Rajoitutaan isotrooppisen materiaalin tarkasteluun, jolloin materiaaliyhtälöt ovat

Koko: px
Aloita esitys sivulta:

Download "Rajoitutaan isotrooppisen materiaalin tarkasteluun, jolloin materiaaliyhtälöt ovat"

Transkriptio

1 Lujuusopin jatkokurssi I.28 3 JÄNNITYS- JA MUODONMUUTOSTILAN YHTYS 3. Materiaalimalleista Jännits- ja muodonmuutostila ovat ktkennässä toisiinsa ja ktkennän antavia htälöitä sanotaan materiaalihtälöiksi eli konstitutiivisiksi htälöiksi. Materiaalihtälöt on etsittävä kokeellisesti ja ne ovat todellisilla aineilla mutkikkaita. Tästä johtuen lujuusopissa kätetään materiaalimalleja joiden konstitutiiviset htälöt ovat ksinkertaisia ja analttisesti esitettävissä mutta sisältävät aineiden tärkeimmät ominaisuudet. Materiaalille oletetaan kontinuumimalli jolloin aineen ajatellaan jakaantuvan jatkuvasti kappaleeseen. Kontinuumi on homogeeninen jos sen materiaalihtälöt ovat samat kaikissa pisteissä ja isotrooppinen jos materiaalihtälöt ovat suunnasta riippumattomat. päisotrooppisia ja epähomogeenisia materiaaleja ovat mm. puu valssattu teräs ja lasikuituvahvisteinen muovi. Jos konstitutiivisissa htälöissä on aika mukana on materiaali ajasta riippuva. Ajasta riippuvia materiaaleja ovat esimerkiksi nesteet muovit asfaltti lakat tekstiilikuidut leensä orgaaniset aineet ja metallit korkeissa lämpötiloissa. Ajasta riippumattomat materiaalit voidaan jakaa niihin sntvän muodonmuutoksen perusteella jäkkiin kimmoisiin ja plastisiin materiaaleihin. Jäkässä materiaalissa ei ole muodonmuutoksia. Kimmoisen materiaalin muodonmuutokset palautuvat mutta plastisen materiaalin muodonmuutoksista ainakin osa jää palautumatta kun kuormitukset poistetaan. Materiaali on lineaarinen jos konstitutiiviset htälöt ovat jännits- ja muodonmuutostilan suureiden välisiä lineaarisia htälöitä. 3.2 Kimmoteoria Tarkastellaan lineaarisesti kimmoista materiaalia jolloin materiaalihtälöt ovat ajasta riippumattomia jännits- ja muodonmuutoskomponenttien välisiä lineaarisia htälöitä. Kun lämpötilan vaikutusta ei oteta huomioon materiaalihtälöt ovat tällöin muotoa (3. jossa on otettu huomioon jännits- ja muodonmuutosmatriisin smmetriss. Kun Lujuusopin perushtälöt

2 Lujuusopin jatkokurssi I.29 materiaali oletetaan homogeeniseksi ovat kertoimet ij htälössä (3. materiaalille ominaisia vakioita. Yhtälöissä (3. on 36 materiaalivakiota joista vain 2 on erilaista sillä voidaan osoittaa että ij ji. Jos materiaalilla on smmetriaominaisuuksia pienenee toisistaan riippumattomien materiaalivakioiden lukumäärä. Yksinkertaisinta tapausta edustaa isotrooppinen materiaali jolla materiaaliominaisuudet ovat suunnasta riippumattomat. Seurauksena on että isotrooppisella materiaalilla on vain kaksi vapaata materiaalivakiota. Teknillisessä kirjallisuudessa näiksi valitaan tavallisesti kimmomoduuli ja Poissonin vakio jotka on helppo mitata. Usein kätetään apuna mös liukumoduulia G / [ 2(+ ]. Toinen sovelluskelpoinen materiaali on ortotrooppinen materiaali jolla on kolmessa toisiaan vastaan kohtisuorassa suunnassa erilaiset ominaisuudet eli kullakin suunnalla on oma kimmomoduuli ja kullakin suuntaparilla oma liukumoduuli ja Poissonin vakio jolloin materiaalivakioita on hdeksän. Rajoitutaan isotrooppisen materiaalin tarkasteluun jolloin materiaalihtälöt ovat (+ ( (+ ( (+ ( [( + ( + ] [( + ( + ] [( + ( + ] G G G (3.2 Yhtälöistä (3.2 saadaan jännitskomponentit kun muodonmuutoskomponentit tunnetaan. Muodonmuutoskomponenttien suhteen ratkaistut materiaalihtälöt ovat [ ( + ] [ ( + ] [ ( + ] (3.3 Rhmää (3.2 tai (3.3 sanotaan leistetksi Hooken laiksi. Materiaalihtälöistä näk että isotrooppisessa materiaalissa jännits- ja muodonmuutostilojen pääsuunnat htvät. Näin ei ole epäisotrooppisessa materiaalissa. Yhtälöt (3.2 voidaan laittaa muotoon 2G 2G 2G + λe + λe + λe G G G e + + λ / [(+ ( ] (3.4 Liukumoduuli G ja λ ovat Lamén vakiot joita kätetään vakioiden ja asemesta. Lujuusopin perushtälöt

3 Lujuusopin jatkokurssi I.3 Suureelle e saadaan tulkinta tarkastelemalla kuvan 2.5 differentiaalisärmiön muodonmuutoksesta johtuvaa tilavuuden muutosta. Alkutilassa tilavuus on ΔΔΔ ja muodonmuutostilassa V m (+ Δ(+ Δ(+ Δ. Saadaan siis V V m V + Δ V ( V (3.5 (+ + + V V + ev (3.6 Vm Vm V ΔV e + + (3.7 V V joten e on suhteellinen tilavuuden muutos. Se voidaan lausua jännitskomponenttien avulla sijoittamalla venmäkomponentit htälöstä (3.3 jolloin saadaan e + + ( + + (3.8 Kun tarkastellaan jännitselementtiä jonka tahoihin kohdistuu hdrostaattinen paine eli p ja saadaan htälöstä (3.8 p e 3( p / K (3.9 e 3( Vakiota K sanotaan materiaalin puristusmoduuliksi. Jos materiaali on kokoonpuristumatonta eli sen e on kaavan (3.8 mukaan silloin 5. Koska toisaalta K > kun e saadaan lisäksi ehto 5 ja edelleen Tasojännitstila Tasojännitstilan (TJT konstitutiiviset htälöt saadaan htälöistä (3.3 sijoittamalla jolloin tasojännitstila on -tasossa. Tulokseksi saadaan ( ( ( + (3. Kaavasta (3. saadaan muodonmuutoskomponentit kun jännitskomponentit tunnetaan. Ratkaisemalla htälöt (3. jännitskomponenttien suhteen saadaan Lujuusopin perushtälöt

4 Lujuusopin jatkokurssi I.3 G 2 ( + 2 ( + ( Tasomuodonmuutostila Tasomuodonmuutostilan (TMT konstitutiiviset htälöt saadaan htälöistä (3.2 ottamalla huomioon että jolloin tasomuodonmuutostila on -tason suuntainen. Tulokseksi saadaan (+ ( (+ ( ( (+ ( [( + ] [( + ] + G (3.2 Kaavasta (3.2 saadaan jännitskomponentit kun muodonmuutoskomponentit tunnetaan. Ratkaisemalla htälöt (3.2 muodonmuutoskomponenttien suhteen saadaan + + [( ] [( ] (3.3 4 YHTNVTO dellä esitetssä lineaarisen lujuusopin perusteoriassa kätettävät tuntemattomat funktiot ovat Jännitskomponentit Muodonmuutoskomponentit Siirtmäkomponentit u v w 3 kpl joiden ratkaiseminen on lujuusopin tavoitteena. Tuntemattomien ratkaisemiseksi ovat kätettävissä seuraavat riippumattomat osittaisdifferentiaalihtälöt ja htälöt Lujuusopin perushtälöt

5 Lujuusopin jatkokurssi I.32 Jännitskomponenttien tasapainohtälöt 3 kpl f + f + f Kinemaattiset htälöt u u + v v u + w w v + w Materiaalihtälöt [ ( + ] [ ( + ] [ ( + ] Yhteensä 5 kpl Yhtälöitä ja tuntemattomia on siis sama määrä. Kun tilavuusvoimat sekä pintakuormitukset ja tuennat on annettu on tehtävä matemaattisesti ksikäsitteinen. Kappaleen reunan pisteissä ksmkseen tulevat reunaehdot ovat Pintavoimavektori on annettu. Jännitskomponenttien reunaehdot. Siirtmävektori on annettu. Siirtmäkomponenttien reunaehdot. Sekareunaehdot. Yhdistelmä jännits- ja siirtmäkomponenttien reunaehtoja. Kuvassa 4. on esitett kaavio lujuusopin perussuureista sekä niitä koskevista ja ktkevistä htälöistä. Voidaan osoittaa että jokaisella lineaarisen lujuusopin tehtävällä on aina olemassa ksikäsitteinen ratkaisu. Sen lötäminen analttisesti on kuitenkin usein hvin vaikeaa mutta onnistuu tavallisesti likimääräisesti numeerisilla menetelmillä joista tärkein on elementtimenetelmä (FM. Lineaarisen lujuusopin ongelmassa on aina pohjimmiltaan ksms edellä kuvatun htälöjärjestelmän reuna-arvotehtävän ratkaisemisesta. Sovellettaessa lujuusoppia eri rakennetppeihin kannattaa ottaa huomioon näiden eritispiirteet. Näin saadaan tiettihin rakennetppeihin soveltuvia lujuusopin teorioita (palkkiteoria laattateoria kuoriteoria joissa edellä esitettjä perushtälöitä on kehitelt tarkoituksenmukaiseen muotoon kätössä voi olla perustuntemattomista johdettuja suureita (taivutusmomentti jännitsresultantti suuntakulma tai osa tuntemattomista on merkitksettömi- Lujuusopin perushtälöt

6 Lujuusopin jatkokurssi I.33 nä oletettu nolliksi. Nämä lujuusopin eritisteoriat eivät ulkoiselta olemukseltaan välttämättä muistuta enää kovinkaan paljon tässä käsiteltjä perushtälöitä mutta on hvä muistaa että niissä on joka tapauksessa sisään rakennettuna perushtälöiden mukaiset fsikaaliset ja geometriset lainalaisuudet. Reunaehdot JÄNNITYSTILA Yhteensopivuushtälöt Tasapainohtälöt Materiaalihtälöt MUODONMUUTOSTILA Kinemaattiset htälöt SIIRTYMÄTILA u v w Reunaehdot Kuva 4. Lujuusopin htälöjärjestelmä. Lujuusopin perushtälöt

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä. JÄNNITYS-JAMUODONMUUTOSTILANYHTYS Materiaalimalleista Jännitys- ja muodonmuutostila ovat kytkennässä toisiinsa ja kytkennän antavia yhtälöitä sanotaan materiaaliyhtälöiksi eli konstitutiivisiksi yhtälöiksi.

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet. 0/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO 0: Johdanto. Elementtiverkko. Solmusuureet. JOHDANTO Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtmätilakenttä,

Lisätiedot

2.7 Neliöjuuriyhtälö ja -epäyhtälö

2.7 Neliöjuuriyhtälö ja -epäyhtälö 2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

4 YLEINEN ELEMENTTIMENETELMÄ

4 YLEINEN ELEMENTTIMENETELMÄ Elementtimenetelmän perusteet 4. 4 YLEINEN ELEMENIMENEELMÄ 4. Johdanto Elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä. ällöin tarkastellaan tiettä

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että

Lisätiedot

Johdatus materiaalimalleihin

Johdatus materiaalimalleihin Johdatus materiaalimalleihin 2 kotitehtäväsarja - kimmoisat materiaalimallit Tehtävä Erään epälineaarisen kimmoisen isotrooppisen aineen konstitutiivinen yhtälö on σ = f(i ε )I + Ge () jossa venymätensorin

Lisätiedot

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö

Aluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty

Lisätiedot

4 Vektorin komponenttiesitys

4 Vektorin komponenttiesitys 4 Vektorin komponenttiesits Edellä on laskettu vektoreita hteen, vähennett toisistaan ja kerrottu niitä reaaliluvuilla. Yhteenlaskulle käänteistä toimitusta sanotaan vektorin jakamiseksi komponentteihin.

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v

PALKIN KIMMOVIIVA M EI. Kaarevuudelle saatiin aiemmin. Matematiikassa esitetään kaarevuudelle v. 1 v PALKIN KIMMOVIIVA Palkin akseli taipuu suorassa taivutuksessa kuormitustasossa tasokäyräksi, jota kutsutaan kimmoviivaksi tai taipumaviivaksi. Palkin akselin pisteen siirtymästä y akselin suunnassa käytetään

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Häiriöt kaukokentässä

Häiriöt kaukokentässä Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34

2 LUJUUSOPIN PERUSKÄSITTEET 25 2.1 Suoran sauvan veto tai puristus 25. 2.2 Jännityksen ja venymän välinen yhteys 34 SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillisen suunnitteluprosessin kulku

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi SMG-400 Sähkömaneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 4 ratkaisuiksi Jatkuvuustilan D-lämpötilajakauma: differenssimenetelmä Differenssimenetelmän käyttämen lämpötehtävien ratkaisemiseen

Lisätiedot

Sähköstaattisen potentiaalin laskeminen

Sähköstaattisen potentiaalin laskeminen Sähköstaattisen potentiaalin laskeminen Potentiaalienegia on tuttu mekaniikan kussilta eikä se ole vieas akielämässäkään. Sen sijaan potentiaalin käsite koetaan usein vaikeaksi. On hyvä muistaa, että staattisissa

Lisätiedot

ESTON LASKENTA VERKOSSA

ESTON LASKENTA VERKOSSA J. Virtamo 38.3141 Teleliikenneteoria / Esto verkossa 1 ESTON LASKENTA VERKOSSA Erlangin funktion E(C, a) avulla voidaan laskea esto yhdessä linkissä, jonka kapasiteetti on C (johtoa) ja johon tarjotun

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Tampere University of Technology

Tampere University of Technology Tampere University of Technology EDE- Introduction to Finite Element Method. Exercise 3 Autumn 3.. Solve the deflection curve v(x) exactly for the beam shown y,v q v = q z, xxxx x E I z Integroidaan yhtälö

Lisätiedot

2.2 Täydellinen yhtälö. Ratkaisukaava

2.2 Täydellinen yhtälö. Ratkaisukaava . Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.

Lisätiedot

Aaltojen heijastuminen ja taittuminen

Aaltojen heijastuminen ja taittuminen Luku 11 Aaltojen heijastuminen ja taittuminen Tässä luvussa käsitellään sähkömagneettisten aaltojen heijastumista ja taittumista väliaineiden rajapinnalla. Rajoitutaan monokromaattisiin aaltoihin ja oletetaan

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus

Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Lauri Tarkkonen: Kappa kerroin ja rinnakkaisten arvioitsijoiden yhdenmukaisuus Tässä rajoitutaan tarkastelemaan kahden arvioitsijan tapausta, Olettakaamme, että n havaintoa on arvioitu kahden arvioitsijan

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva).

Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). 6 DIFFERENTIAALIYHTÄLÖISTÄ Esimerkki: Tarkastellaan korkeudella h ht () putoavaa kappaletta, jonka massa on m (ks. kuva). Newtonin II:n lain (ma missä Yhtälö dh dt m dh dt F) mukaan mg, on kiihtyvyys ja

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään

Lisätiedot

Lineaarinen yhtälöryhmä

Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.

Lisätiedot

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa

11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa 11.4. Rakenteellista käsittelyä tilavuusrenderöintialgoritmeissa Tilavuusdatan katseluprosessi on käsitteellisesti yksinkertaista. Se pitää sisällään tilavuuden kierron katselusuuntaan ja sitten säteen

Lisätiedot

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004 Koesuunnitelma: Paineen mittaus venymäliuskojen avulla Ryhmä C Aleksi Mäki 350637 Simo Simolin 354691 Mikko Puustinen 354442 1. Tutkimusongelma ja

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt

4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4 Korkeamman kertaluvun lineaariset differentiaaliyhtälöt 4.1 Homogeeniset lineaariset differentiaaliyhtälöt Homogeeninen yhtälö on muotoa F(x, y,, y (n) ) = 0. (1) Yhtälö on lineaarinen, jos se voidaan

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 Laaja matematiikka 5 Kevät 010 4. Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa esiintyvistä matemaattisista malleista on differentiaaliyhtälö.

Lisätiedot

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi

Optimointi. Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa. Ongelman mallintaminen. Mallin ratkaiseminen. Ratkaisun analysointi Optimointi Etsitään parasta mahdollista ratkaisua annetuissa olosuhteissa Ongelman mallintaminen Mallin ratkaiseminen Ratkaisun analysointi 1 Peruskäsitteitä Muuttujat: Sallittu alue: x = (x 1, x 2,...,

Lisätiedot

Tuulen nopeuden mittaaminen

Tuulen nopeuden mittaaminen KON C3004 Kone ja rakennustekniikan laboratoriotyöt Koesuunnitelma / ryhmä K Tuulen nopeuden mittaaminen Matias Kidron 429542 Toni Kokkonen 429678 Sakke Juvonen 429270 Kansikuva: http://www.stevennoble.com/main.php?g2_view=core.downloaditem&g2_itemid=12317&g2_serialnumber=2

Lisätiedot

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Diskreetit rakenteet

Diskreetit rakenteet Diskreetit rakenteet 811120P 5 op 7. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 Mikä on verkko? verkko (eli graafi) koostuu solmuista ja väleistä, jotka yhdistävät solmuja

Lisätiedot

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv

2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyv 2. harjoitus - malliratkaisut Tehtävä 3. Tasojännitystilassa olevan kappaleen kaksiakselista rasitustilaa käytetään usein materiaalimalleissa esiintyvien vakioiden määrittämiseen. Jännitystila on siten

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos

Lisätiedot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot

Funktion raja-arvo 1/6 Sisältö ESITIEDOT: reaalifunktiot Funktion raja-arvo 1/6 Sisältö Esimerkki funktion raja-arvosta Lauseke f() = 1 cos määrittelee reaauuttujan reaaliarvoisen funktion f, jonka lähtöjoukko muodostuu nollasta eroavista reaaliluvuista. Periaatteessa

Lisätiedot

Matematiikan tukikurssi 3.4.

Matematiikan tukikurssi 3.4. Matematiikan tukikurssi 3.4. Neliömuodot, Hessen matriisi, deiniittisyys, konveksisuus siinä tämän dokumentin aiheet. Neliömuodot ovat unktioita, jotka ovat muotoa T ( x) = x Ax, missä x = (x 1,, x n )

Lisätiedot

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen.

Derivaatta. Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Derivaatta Joukko A C on avoin, jos jokaista z 0 A kohti on olemassa ǫ > 0: jos z z 0 < ǫ, niin z A. f : A C on yksiarvoinen. Määritelmä Funktio f : A C on derivoituva pisteessä z 0 A jos raja-arvo (riippumatta

Lisätiedot

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa

Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Rakenteiden Mekaniikka Vol. 42, Nro 2, 2009, s. 75 82 Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Reijo Kouhia Tiivistelmä. Momenttimenetelmä on käyttökelpoinen ratkaisutapa

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä:

SIS. Vinkkejä Ampèren lain käyttöön laskettaessa magneettikenttiä: Magneettikentät 2 SISÄLTÖ: Ampèren laki Menetelmän valinta Vektoripotentiaali Ampèren laki Ampèren lain avulla voidaan laskea maneettikenttiä tietyissä symmetrisissä tapauksissa, kuten Gaussin lailla laskettiin

Lisätiedot

Liukeneminen 31.8.2016

Liukeneminen 31.8.2016 Liukeneminen KEMIAN MIKROMAAILMA, KE2 Kertausta: Kun liukenevan aineen rakenneosasten väliset vuorovaikutukset ovat suunnilleen samanlaisia kuin liuottimen, niin liukenevan aineen rakenneosasten välisiä

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

PYDREXN PUUN KUIVUMISJXNNITYSTEN LINEAARINEN ANALYYSI. Rakenteiden Mekaniikka, Vol. 19 No 2 1986. s. 43... 55. Alpo Ranta -Maunus

PYDREXN PUUN KUIVUMISJXNNITYSTEN LINEAARINEN ANALYYSI. Rakenteiden Mekaniikka, Vol. 19 No 2 1986. s. 43... 55. Alpo Ranta -Maunus PYDREXN PUUN KUIVUMISJXNNITYSTEN LINEAARINEN ANALYYSI Alpo Ranta -Maunus Rakenteiden Mekaniikka, Vol. 19 No 2 1986. s. 43... 55 TIIVISTELMX: Artikkelissa kasitellaan puuta lieriomaisesti ortotrooppisena,

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe :00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, pe 16.2.2018 13:00-17:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet. Pelkät kaavat ja ratkaisu eivät riitä täysiin pisteisiin. Arvioinnin

Lisätiedot

Puun termiset aineominaisuudet pyrolyysissa

Puun termiset aineominaisuudet pyrolyysissa 1 Puun termiset aineominaisuudet pyrolyysissa V Liekkipäivä Otaniemi, Espoo 14.1.2010 Ville Hankalin TTY / EPR 14.1.2010 2 Esityksen sisältö TTY:n projekti Biomassan pyrolyysin reaktiokinetiikan tutkimus

Lisätiedot

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi

Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

MS-A0004 - Matriisilaskenta Laskuharjoitus 3

MS-A0004 - Matriisilaskenta Laskuharjoitus 3 MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 47/2017 KJR-C00 Kontinuumimekaniikan perusteet, viikko 47/017 1. Määritä oheisen kuvan mukaisen kanaalin portin

Lisätiedot

Johdatus yliopistomatematiikkaan, 2. viikko (2 op)

Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Johdatus yliopistomatematiikkaan, 2. viikko (2 op) Jukka Kemppainen Mathematics Division Yhtälöt ja epäyhtälöt Jokainen osaa ratkaista ensimmäisen asteen yhtälön ax + by + c = 0. Millä parametrien a, b

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot