Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa

Koko: px
Aloita esitys sivulta:

Download "Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa"

Transkriptio

1 Rakenteiden Mekaniikka Vol. 42, Nro 2, 2009, s Muutama huomio momenttimenetelmän käytöstä kehärakenteiden analysoinnissa Reijo Kouhia Tiivistelmä. Momenttimenetelmä on käyttökelpoinen ratkaisutapa sivusiirtymättömien staattisesti määräämättömien geometrisesti ja fysikaalisesti lineaaristen kehärakenteiden analysoinnissa. Se on yleisen voimamenetelmän erikoistapaus, joten staattisesti määräämättömien suureiden ratkaisemiseksi syntyvän lineaarisen yhtälösysteemin kerroinmatriisin on oltava symmetrinen ja positiivisesti definiitti. Tässä artikkelissa tarkastellaan miten tuntemattomat sauvanpäämomentit on valittava, jotta syntyvä kerroinmatriisi olisi symmetrinen sekä pohditaan miten rakenteen stabiiliusehto tulisi ilmaista. isäksi tarkastellaan toisesta päästään jäykästi tai kimmoisesti kiinnitetyn sauvan tukimomentin eliminointia ennen varsinaisen yhtälösysteemin muodostamista. Avainsanat: momenttimenetelmä, symmetrinen joustomatriisi, stabiiliusanalyysi Johdanto Yleisessä voimamenetelmässä tuntemattomina perussuureina ovat hyperstaattiset voimasuureet X i, i = 1,...,n s, missä n s on hypertaattisuuden, eli staattisen määräämättömyyden aste. Tarvittavat ratkaisuyhtälöt saadaan yhteensopivuusehdoista, joilla taataan ratkaisun geometrinen luvallisuus. Yhteensopivuusehdoista saatu yhtälöryhmä voidaan kirjoittaa muodossa Ax = b, (1) jossa A on symmetrinen ja positiivisesti definiitti joustomatriisi, x on ratkaistavista hyperstattisista voimasuureista X i koostuva vektori ja b on ulkoisista kuormituksista staattiseen perusmuotoon aiheutuvista yleistetyistä siirtymistä koostuva vektori. Momenttimenetelmä on erityisesti jatkuvia palkkeja ja kehärakenteita silmälläpitäen kehitetty yleisen voimamenetelmän virtaviivaistus, jossa ratkaistavan rakenteen sauvat otaksutaan aksiaalisesti venymättömiksi ja leikkauksen suhteen äärettömän jäykiksi. Tällöin ratkaistaviksi hyperstaattisiksi suureiksi jäävät ainoastaan sauvanpäämomentit. Momenttimenetelmän perusyhtälöt Momenttimenetelmän perusyhtälöt ovat sauvan päätepisteiden kiertymien lausekkeet ϕ i,j = α i,j M i,j β i,j M j,i + ψ i,j + α 0 i,j, (2) jossa α i,j ja β i,j ovat sauvavakioita, ψ i,j sauvakiertymä, eli sauvan päätepisteiden välisen janan kiertymä ja α 0 i,j on staattisen perusmuotosauvan, eli niveltuetun sauvan nurkan i 75

2 j + K 1 S j+k 1,i j S j,i i S j+3,i j + 3 S j+1,i S j+2,i j + 1 j + 2 Kuva 1. Nurkka i ja siihen liittyvät sauvat. kiertymä ulkoisesta kuormituksesta. Suureet M i,j ja M j,i ovat sauvanpäämomentit sauvan päätepisteissä i ja j, jotka määritellään positiivisiksi myötäpäivään kiertävinä. Sivusiirtymättömän kehän kaikki sauvakiertymät häviävät, eli ψ i,j 0. Sauvavakioiden fysikaalinen tulkinta on ilmeinen. Maxwellin säännön perusteella β i,j = β j,i, mutta yhteys α i,j = α j,i pätee ainoastaan jäykkyysjakaumaltaan symmetrisille sauvoille. Yhteensopivuusehdot Tarkastellaan kuvan 1 mukaista kehärakenteen monoliittista nurkkaa i johon yhtyy K- kappaletta sauvoja S i,j+k, k = 0,..., K 1. Monoliittisen nurkan i yhteensopivuusehot, K 1 kappaletta, voidaan kirjoittaa muodossa ϕ i,j = ϕ i,j+1 = = ϕ i,j+k 1, (3) jossa ϕ i,j on sauvan S i,j pään i kiertymä. Sauvanpäämomentit M i,j+k, k = 0,..., K 1 eivät ole toisistaan riippumattomia, vaan niitä sitoo nurkan i momenttitasapainoehto K 1 k=0 M i,j+k = 0, (4) mikäli nurkkaan i ei vaikuta ulkoisia momenttirasituksia. Täten yksi sauvanpäämomenteista M i,j voidaan eliminoida. Se, mikä sauvanpäämomenteista eliminoidaan, vaikuttaa syntyvän ratkaisuyhtälön kerroinmatriisin muotoon; kaikki valinnat eivät tuota symmetristä kerroinmatriisia mikäli nurkkaan liittyy enemmän kuin kaksi sauvaa. On varsin erikoista, että tätä kysymystä ei ole kirjoittajan tietämän mukaan käsitelty alan oppikirjoissa [1]-[3]. ähteen [3] esimerkissä 9.3 (sivuilla ) esitetty joustomatriisi on epäsymmetrinen. Ratkaisu tähän ongelmaan on yksinkertainen. Valitaan yksi nurkan sauvanpääkiertymistä ja asetetaan tämä vuoron perään yhtäsuureksi nurkkaan liittyvien muiden sauvanpääkiertymien kanssa. Tätä yhteistä sauvanpäätä vastaava momentti eliminoidaan. Mikäli nurkan i yhteensopivuusehdot (3) kirjoitetaan muodossa ϕ i,j+1 = ϕ i,j ϕ i,j+2 = ϕ i,j, (5). ϕ i,j+k 1 = ϕ i,j 76

3 tällöin on syytä eliminoida sauvanpäämomentti M i,j, jolloin päädytään symmetriseen joustomatriisiin, ja nurkkaan i liittyvä diagonaalilohko on muotoa α i,j + α i,j+1 α i,j... α i,j α i,j α i,j + α i,j+2... α i,j..... αi,j. (6) α i,j α i,j... α i,j + α i,j+k 1 Tukimomenttien eliminointi ratkaisuyhtälöistä Momenttimenetelmässä tuntemattomien lukumäärää kasvattavat momenttijäykät tuennat. Tilanne on analoginen siirtymämenetelmän niveltuennan kanssa. Tälle tapaukselle on kuitenkin usein johdettu omat sauvavakiot, jotka eliminoivat nivelpään kiertymän tuntemattomien joukosta. Vastaavalla tavalla voidaan momenttimenetelmässä eliminoida momenttijäykän tuennan tuottama sauvanpäämomentti. Tätä yksinkertaista eliminointia ei yleensä ole esitetty alan kirjallisuudessa. Tarkastellaan tapausta, jossa sauvanpää j on kimmoisesti kiinnitetty. Kimmoisesti kiinnitettyä nurkkaa vastaava sauvanpäämomentti voidaan eliminoida käyttäen hyväksi tuen yhteensopivuusehtoa ϕ j,i = ϕ jousi. (7) Otaksumalla jousen konstitutiiviseksi yhteydeksi ϕ jousi = α jousi M j,i, (8) voidaan yhteensopivuusehdon (7) avulla sauvanpään j momentti eliminoida: M j,i = 1 (β j,i M i,j ψ j,i αj,i 0 ). (9) α j,i + α jousi Sijoittamalla tämä sauvanpään i kiertymän lausekkeeseen saadaan jossa ᾱ i,j = α i,j ϕ i,j = ᾱ i,j M i,j + γ i,j ψ i,j + ᾱ 0 i,j, (10) β i,jβ j,i β i,j, γ i,j = 1 +, ᾱi,j 0 α j,i + α jousi α j,i + α = α0 i,j + β i,j αj,i 0 jousi α j,i + α. (11) jousi Jäykän tuennan tapauksessa sen joustavuus häviää, eli α jousi = 0. Tasajäykän sauvan ja pään j jäykän tuennan tapauksessa nämä saavat yksinkertaisen muodon Stabiiliusanalyysi momenttimenetelmällä ᾱ i,j = i,j 4EI i,j, γ i,j = 3 2. (12) Yleisen voimamenetelmän soveltamista rakenteiden stabiiliusanalyysiin on käsitelty Przemienieckin klassikkoteoksessa [4] luvussa Stabiiliusehto (yhtälö 15.54, lähteen [4] sivulla 395) johdetaan kuitenkin yhtälösysteemille, jossa muuttujina ovat siirtymät. 77

4 q 1 q 2 1 EI 2 EI 3 ηei ηei 4 5 H Kuva 2. Esimerkkikehärakenne. Ottamalla momenttimenetelmässä huomioon puristavan voiman vaikutus sauvan joustavuuteen, joustokertoimien α ij ja β ij lausekkeet tasajäykälle sauvalle ovat muotoa α ij = 3EI ψ(k), β ij = φ(k), (13) 6EI ja Berryn-funktiot ψ ja φ määritellään sauvassa vaikuttavan puristavan voiman N i,j funktioina seuraavasti (yhtälöt (1-27) ja (1-28) sivulla 13 lähteessä [5]) ψ(k) = 3 ( 1 k k 1 ), (14) tank φ(k) = 6 ( 1 k sin k 1 ), (15) k jossa k 2 = N i,j /EI i,j ja on sauvan pituus. Systeemin liiketila on stabiili, mikäli potentiaalienergian toinen variaatio on positiivinen kaikkien kinemaattisesti luvallisten variaatioiden joukossa. Analysoitaessa rakennetta siirtymämenetelmällä, tämä ehto on ekvivalentti jäykkyysmatriisin positiivisen definiittiyden kanssa. Voimamenetelmän tapauksessa rakennemallin stabiiliutta ei voida määrittää tilana, jossa joustomatriisi muuttuu positiivisesti definiitistä matriisista indefiniittiseksi, kuten jäljempänä esitettävästä esimerkistä havaitaan. Esimerkkejä Joustomatriisin symmetrisyys Tarkastellaan oheista kuvan 2 mukaista rakennetta. Yhteensopivuusehdot ovat nyt ϕ 1,2 = ϕ 1,4 ϕ 1,2 = ϕ 1,4 ϕ 2,3 = ϕ 2,1 ϕ 2,1 = ϕ 2,3 = ϕ 2,5, (16) ϕ 2,5 = ϕ 2,1 ϕ 3,2 = 0 ϕ 3,2 = 0 jolloin on syytä eliminoida sauvanpäämomentti M 2,1, jotta päädyttäisiin symmetriseen joustomatriisiin. Tuntemattomiksi sauvanpäämomenteiksi jää siten M 1,2, M 2,3, ja M 3,2. Yhteensopivuusyhtälöistä (16) saadaan yhtälöryhmä α 1,2 + α 1,4 β 1,2 β 1,2 0 β 2,1 α 2,1 + α 2,3 α 2,1 β 2,3 β 2,1 α 2,1 α 2,1 + α 2,5 0 0 β 3,2 0 α 3,2 78 M 1,2 M 2,3 M 3,2 = α 0 1,4 α0 1,2 α 0 2,1 α0 2,3 α 0 2,1 α0 2,5 α 0 3,2. (17)

5 Tasajäykän sauvan vakiot ovat: α i,j = 1 3 i,j/ei i,j, β i,j = 1 6 i,j/ei i,j. Määritellään myös pituusuhde ξ = H/ sekä palkkien ja pilareiden jäykkyyssuhde seuraavasti: EI 1,2 = EI 2,3 = EI, ja EI 1,4 = EI 2,5 = ηei. Tällöin yhtälösysteemi voidaan kirjoittaa muodossa 6EI 2(1 + ξ/η) (1 + ξ/η) M 1,2 M 2,3 M 3,2 = α 0 1,4 α0 1,2 α 0 2,1 α0 2,3 α 0 2,1 α 0 2,5 α 0 3,2. (18) Jos suhteiden ξ, η arvoiksi valitaan ξ = 1 ja η = 1, sekä q = q 2 = q saadaan systeemi M 1, M 2,3 6EI = q3 2, (19) 24EI M 3,2 1 jonka ratkaisu on M 1,2 M 2,3 M 3,2 = q 2 0, , , , Nurkan 2 tasapainoyhtälöstä seuraa sauvanpäämomentin M 2,1 arvoksi q 2. (20) M 2,1 = q2 0, 10233q 2. (21) Mikäli ratkaistaviksi sauvanpäämomenteiksi olisi valittu M 1,2, M 2,1, ja M 3,2 saataisiin epäsymmetrinen yhtälösysteemi α 1,2 + α 1,4 β 1,2 0 0 M 1,2 α1,4 β 1,2 α 2,1 + α 2,3 α 2,3 β 2,3 0 α1,2 0 M 2,1 α2,3 β 2,1 α 2,1 α 2,5 0 = 0 α0 2,1 α2,1 0. (22) α0 2,5 0 β 3,2 β 3,2 α 3,2 M 3,2 α3,2 0 uonnollisesti systeemin (22) ratkaisu on yhtenevä ratkaisun (20) ja (21) kanssa. Tukimomenttien eliminointi Käsinlaskussa päästään hieman helpommalla kun käytetään yhtälöitä (9) ja (10) tukimomentin M 3,2 eliminoimiseksi ja korvataan pystypilari 1-4 kimmoisalla jousella, jonka joustavuuskerroin on α jousi = 1 H/ηEI. Tällöin tuntemattomiksi jäävät vain nurkan 2 3 sauvanpäämomentit M 2,3 ja, jotka voidaan ratkaista yhteensopivuusehdoista { ϕ 2,3 = ϕ 2,1, (23) ϕ 2,5 = ϕ 2,1 jotka johtavat yhtälösysteemiin [ ᾱ2,1 + ᾱ 2,3 ᾱ 2,1 ᾱ 2,1 ᾱ 2,1 + α 2,5 ]{ M2,3 } = { ᾱ0 2,1 ᾱ 0 2,3 ᾱ 0 2,1 }. (24) 79

6 P 2 EI 3 1 EI Kuva 3. Kulmakehän nurjahdus. Sauvavakiot ovat β 2 2,1 ᾱ 2,1 = α 2,1 = 11 α 2,1 + α jousi 36 EI, ᾱ 2,3 = 1 4 EI. (25) [ EI ]{ M2,3 } { = q EI 5 }. (26) Ratkaisu on tietenkin yhtenevä tuloksen (20) kanssa. Muut sauvanpäämomentit M 1,2 ja M 3,2 voidaan laskea yhtälön (9) avulla. Stabiiliustehtävä Ratkaistaan kuvan 3 esittämän kulmakehän nurjahduskuorma. Nurkkien 2 ja 3 yhteensopivuusehdoista seuraa homogeeninen yhtälösysteemi [ ]{ } { } 2(1 + ψ) 1 M2,3 0 =, (27) 6EI 1 2 M 3,2 0 missä funktio ψ on yhtälön (14) mukainen ja nyt k 2 = P/EI. Homogeenisella yhtälösysteemillä (27) on ei-triviaali ratkaisu vain jos kerroinmatriisi on singulaarinen, ts. sillä on vähintään yksi nolla ominaisarvo ja täten sen determinantti on myös nolla. Kyseessä on siten epälineaarinen ominaisarvotehtävä kriittisen kuormaparametrin k löytämiseksi. Yhtälössä (27) esiintyvän dimensiottoman kerroinmatrisin [ ] 2(1 + ψ) 1 Ã = (28) 1 2 ominaisarvot ja determinatti ovat λ 1 = 2 + ψ 1 + ψ 2, λ 2 = 2 + ψ ψ 2, det = λ 1 λ 2 = 4ψ + 3, (29) joiden kuvaajat on piirretty kuvaan 4. Kuvasta havaitaan, että ominaisarvo λ 1 on negatiivinen välillä π < k < 3, 829, muulloin positiivinen, ja λ 2 on kaikkialla positiivinen, lukuunottamatta pistettä k = π, jossa funktio ψ on määrittelemätön. Täten voimamenetelmän tuottaman yhtälösysteemin kerroinmatriisin positiivisen definiittisyyden perusteella ei voi tehdä päätelmiä rakenteen tasapainotilan stabiiliudesta. Kriittinen kuorma saadaan yhtälön (27) kerroinmatriisin singulaarisuusehdosta, ja se on 80

7 det λ 1 λ k Kuva 4. Matriisin à ominaisarvot ja determinantti. P kr (3, 829) 2 EI/ 2 1, 485π 2 EI/ 2. Tällöin ominaisarvolla λ 1 on nolla-arvo, katso kuvaa 4. Joustomatriisi menettää positiivisen definiittiyden, kun kuorma ylittää arvon π 2 EI/ 2. Tällöin sauvan 1-2 joustokertoimien arvot muuttuvat positiivisista negatiivisiksi seuraavalla tavalla: lim (α ij, β ij ) = +, kl π lim (α ij, β ij ) =. (30) kl π+ Staattisen perusmuotosauvan joustavuus kasvaa rajatta kun puristava normaalivoima lähestyy Eulerin nurjahduskuormaa. Täten momenttimenetelmän mukainen stabiiliusmatriisi muuttuu positiivisesti definiitistä matrisiista indefiniitiksi, kun jonkin rakenneosan staattisen perusmuotosauvan nurjahduskuorma ylittyy. Matriisin definiittiyttä voidaan tutkia myös sen pääalideterminanttien avulla. Matriisi on positiivisesti definiitti jos kaikki sen pääalideterminantit ovat positiivisia. Sovellettuna matriisiin (28), tämä tarkoittaa ehtoja opuksi 2(1 + ψ) > 0 ja 2(1 + ψ) > 0. (31) Artikkelissa kuvataan tapa, miten momenttimenetelmän tuntemattomat eli stattisesti määräämättömät sauvanpäämomentit on valittava, jotta syntyvä rakenteen joustomatriisi olisi symmetrinen. isäksi johdetaan toisesta päästään jäykästi tai kimmoisesti kiinnitetyn sauvan joustokertoimet, joita käyttämällä voidaan ratkaistavan yhtälösysteemin kokoa pienentää. isäksi huomautetaan, että rakenteen tasapainotilan stabiiliuden menettämiskohtaa ei voida määrittää pisteenä, jossa rakenteen joustomatriisi muuttuu positiivisesti definiitistä indefiniitiksi. 81

8 Viitteet [1] A. Ghali, A.M. Neville, Structural analysis - A unified classical and matrix approach. Chapman and Hall, 3. painos, ondon, New York, [2] R. Guldan, Rahmentragwerke und Durchlaufträger. Springer-Verlag, 6. painos, Wien, [3] P. oikkanen, Rakenteiden statiikka 2. Otava, Helsinki, [4] J.S. Przemieniecki, Theory of matrix structural analysis. Dover, [5] S.P. Timoshenko, J.M. Gere, Theory of elastic stability. McGraw-Hill, International student edition, 2. painos, Reijo Kouhia TKK, Rakenne- ja rakennustuotantotekniikan laitos P 2100, TKK s-posti: 82

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43

OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN. Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 OSIITAIN JA YKKIEN LIITOSTEN V AIKUTUS PORTAALIKEHAN VOI MASUUREISIIN Esa Makkonen Rakenteiden Mekaniikka, Vol.27 No.3, 1994, s. 35-43 Tiivistelmii: Artikkelissa kehitetaan laskumenetelma, jonka avulla

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat

TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat TAVOITTEET Määrittää taivutuksen normaalijännitykset Miten määritetään leikkaus- ja taivutusmomenttijakaumat Lasketaan suurimmat leikkaus- ja taivutusrasitukset Analysoidaan sauvoja, jotka ovat suoria,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE

HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t), Aalto-yliopiston Perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Mat-2.4129 Systeemien Identifiointi 1. harjoituksen ratkaisut 1. Tarkastellaan maita X ja Y. Olkoon näiden varustelutaso

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Rakenneterästen myötörajan f y ja vetomurtolujuuden f u arvot valitaan seuraavasti: a) käytetään suoraan tuotestandardin arvoja f y = R eh ja f u = R m b) tai käytetään

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu

Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu TAVOITTEET Statiikan kertausta Kappaleen sisäiset rasitukset Normaali- ja leikkausjännitys Aksiaalisella tai suoralla leikkauksella kuormitettujen rakenneosien lujuusopillinen analyysi ja suunnittelu 1

Lisätiedot

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/

Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ 4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

l s, c p T = l v = l l s c p. Z L + Z 0

l s, c p T = l v = l l s c p. Z L + Z 0 1.1 i k l s, c p Tasajännite kytketään hetkellä t 0 johtoon, jonka pituus on l ja jonka kapasitanssi ja induktanssi pituusyksikköä kohti ovat c p ja l s. Mieti, kuinka virta i käyttäytyy ajan t funktiona

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1

Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi. Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Marko Vauhkonen Kuopion yliopisto Sovelletun fysiikan laitos E-mail: Marko.Vauhkonen@uku.fi Marko Vauhkonen, Kuopion yliopisto, Sovelletun fysiikan laitos Slide 1 Sisältö Mallintamisesta mallien käyttötarkoituksia

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Jarkko Niiranen EPÄLINEAARISTEN YHTÄLÖSYSTEEMIEN RATKAISUMENETELMIÄ RAKENTEIDEN MEKANIIKAN STABIILIUSTEHTÄVIIN

Jarkko Niiranen EPÄLINEAARISTEN YHTÄLÖSYSTEEMIEN RATKAISUMENETELMIÄ RAKENTEIDEN MEKANIIKAN STABIILIUSTEHTÄVIIN TEKNILLINEN KORKEAKOULU Teknillisen fysiikan ja matematiikan osasto Teknillisen fysiikan koulutusohjelma Jarkko Niiranen EPÄLINEAARISTEN YHTÄLÖSYSTEEMIEN RATKAISUMENETELMIÄ RAKENTEIDEN MEKANIIKAN STABIILIUSTEHTÄVIIN

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 01: Johdanto. Elementtiverkko. Solmusuureet. 0/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO 0: Johdanto. Elementtiverkko. Solmusuureet. JOHDANTO Lujuuslaskentatehtävässä on tavoitteena ratkaista annetuista kuormituksista aiheutuvat rakenteen siirtmätilakenttä,

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

Tenniksen pistelaskusäännöt, lukio/ammatilliset oppilaitokset

Tenniksen pistelaskusäännöt, lukio/ammatilliset oppilaitokset Tenniksen pistelasku Useimmat meistä ovat joskus katsoneet TV:stä tennisottelua. Katsoja kokee jännitystä voidessaan seurata kuinka pisteden kertyminen johtaa ottelun päättymisen toisen pelaajan voittoon

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009

TIE448 Kääntäjätekniikka, syksy 2009. Antti-Juhani Kaijanaho. 7. joulukuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe F maanantai 14.12. klo 12 rekisteriallokaatio Arvostelukappale

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4

3.11.2006. ,ܾ jaü on annettu niin voidaan hakea funktion 0.1 0.2 0.3 0.4 Ü µ ½ ¾Ü¾µ Ü¾Ê 3.11.2006 1. Satunnaismuuttujan tiheysfunktio on ¼ ļ ܽ ܾ ÜÒµ Ä Ü½ ÜÒµ Ò Ä Ü½ ܾ ÜÒµ ܽ µ ܾ µ ÜÒ µ Ò missä tietenkin vaaditaan, että ¼. Muodosta :n ¾Ä ܽ ÜÒµ Ò ½¾ ܾ Ò ½ ¾Ü¾½µ ½ ¾Ü¾Òµ

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

MYNTINSYRJÄN JALKAPALLOHALLI

MYNTINSYRJÄN JALKAPALLOHALLI Sivu 1 / 9 MYNTINSYRJÄN JALKAPALLOHALLI Tämä selvitys on tilattu rakenteellisen turvallisuuden arvioimiseksi Myntinsyrjän jalkapallohallista. Hallin rakenne vastaa ko. valmistajan tekemiä halleja 90 ja

Lisätiedot

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

RAK-31000 Statiikka 4 op

RAK-31000 Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

HalliPES 1.0 OSA 11: JÄYKISTYS

HalliPES 1.0 OSA 11: JÄYKISTYS 1.0 JOHDANTO Tässä osassa käsitellään yksittäisen kantavan rakenteen ja näistä koostuvan rakennekokonaisuuden nurjahdus-/ kiepahdustuentaa sekä primäärirungon kokonaisjäykistystä massiivipuurunkoisessa

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

LINEAARIALGEBRA, osat a ja b

LINEAARIALGEBRA, osat a ja b LINEAARIALGEBRA, osat a ja b Martti E. Pesonen Epsilon ry. huhtikuuta 06 LUKIJALLE Lineaarialgebran kursseja edeltäviksi opinnoiksi suositellaan jotain lukion matematiikkaa teoreettiselta kannalta täydentävää

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

ATM-VERKON KUTSUTASON ESTO

ATM-VERKON KUTSUTASON ESTO J. Virtamo 38.3141 Teleliikenneteoria / Kutsutason esto 1 ATM-VERKON KUTSUTASON ESTO Kutsutasolla tehtävän resurssivarauksen kannalta vaihtuvanopeuksinenkin lähde näyttää vakionopeuslähteeltä. Sen nopeus

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot