Operatioanalyysi 2011, Harjoitus 3, viikko 39

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Operatioanalyysi 2011, Harjoitus 3, viikko 39"

Transkriptio

1 Operatioanalyysi 2011, Harjoitus 3, viikko 39 H3t1, Exercise 3.1. H3t2, Exercise 3.2. H3t3, Exercise 3.3. H3t4, Exercise 3.4. H3t5

2 (Exercise 3.1.) Find the (a) standard form, (b) slack form of the LP min z = 2x 1 + 3x 2 (0) s.t. 1 x 1 + x 2 9 (1) 2x 1 x 2 4 (2) 2 7x 1 + x (3) x 2 0 You can also make an Octave program that constructs the standard and slack forms to you automatically.

3 (Exercise 3.1.) Find the (a) standard form, (b) slack form of the LP min z = 2x 1 + 3x 2 (0) s.t. 1 x 1 + x 2 9 (1) 2x 1 x 2 4 (2) 2 7x 1 + x (3) x 2 0 You can also make an Octave program that constructs the standard and slack forms to you automatically. (a) (i) Muutetaan ongelma maksimointitehtäväksi (ii) poistetaan kaksoisepäyhtälöt

4 (a) (Exercise 3.1.(a)) 2 min z = 2x 1 + 3x 2 (0) s.t. 1 x 1 + x 2 9 (1) 2x 1 x 2 4 (2) 2 7x 1 + x (3) x 2 0 max z = 2x 1 3x 2 (0 ) s.t. x 1 + x 2 9 (1a ) x 1 + x 2 1 (1b ) 2x 1 x 2 4 (2) 7x 1 + x (3a ) 7x 1 + x 2 2 (3b ) x 2 0

5 (a) (Exercise 3.1.(a)) 2 min z = 2x 1 + 3x 2 (0) s.t. 1 x 1 + x 2 9 (1) 2x 1 x 2 4 (2) 2 7x 1 + x (3) x 2 0 max z = 2x 1 3x 2 (0 ) s.t. x 1 + x 2 9 (1a ) x 1 + x 2 1 (1b ) 2x 1 x 2 4 (2) 7x 1 + x (3a ) 7x 1 + x 2 2 (3b ) x 2 0 (i) Kerrotaan vielä epäyhtälöt (1b*) ja (3b*) miinus yhdellä, jolloin erisuuruus-merkki kääntyy ja (ii) sijoitetaan x 1 = p 1 m 1. (p 1 0 ja m 1 0.)

6 (a) (Exercise 3.1.(a)) 3 Standardi muoto: x 1 = p 1 m 1, (p 1 0,m 1 0) max z = 2p 1 2m 1 3x 2 s.t. p 1 m 1 + x 2 9 p 1 + m 1 x 2 1 2p 1 2m 1 x 2 4 7p 1 7m 1 + x p 1 + 7m 1 x 2 2 p 1,m 1,x 2 0

7 (a) (Exercise 3.1.(a)) 3 Standardi muoto: x 1 = p 1 m 1, (p 1 0,m 1 0) max z = 2p 1 2m 1 3x 2 s.t. p 1 m 1 + x 2 9 p 1 + m 1 x 2 1 2p 1 2m 1 x 2 4 7p 1 7m 1 + x p 1 + 7m 1 x 2 2 p 1,m 1,x 2 0 (b) Lisätään slack-muuttujat

8 (b) (Exercise 3.1.(b)) 4 Slack muoto: max z = 2p 1 2m 1 3x 2 s.t. p 1 m 1 +x 2 +s 1 = 9 p 1 + m 1 x 2 +s 2 = 1 2p 1 2m 1 x 2 +s 3 = 4 7p 1 7m 1 +x 2 +s 4 = 100 7p 1 +7m 1 x 2 +s 5 = 2 p 1,m 1,x 2,s 1,s 2,s 3,s 4,s 5 0

9 (Exercise 3.2.) Solve the LP of Exercise 3.1 by checking all the corners (of its slack form). Checking all the corners may be hard work. So, if you are lazy and clever, you can make an Octave program that checks the corners for you.

10 (Exercise 3.2.) Solve the LP of Exercise 3.1 by checking all the corners (of its slack form). Checking all the corners may be hard work. So, if you are lazy and clever, you can make an Octave program that checks the corners for you. Ensin katsomme pohjustukseksi alkuperäisen LP-mallin graafisen ratkaisun käyvän alueen nurkkapisteet. Tämä ei ole vielä tehtävän ratkaisu, sillä tehtävässä pyydetää nurkkaratkaisut slack-muodolle. Slack-muodossa muuttujia on 8, joten emme voi sitä piirtää. Piirros auttaa ymmärtämään lopullista ratkaisua.

11 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) x 2 0 (4) x 1

12 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) x 2 0 (4) (1a) x 1

13 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) x 2 0 (4) (1b) (1a) x 1

14 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) (1b) (1a) x 1

15 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) (1b) (1a) x 1 (3a)

16 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) (3b) (1b) (1a) x 1 (3a)

17 (Exercise 3.2.) 6 x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) (3b) (1b) (1a) x 1 (4) (3a)

18 (Exercise 3.2.) 6 D x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) C E (3b) A B(1b) (1a) x 1 (4) (3a)

19 (Exercise 3.2.) 7 D x 2 max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) C E (3b) A B(1b) x 1 (1a) (4)

20 (Exercise 3.2.) 7 x 2 D E (3b) max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) A B(1b) C x 1 (1a) (4) A = (1,0) B = (2,0) C = (4.333,4.667) D = ( 1.167, ) E = (0.167,0.833)

21 (Exercise 3.2.) 7 x 2 D E (3b) max z = 2x 1 3x 2 s.t. x 1 + x 2 9 (1a) x 1 + x 2 1 (1b) 2x 1 x 2 4 (2) 7x 1 + x (3a) 7x 1 + x 2 2 (3b) (2) x 2 0 (4) A B(1b) C x 1 (1a) (4) A = (1,0) B = (2,0) PARAS on B! C = (4.333,4.667) D = ( 1.167, ) E = (0.167,0.833)

22 (Exercise 3.2.) 8 Seuraavaksi aloitamme tehtävän ratkaisemisen. Slack-muotoisessa mallissa on 8 muuttujaa (xp 1, xm 1, x 2, s 1, s 2, s 3, s 4 ja s 5 ), ja 5 rajoitetta. Kantaan kuuluvat viisi muuttujaa voidaan valita ( ) 8 5 = 8! 5!(8 5)! = = 56 tavalla. Ei siis kannata vääntää käsin se olisi hirmuinen urakka.

23 (Exercise 3.2.) 8 Seuraavaksi aloitamme tehtävän ratkaisemisen. Slack-muotoisessa mallissa on 8 muuttujaa (xp 1, xm 1, x 2, s 1, s 2, s 3, s 4 ja s 5 ), ja 5 rajoitetta. Kantaan kuuluvat viisi muuttujaa voidaan valita ( ) 8 5 = 8! 5!(8 5)! = = 56 tavalla. Ei siis kannata vääntää käsin se olisi hirmuinen urakka. Tiedostossa or11h3t1.m on octave-koodi, joka tulostaa kantaratkaisut. Ohjelma tulostaa kantaratkaisuja 40 kappaletta, sillä osa kantaratkaisu-yhtälöryhmistä eivät ratkea, koska kerroinmatriisin determinantti on nolla. Kun vielä listalta poistetaan ei-käyvät, niin lista on seuraava:

24 (Exercise 3.2.) 9 k xp1 xm1 x2 s1 s2 s3 s4 s5 -z Paras kantaratkaisu on #3 (BV #6 = {x 1,s 1,s 2,s 4,s 5 }, NBV #6 = {x 2,s 3 }) x 1 = 2,x 2 = 0,s 1 = 7,s 2 = 1,s 3 = 0,s 4 = 86,s 5 = 12, z = 4.

25 (Exercise 3.3.) Solve the LP of Exercise 3.1 with (a) stu_lp_solver, (b) glpk. a-kohdassa tarvitaan standardi-muoto. max mz = z = 2p 1 2m 1 3x 2 s.t. p 1 m 1 + x 2 9 p 1 + m 1 x 2 1 2p 1 2m 1 x 2 4 7p 1 7m 1 + x p 1 + 7m 1 x 2 2 p 1,m 1,x 2 0

26 H3t3 a). (Exercise 3.3.a)) 11 max mz = z = 2p 1 2m 1 3x 2 s.t. p 1 m 1 + x 2 9 p 1 + m 1 x 2 1 2p 1 2m 1 x 2 4 7p 1 7m 1 + x p 1 + 7m 1 x 2 2 p 1,m 1,x 2 0 c = 2 2 3, A = , b =

27 H3t3 a). (Exercise 3.3.a)) 12 c = [2-2 -3] ; A = [1-1 1; ; ; 7-7 1; ]; b = [ ] ; [mz_max, x_max] = stu_lp_solver(c,a,b) ################################# # mz_max = 4 # x_max = # # 2 # 0 # 0

28 H3t3 b). (Exercise 3.3.b)) 13 b-kohdassa tarvitaan muoto, jossa kaksois-epäyhtälöt on hajotettu kahdeksi tavalliseksi epäyhtälöksi. Koska merkkirajoite ei koske kuin toista muuttujaa, määritellään muuttujat vapaiksi, mutta x 2 :ta koskeva merkkirajoite lisätää rajoitteisiin eksplisiittisesti. min z = 2x 1 + 3x 2 (0 ) s.t. x 1 + x 2 9 (1a ) x 1 + x 2 1 (1b ) 2x 1 x 2 4 (2) 7x 1 + x (3a ) 7x 1 + x 2 2 (3b ) x 2 0 (x 2 :n merkki)

29 H3t3 b). (Exercise 3.3.b)) 14 ( 2 c = 3 min z = 2x 1 + 3x 2 s.t. x 1 + x 2 9 x 1 + x 2 1 2x 1 x 2 4 7x 1 + x x 1 + x 2 2 x 2 0 ), A = , b = [x_min, z_min]=glpk(c,a,b,[],[],"uluull","cc",1)

30 H3t3 b). (Exercise 3.3.b)) 15 c = [-2, 3] ; A = [1,1; 1,1; 2,-1; 7,1; 7,1; 0,1]; b = [9, 1, 4, 100, 2, 0] ; [x_min, z_min] = glpk(c,a,b,[],[],"uluull","cc",1) ################################# # x_min = # # 2 # 0 # # z_min = -4 #

31 (Exercise 3.4.) Find all the optima of the LP max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 35 x 1 + 2x 2 2 x 1,x 2 0 Ratkaistaan kaikki kantaratkaisut. Sitä varten tehdään ensin slack-muoto.

32 (Exercise 3.4.) 17 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 BV = {x 1,x 2 }

33 (Exercise 3.4.) 17 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 BV = {x 1,x 2 } { 5x1 + 7x 2 = 35 x 1 + 2x 2 = 2 x 1 = 56/ x 2 = 45/ z = 6

34 (Exercise 3.4.) 18 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 BV = {x 1,s 1 }

35 (Exercise 3.4.) 18 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 BV = {x 1,s 1 } { 5x1 + s 1 = 35 x 1 = 2 x 1 = 2 s 1 = 45 ei ole käypä

36 (Exercise 3.4.) 19 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 BV = {x 1,s 2 }

37 (Exercise 3.4.) 19 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 BV = {x 1,s 2 } { 5x1 + = 35 x 1 s 2 = 2 x 1 = 7 s 2 = 9 z = 21

38 (Exercise 3.4.) 20 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 BV = {x 2,s 1 }

39 (Exercise 3.4.) 20 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 BV = {x 2,s 1 } { 7x2 + s 1 = 35 2x 2 = 2 x 2 = 1 s 1 = 28 z = 6

40 (Exercise 3.4.) 21 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 BV = {x 2,s 2 }

41 (Exercise 3.4.) 21 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 BV = {x 2,s 2 } { 7x2 = 35 2x 2 + s 2 = 2 x 2 = 5 s 2 = 8 ei ole käypä

42 (Exercise 3.4.) 22 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 BV = {s 1,s 2 }

43 (Exercise 3.4.) 22 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 x 1 = 0 x 2 = 0 s 1 = 35 s 2 = 2 z = 0 BV = {s 1,s 2 } { s s1 = 35 1 = 35 s 2 = 2 s 2 = 2 z = 0

44 (Exercise 3.4.) 23 max z = 3x 1 + 6x 2 s.t. 5x 1 + 7x 2 + s 1 = 35 x 1 + 2x 2 + s 2 = 2 x 1,x 2,s 1,s 2 0 x 1 = 56/17 x 2 = 45/17 s 1 = 0 s 2 = 0 z = 6 x 1 = 7 x 2 = 0 s 1 = 0 s 2 = 9 z = 21 x 1 = 0 x 2 = 1 s 1 = 28 s 2 = 0 z = 6 x 1 = 0 x 2 = 0 s 1 = 35 s 2 = 2 z = 0 Tavoitefunktion arvo on z = 6, jos x 1 56/17 x 2 s 1 = t 45/ (1 t) s , 0 t 1

45 24 (a) Is it possible that LP has no optima, but it is nevertheless bounded? This means that your value z is bounded by some number, but one can still always make any given decision better. (b) Is the previous possible for any optimization problem?

46 24 (a) Is it possible that LP has no optima, but it is nevertheless bounded? This means that your value z is bounded by some number, but one can still always make any given decision better. (b) Is the previous possible for any optimization problem? Vastaus: (a) ei (b) kyllä.

47 24 (a) Is it possible that LP has no optima, but it is nevertheless bounded? This means that your value z is bounded by some number, but one can still always make any given decision better. (b) Is the previous possible for any optimization problem? Vastaus: (a) ei (b) kyllä. (b)-kohta on helpompi, joten aloitamme siitä. Optimointitehtävällä max z = x 1 s.t. 0 < x 1 < 1 ei ole optimia vaikka arvot ovat rajoitettu välille 0 < z < 1

48 (a) #1 25 (a)-kohdassa aukottoman perustelun antaminen ei ole helppoa. Seuraavassa on annettu kolme erilaista perustelua. Perusteluyritys #1 (kuvaileva) Oleellinen seikka on se, että käyvän alueen reunapisteet ovat käypiä. Oletamme nyt, että ongelma on maksimointitehtävä ja tavoitefunktion arvot on rajoitettu välille M z = f (x) M Olkoon aluksi t = M + 1. Tarkastellaan niitä päätösmuuttuja -avaruuden pisteitä, joissa f (x) = t. Pisteet muodostavat hypertason T (t), joka liikkuu käypää aluetta kohden, kun t:tä pienennetään. Ensimmäinen piste, jossa T koskettaa käypää aluetta on käyvän alueen reunan piste ja siis optimipiste.

49 (a) #1 25 (a)-kohdassa aukottoman perustelun antaminen ei ole helppoa. Seuraavassa on annettu kolme erilaista perustelua. Perusteluyritys #1 (kuvaileva) Oleellinen seikka on se, että käyvän alueen reunapisteet ovat käypiä. Oletamme nyt, että ongelma on maksimointitehtävä ja tavoitefunktion arvot on rajoitettu välille M z = f (x) M Olkoon aluksi t = M + 1. Tarkastellaan niitä päätösmuuttuja -avaruuden pisteitä, joissa f (x) = t. Pisteet muodostavat hypertason T (t), joka liikkuu käypää aluetta kohden, kun t:tä pienennetään. Ensimmäinen piste, jossa T koskettaa käypää aluetta on käyvän alueen reunan piste ja siis optimipiste. Miksi on olemassa ensimmäisen kosketuksen piste? (?!?!)

50 (a) #2 26 Perustelu #2 (lineaarialgebran keinoin) Tarkastellaan LP-mallin slack-muotoa. Jokainen käypä kantaratkaisu x i antaa yhden käyvän alueen nurkkapisteen joka on käypä ratkaisu ja jossa tavoitefunktio saa arvon z i = f (x i ) = c x i.

51 (a) #2 26 Perustelu #2 (lineaarialgebran keinoin) Tarkastellaan LP-mallin slack-muotoa. Jokainen käypä kantaratkaisu x i antaa yhden käyvän alueen nurkkapisteen joka on käypä ratkaisu ja jossa tavoitefunktio saa arvon z i = f (x i ) = c x i. Kahden kantaratkaisun x i ja x j painotettu keskiarvo x = t 1 x i + t 2 x j (jossa painojen summa on t 1 + t 2 = 1) on myös käypä ratkaisu, sillä Ax = A(t 1 x i + t 2 x j ) = t 1 Ax i + t 2 Ax j = t 1 b + t 2 b = b. ja f (x) = c (t 1 x i + t 2 x j ) = t 1 z i + t 2 z j.

52 (a) #2 27 Vastaavasti painotettu keskiarvo kaikista käyvistä kantaratkaisuista x = N k=1 t k x k (jossa painojen summa on t k = 1) on myös käypä ratkaisu ja f (x) = c ( t k x k ) = t k z k. (Se, että kaikki käyvän alueen pisteet saadaan kantaratkaisujen painotettuina keskiarvoina, on melko luonnollinen ajatus, mutta jää nyt todistamatta!)

53 (a) #2 27 Vastaavasti painotettu keskiarvo kaikista käyvistä kantaratkaisuista x = N k=1 t k x k (jossa painojen summa on t k = 1) on myös käypä ratkaisu ja f (x) = c ( t k x k ) = t k z k. (Se, että kaikki käyvän alueen pisteet saadaan kantaratkaisujen painotettuina keskiarvoina, on melko luonnollinen ajatus, mutta jää nyt todistamatta!) Kantaratkaisuja (nurkkapisteitä) on paljon, mutta kuitenkin vain äärellinen määrä. Voimme siis aina löytää parhaan nurkkapisteen. Paras käyvän alueen piste löytyy nyt niin, että annetaan parhaalle nurkkapisteelle paino 1 ja muille nurkkapisteille painot 0. Saatu piste on kaikista paras ja käypä, siis optimiratkaisu.

54 (a)#3 28 Perustelu #3 (topologian keinoin) Käypä alue on R n :n suljettu joukko (reuna on mukana). R n :n rajoitettu, suljettu joukko on kompakti. Topologiasta tiedämme, että jos K R n on epätyhjä ja kompakti ja f : K R on jatkuva funktio, niin f saa kompaktissa joukossa K suurimman arvonsa. LP-mallin käypä alue on kompakti ja tavoitefunktio on jatkuva, joten edellisen nojalla optimi on olemassa. Jos jokin sana jäi epäselväksi, niin googlaamalla löytyy selityksiä. Hyvä kirjallinen lähde on mm. Jussi Väisälä (2007), Topologia I, Limes ry, ISBN

Operatioanalyysi 2011, Harjoitus 4, viikko 40

Operatioanalyysi 2011, Harjoitus 4, viikko 40 Operatioanalyysi 2011, Harjoitus 4, viikko 40 H4t1, Exercise 4.2. H4t2, Exercise 4.3. H4t3, Exercise 4.4. H4t4, Exercise 4.5. H4t5, Exercise 4.6. (Exercise 4.2.) 1 4.2. Solve the LP max z = x 1 + 2x 2

Lisätiedot

Operatioanalyysi 2011, Harjoitus 2, viikko 38

Operatioanalyysi 2011, Harjoitus 2, viikko 38 Operatioanalyysi 2011, Harjoitus 2, viikko 38 H2t1, Exercise 1.1. H2t2, Exercise 1.2. H2t3, Exercise 2.3. H2t4, Exercise 2.4. H2t5, Exercise 2.5. (Exercise 1.1.) 1 1.1. Model the following problem mathematically:

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo LP-mallit, L19 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset

Lisätiedot

LP-mallit, L8. Herkkyysanalyysi. Varjohinta. Tietokoneohjelmia. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto.

LP-mallit, L8. Herkkyysanalyysi. Varjohinta. Tietokoneohjelmia. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. LP-mallit, L8 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Alternative DEA Models

Alternative DEA Models Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex

Lisätiedot

Capacity Utilization

Capacity Utilization Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu Returns to Scale II Contents Most Productive Scale Size Further Considerations Relaxation of the Convexity Condition Useful Reminder Theorem 5.5 A DMU found to be efficient with a CCR model will also be

Lisätiedot

Operatioanalyysi 2011, Harjoitus 5, viikko 41

Operatioanalyysi 2011, Harjoitus 5, viikko 41 Operatioanalyysi 2011, Harjoitus 5, viikko 41 H5t1, Exercise 5.2. H5t2, Exercise 5.3. H5t3, Exercise 5.4. H5t4, Exercise 5.5. H5t5, Exercise 6.1. (Exercise 5.2.) 1/5 1 5.2. Consider Manuel Example s 4.0.1

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

anna minun kertoa let me tell you

anna minun kertoa let me tell you anna minun kertoa let me tell you anna minun kertoa I OSA 1. Anna minun kertoa sinulle mitä oli. Tiedän että osaan. Kykenen siihen. Teen nyt niin. Minulla on oikeus. Sanani voivat olla puutteellisia mutta

Lisätiedot

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31) Juha Kahkonen Click here if your download doesn"t start automatically On instrument costs

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Luento 7: Kokonaislukuoptimointi

Luento 7: Kokonaislukuoptimointi Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Kertausta Talousmatematiikan perusteista Toinen välikoe

Kertausta Talousmatematiikan perusteista Toinen välikoe Kertausta Talousmatematiikan perusteista Toinen välikoe 1 päätösmuuttujat (x 1,x 2,...) tavoitefunktio (z = c 1 x 1 + c 2 x 2 +...) rajoitteet (a i1 x 1 + a i2 x 2 + b i ) Mallin Formaatti käypä alue Optimipisteen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

Topologia Syksy 2010 Harjoitus 11

Topologia Syksy 2010 Harjoitus 11 Topologia Syksy 2010 Harjoitus 11 (1) Tarkastellaan tason (a, )-topologiaa. (Tässä topologiassa A R 2 on avoin jos ja vain jos A =, A = R 2 tai A = {(x, y) R 2 x > a ja y > b} joillekin a, b R.) Jokaiselle

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

Esimerkkitehtäviä, A-osa

Esimerkkitehtäviä, A-osa Esimerkkitehtäviä, A-osa MAB1, harjaantuu käyttämään matematiikkaa jokapäiväisen elämän ongelmien ratkaisemisessa Jussi myy torilla marjoja. Erään asiakkaan ostokset maksavat 8,65e. Asiakas antaa Jussille

Lisätiedot

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL

FinFamily PostgreSQL installation ( ) FinFamily PostgreSQL FinFamily PostgreSQL 1 Sisällys / Contents FinFamily PostgreSQL... 1 1. Asenna PostgreSQL tietokanta / Install PostgreSQL database... 3 1.1. PostgreSQL tietokannasta / About the PostgreSQL database...

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine Information on Finnish Language Courses Spring Semester 2017 Jenni Laine 4.1.2017 KIELIKESKUS LANGUAGE CENTRE Puhutko suomea? Do you speak Finnish? -Hei! -Moi! -Mitä kuuluu? -Kiitos, hyvää. -Entä sinulle?

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin

Lisätiedot

make and make and make ThinkMath 2017

make and make and make ThinkMath 2017 Adding quantities Lukumäärienup yhdistäminen. Laske yhteensä?. Countkuinka howmonta manypalloja ballson there are altogether. and ja make and make and ja make on and ja make ThinkMath 7 on ja on on Vaihdannaisuus

Lisätiedot

Kertausta Talousmatematiikan perusteista Toinen välikoe

Kertausta Talousmatematiikan perusteista Toinen välikoe Kertausta Talousmatematiikan perusteista Toinen välikoe 1 Parametrit D Kysyntä (kpl/vuosi) h Yksikköylläpito-kustannus (euro/kpl/vuosi) K Tilauskustannus (euro) Tarkista aina yksiköiden yhteensopiminen

Lisätiedot

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition)

Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Nuku hyvin, pieni susi -????????????,?????????????????. Kaksikielinen satukirja (suomi - venäjä) (www.childrens-books-bilingual.com) (Finnish Edition) Click here if your download doesn"t start automatically

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

Choose Finland-Helsinki Valitse Finland-Helsinki

Choose Finland-Helsinki Valitse Finland-Helsinki Write down the Temporary Application ID. If you do not manage to complete the form you can continue where you stopped with this ID no. Muista Temporary Application ID. Jos et onnistu täyttää lomake loppuun

Lisätiedot

Malliratkaisut Demot 5,

Malliratkaisut Demot 5, Malliratkaisut Demot 5, 2.2.25 Tehtävä : a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x +x 2 x 3 x 3 x 2 3 x 3 3 x,x 2,x 3 Tämä on tehtävän kanoninen muoto,n = 3 jam =. b) Otetaan käyttöön

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S-55.1100 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖKNKKA A KONKKA. välikoe 2..2008. Saat vastata vain neljään tehtävään!. aske jännite U. = 4 Ω, 2 = Ω, = Ω, = 2, 2 =, = A, 2 = U 2 2 2 2. ännitelähde tuottaa hetkestä t = t < 0 alkaen kaksiportaisen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Oma sininen meresi (Finnish Edition)

Oma sininen meresi (Finnish Edition) Oma sininen meresi (Finnish Edition) Hannu Pirilä Click here if your download doesn"t start automatically Oma sininen meresi (Finnish Edition) Hannu Pirilä Oma sininen meresi (Finnish Edition) Hannu Pirilä

Lisätiedot

16. Allocation Models

16. Allocation Models 16. Allocation Models Juha Saloheimo 17.1.27 S steemianalsin Optimointiopin seminaari - Sks 27 Content Introduction Overall Efficienc with common prices and costs Cost Efficienc S steemianalsin Revenue

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition)

Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen Click here if your download doesn"t start automatically Uusi Ajatus Löytyy Luonnosta 4 (käsikirja) (Finnish Edition) Esko Jalkanen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine 4.1.2018 Centre for Language and Communication Studies Puhutko suomea? -Hei! -Hei hei! -Moi! -Moi moi! -Terve! -Terve

Lisätiedot

Efficiency change over time

Efficiency change over time Efficiency change over time Heikki Tikanmäki Optimointiopin seminaari 14.11.2007 Contents Introduction (11.1) Window analysis (11.2) Example, application, analysis Malmquist index (11.3) Dealing with panel

Lisätiedot

4x4cup Rastikuvien tulkinta

4x4cup Rastikuvien tulkinta 4x4cup Rastikuvien tulkinta 4x4cup Control point picture guidelines Päivitetty kauden 2010 sääntöihin Updated for 2010 rules Säännöt rastikuvista Kilpailijoiden tulee kiinnittää erityistä huomiota siihen,

Lisätiedot

C++11 seminaari, kevät Johannes Koskinen

C++11 seminaari, kevät Johannes Koskinen C++11 seminaari, kevät 2012 Johannes Koskinen Sisältö Mikä onkaan ongelma? Standardidraftin luku 29: Atomiset tyypit Muistimalli Rinnakkaisuus On multicore systems, when a thread writes a value to memory,

Lisätiedot

Salasanan vaihto uuteen / How to change password

Salasanan vaihto uuteen / How to change password Salasanan vaihto uuteen / How to change password Sisällys Salasanakäytäntö / Password policy... 2 Salasanan vaihto verkkosivulla / Change password on website... 3 Salasanan vaihto matkapuhelimella / Change

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen

Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen The acquisition of science competencies using ICT real time experiments COMBLAB Uusia kokeellisia töitä opiskelijoiden tutkimustaitojen kehittämiseen Project N. 517587-LLP-2011-ES-COMENIUS-CMP This project

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä /

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / Kevään 0 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / 8.7.0 a) b) c) a) Tehtävä Yhtälö ratkaistaan yleensä Solve-funktiolla: Solve x 3 x, x x 4 Joissakin tapauksissa

Lisätiedot

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2 HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:

Lisätiedot

Alueellinen yhteistoiminta

Alueellinen yhteistoiminta Alueellinen yhteistoiminta Kokemuksia alueellisesta toiminnasta Tavoitteet ja hyödyt Perusterveydenhuollon yksikön näkökulmasta Matti Rekiaro Ylilääkäri Perusterveydenhuollon ja terveyden edistämisen yksikkö

Lisätiedot

Kohdeyleisö: toisen vuoden teekkari

Kohdeyleisö: toisen vuoden teekkari Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

73125 MATEMAATTINEN OPTIMOINTITEORIA 2

73125 MATEMAATTINEN OPTIMOINTITEORIA 2 73125 MATEMAATTINEN OPTIMOINTITEORIA 2 Risto Silvennoinen Tampereen teknillinen yliopisto, kevät 2004 1. Peruskäsitteet Optimointiteoria on sovelletun matematiikan osa-alue, jossa tutkitaan funktioiden

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Travel Getting Around

Travel Getting Around - Location Olen eksyksissä. Not knowing where you are Voisitko näyttää kartalta missä sen on? Asking for a specific location on a map Mistä täällä on? Asking for a specific...wc?...pankki / rahanvaihtopiste?...hotelli?...huoltoasema?...sairaala?...apteekki?...tavaratalo?...ruokakauppa?...bussipysäkki?

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden

Lisätiedot

ASCII-taidetta. Intro: Python

ASCII-taidetta. Intro: Python Python 1 ASCII-taidetta All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/18cplpy to find out what to do.

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

Information on preparing Presentation

Information on preparing Presentation Information on preparing Presentation Seminar on big data management Lecturer: Spring 2017 20.1.2017 1 Agenda Hints and tips on giving a good presentation Watch two videos and discussion 22.1.2017 2 Goals

Lisätiedot