kirjoittaminen... 3 Summa-funktion lisääminen... 4 Suorat eli

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Luento 7 Taulukkolaskennan edistyneempiä piirteitä Aulikki Hyrskykari

Luento 7 Taulukkolaskennan edistyneempiä piirteitä Aulikki Hyrskykari Luento 7 Taulukkolaskennan edistyneempiä piirteitä 25.10.2016 Aulikki Hyrskykari Luento 7 o Kertausta: suhteellinen ja absoluuttinen viittaus o Tekstitiedoston tuonti Exceliin o Tietojen lajittelu, suodatus

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 16.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 16.2.2010 1 / 41 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Johdatus regressioanalyysiin. Heliövaara 1

Johdatus regressioanalyysiin. Heliövaara 1 Johdatus regressioanalyysiin Heliövaara 1 Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

5 Osa 5: Ohjelmointikielen perusteita

5 Osa 5: Ohjelmointikielen perusteita 5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan

Lisätiedot

Näillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla.

Näillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla. Näillä sivuilla Tilastomatematiikan esimerkit, joissa käsitellään tietokoneen käyttöä tilastollissa operaatioissa, on tehty Excel-2007 -versiolla. Nämä ohjeet, samoin kuin Tilastomatematiikan kirjakaan,

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio

Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Tilastollisen analyysin perusteet Luento 7: Lineaarinen regressio Sisältö Regressioanalyysissä tavoitteena on tutkia yhden tai useamman selittävän muuttujan vaikutusta selitettävään muuttujaan. Sen avulla

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 6 (2016) Tavoitteet (teoria): Hahmottaa aikasarjan klassiset komponentit ideaalisessa tilanteessa. Ymmärtää viivekuvauksen vaikutus trendiin. ARCH-prosessin

Lisätiedot

Uuden lukuvuoden aloitus ViLLEssa

Uuden lukuvuoden aloitus ViLLEssa Uuden lukuvuoden aloitus ViLLEssa Tässä dokumentissa käydään läpi lukuvuoden aloituksessa tarvittavat toimenpiteet uuden ViLLEopintopolkukurssin aloittamiseksi. Huomaa, ettet voi suoraan käyttää viime

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Harjoitukset 4 : Paneelidata (Palautus )

Harjoitukset 4 : Paneelidata (Palautus ) 31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

1. HARJOITUS harjoitus3_korjaus.doc

1. HARJOITUS harjoitus3_korjaus.doc Word - harjoitus 1 1. HARJOITUS harjoitus3_korjaus.doc Kopioi itsellesi harjoitus3_korjaus.doc niminen tiedosto Avaa näyttöön kopioimasi harjoitus. Harjoitus on kirjoitettu WordPerfet 5.1 (DOS) versiolla

Lisätiedot

Sukupuu -ohjelma. Ossi Väre (013759021) Joni Virtanen (013760641)

Sukupuu -ohjelma. Ossi Väre (013759021) Joni Virtanen (013760641) Sukupuu -ohjelma Ossi Väre (013759021) Joni Virtanen (013760641) 7.11.2011 1 Johdanto Toteutimme C -kielellä sukupuuohjelman, johon käyttäjä voi lisätä ja poistaa henkilöitä ja määrittää henkilöiden välisiä

Lisätiedot

Juha Haataja 4.10.2011

Juha Haataja 4.10.2011 METROPOLIA Taulukkolaskenta Perusteita Juha Haataja 4.10.2011 Lisätty SUMMA.JOS funktion käyttö (lopussa). Tavoite ja sisältö Tavoite Taulukkolaskennan peruskäytön hallinta Sisältö Työtila Omat kaavat,

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 4: Lineaarinen regressioanalyysi. Yleinen lineaarinen malli. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 4: Lineaarinen regressioanalyysi Yleinen lineaarinen malli TKK (c) Ilkka Mellin (2007) 1 Yleinen lineaarinen malli >> Usean selittäjän lineaarinen regressiomalli

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006

Harjoitus 1: Matlab. Harjoitus 1: Matlab. Mat Sovelletun matematiikan tietokonetyöt 1. Syksy 2006 Harjoitus 1: Matlab Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen Matlab-ohjelmistoon Laskutoimitusten

Lisätiedot

Diskriminanttianalyysi I

Diskriminanttianalyysi I Diskriminanttianalyysi I 12.4-12.5 Aira Hast 24.11.2010 Sisältö LDA:n kertaus LDA:n yleistäminen FDA FDA:n ja muiden menetelmien vertaaminen Estimaattien laskeminen Johdanto Lineaarinen diskriminanttianalyysi

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

OHJE KILPIEN LISÄÄMISESTÄ ATJN KILPIVARASTOON

OHJE KILPIEN LISÄÄMISESTÄ ATJN KILPIVARASTOON OHJE KILPIEN LISÄÄMISESTÄ ATJN KILPIVARASTOON Kilpiä voidaan joutua lisäämään kilpivarastotiedoksi mm. alla mainituissa tilanteissa. Sarjakilpivarastoon: - Tunnus on määräytynyt ajoneuvolle LTJn aikaisessa

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä

Lisätiedot

Proteiinituoton optimointi kuoppalevyllä

Proteiinituoton optimointi kuoppalevyllä Proteiinituoton optimointi kuoppalevyllä Johdanto Ennen ison mittakaavan proteiinituottoja kasvatusolosuhteita kannattaa optimoida. Perinteisesti näitä on tehty käsityönä, mutta solukasvatusten seuranta

Lisätiedot

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k)

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k) ACKERMANNIN ALGORITMI Olkoon järjestelmä x(k+1) = Ax( + Bu( jossa x( = tilavektori (n x 1) u( = ohjaus (skalaari) A (n x n matriisi) B (n x 1 matriisi) Oletetaan, että ohjaus u( = Kx( on rajoittamaton.

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j) (a) Jos n = 1, niin det(a) = a 11 (b) Muussa tapauksessa n det(a)

Lisätiedot

Ohjeita LINDOn ja LINGOn käyttöön

Ohjeita LINDOn ja LINGOn käyttöön Ohjeita LINDOn ja LINGOn käyttöön LINDOn tärkeimmät komennot ovat com (command), joka tuloaa käytettävissä olevat komennot ruudulle, ja help, jonka avulla saa tietoa eri komennoia. Vaaukset kursiivilla

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu

PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu PlanMan Project 2015 projektihallintaohjelmisto loma-aikataulu (PlanMan Project 2015 projektihallintaohjelmisto on PlanMan Oy:n kehittämä ja ylläpitämä tuote) 23.10.2015 Pekka Väätänen Loma-aikataulupohjan

Lisätiedot

Similaarisuus. Määritelmä. Huom.

Similaarisuus. Määritelmä. Huom. Similaarisuus Määritelmä Neliömatriisi A M n n on similaarinen neliömatriisin B M n n kanssa, jos on olemassa kääntyvä matriisi P M n n, jolle pätee Tällöin merkitään A B. Huom. Havaitaan, että P 1 AP

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Microsoft Outlook 2003 Automaattinen arkistointi

Microsoft Outlook 2003 Automaattinen arkistointi Sivu 1/5 Microsoft Outlook 2003 Automaattinen arkistointi Kaikilla tietohallinnon Outlook Exhange palvelua käyttävillä on määritelty henkilökohtainen postilaatikko jossa on rajoitettu levytilan määrä.

Lisätiedot

Alustavia käyttökokemuksia SAS Studiosta. Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke)

Alustavia käyttökokemuksia SAS Studiosta. Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke) Alustavia käyttökokemuksia SAS Studiosta Timo Hurme Maa- ja elintarviketalouden tutkimuskeskus MTT (v. 2015 alusta Luonnonvarakeskus / Luke) 19.9.2014 Lyhyesti SAS-koodareille suunnattu uusi käyttöliittymä

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot