Matematiikka vuosiluokat 7 9
|
|
- Toivo Timo-Jaakko Turunen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa ja työelämässä ja jotka luovat pohjaa jatko opinnoille. Vuosiluokkien 7 9 yhteiset tavoitteet Oppilas oppii luottamaan itseensä ja ottamaan vastuun omasta oppimisestaan matematiikassa työskentelemään keskittyneesti ja pitkäjänteisesti sekä toimimaan ryhmässä ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä näkemään matematiikan ja arkielämän välisen yhteyden laskutaitoja ja ratkaisemaan matemaattisia ongelmia loogista ja luovaa ajattelua sekä soveltamaan oppimaansa tietoa esittämään kysymyksiä ja päätelmiä havaintojen perusteella näkemään säännönmukaisuuksia 6. luokan keskeiset tavoitteet muuntaa tekstimuodossa olevia ongelmia matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden laskea luotettavasti luonnolliset lukujen lisäksi myös kokonais ja rationaaliluvuilla korottaa luvun kokonaislukupotenssiin, potenssien laskutoimitukset ja ratkaista tehtäviä eri geometrisia muotoja ja niiden ominaisuuksia käyttää harppia ja viivoitinta yksinkertaisten geometristen konstruktioiden tekemiseen yhtenevyyden ja symmetrisyyden käsitteet ja pystyy soveltamaan näitä taitoja soveltaa kahden kulman välisiä yhteyksiä yksinkertaisissa tilanteissa muuntaa tavanomaisimpia mittayksiköitä laskimen käyttöä geometrista konstruointia yhdenmuotoisuuden käsitteen ja osaa soveltaa sitä osaa lukea erilaisia taulukoita ja diagrammeja 7. luokan keskeiset sisällöt matemaattisten tekstien ja tulkintaa ja tuottamista mallintamista, sääntöjen ja riippuvuuksien etsimistä sekä niiden esittämistä ajattelua tukevien piirrosten ja välineiden käyttö Luvut ja laskutoimitukset peruslaskutoimitusten varmentaminen luonnolliset luvut, kokonaisluvut, rationaaliluvut, reaaliluvut vastaluku, itseisarvo, käänteisluku aikalaskut ja aikaväli alkuluku, luvun jakaminen alkutekijöihin ja lukujen jaollisuussääntöjä murtolukujen supistaminen ja laventaminen sekä desimaaliluku murtolukuna kertominen ja jakaminen desimaaliluvulla ja murtoluvulla lausekkeiden sieventäminen
2 pyöristäminen, arviointi ja laskimen käyttö potenssi, eksponenttina kokonaisluku lauseke ja sen sieventäminen potenssilauseke ja sen sieventäminen lukujonojen tutkimista ja muodostamista kulmien välisiä yhteyksiä säännölliset monikulmiot tasokuvioiden piirin ja pinta alan laskeminen yhdenmuotoisuus ja yhtenevyys geometrista rakentelua ja ongelmanratkaisua symmetria suoran ja pisteen suhteen kierto ja siirto tasossa Todennäköisyys ja tilastot todennäköisyyden käsite diagrammien tulkinta tilastojen kerääminen, muuntaminen ja esittäminen käyttökelpoisessa muodossa Työtavat opettajajohtoinen opetus ja opetuskeskustelut itsenäinen työskentely ja ryhmätyöskentely matematiikkapajat Arviointi Matematiikan arvioinnissa pyritään mahdollisimman monipuoliseen arviointiin. Tavoitteiden saavuttamista testataan kokeilla sekä jatkuvaan näytön periaatteella arvioiden: tuntityöskentelyä kotitehtävien suoritusaktiivisuutta kirjallisia sekä suullisia tuotoksia Matematiikan tietojen ja taitojen lisäksi oppimistuloksina arvioidaan myös: päättely ja perustelutaitoja yhteistyö ja kommunikaatiotaitoja omatoimisuutta ohjeiden noudattamista yhteistyökykyä itsearviointitaitoja 8. luokan keskeiset tavoitteet ratkaista ensimmäisen asteen yhtälön sieventää algebrallisia lausekkeita sekä polynomien laskutoimituksia muodostaa yksinkertaisesta askielämään liittyvästä ongelmasta yhtälön ja ratkaista sen algebrallisesti monikulmioiden ja ympyrän piirin ja pinta alan laskemisen ja osaa myös soveltaa niitä käyttää verrantoa, prosenttilaskua ja osaa soveltaa sitä
3 8. luokan keskeiset sisällöt vertailussa ja riippuvuuksissa tarvittavien käsitteiden tulkinta ja käyttö ajattelua tukevien piirrosten ja välineiden käyttö Luvut ja laskutoimitukset prosenttilasku suhde ja verrannollisuus neliöjuuri polynomin käsite, polynomien yhteen, vähennys ja kertolasku muuttujan arvon sijoittaminen lausekkeeseen yhtälö, epäyhtälö, määrittelyjoukko, ratkaisujoukko ensimmäisen asteen yhtälön ratkaiseminen verranto ympyrä ja siihen liittyvät käsitteet kappaleiden nimeäminen ja luokittelu kappaleen tilavuuden ja pinta alan laskeminen Työtavat opettajajohtoinen opetus ja opetuskeskustelut itsenäinen työskentely ja ryhmätyöskentely matematiikkapajat Arviointi Matematiikan arvioinnissa pyritään mahdollisimman monipuoliseen arviointiin. Tavoitteiden saavuttamista testataan kokeilla sekä jatkuvaan näytön periaatteella arvioiden; tuntityöskentelyä kotitehtävien suoritusaktiivisuutta kirjallisia sekä suullisia tuotoksia Matematiikan tietojen ja taitojen lisäksi oppimistuloksina arvioidaan myös: päättely ja perustelutaitoja yhteistyö ja kommunikaatiotaitoja omatoimisuutta ohjeiden noudattamista yhteistyökykyä itsearviointitaitoja 9. luokan keskeiset tavoitteet tilavuuden laskutapoja osaa käyttää trigonometriaa suorakulmaisen kolmion osien ratkaisemiseen ymmärtää todennäköisyyden merkityksen arkielämässä käyttää Pythagoraan lausetta suorakulmaisen kolmion osien ratkaisemiseen ratkaista vaillinaisen toisen asteen yhtälön
4 9. luokan keskeiset sisällöt ajattelua tukevien piirrosten ja välineiden käyttö kombinatoristen ongelmien ratkaisemista eri menetelmillä matematiikan historiaa vaillinaisen toisen asteen yhtälön ratkaiseminen verranto yhtälöpari ja sen ratkaiseminen algebrallisesti ja graafisesti Pythagoraan lause kolmion ja ympyrän välisiä yhteyksiä trigonometriaa ja suorakulmaisen kolmion ratkaiseminen Funktiot funktion käsite riippuvuuden havaitseminen ja esittäminen muuttujien avulla lukuparin esittäminen koordinaatistossa yksinkertaisten funktioiden tulkitseminen ja niiden kuvaajien piirtäminen koordinaatistoon funktiokuvaajan tutkimista: funktion nollakohta, suurin ja pienin arvo, kasvaminen ja väheneminen lineaarinen funktio suoraan ja kääntäen verrannollisuus Todennäköisyys ja tilastot frekvenssi ja suhteellinen frekvenssi keskiarvon, tyyppiarvon ja mediaanin määrittäminen hajonnan käsite Työtavat opettajajohtoinen opetus ja opetuskeskustelut itsenäinen työskentely ja ryhmätyöskentely matematiikkapajat Arviointi Matematiikan arvioinnissa pyritään mahdollisimman monipuoliseen arviointiin. Tavoitteiden saavuttamista testataan kokeilla sekä jatkuvaan näytön periaatteella arvioiden; tuntityöskentelyä kotitehtävien suoritusaktiivisuutta kirjallisia sekä suullisia tuotoksia Matematiikan tietojen ja taitojen lisäksi oppimistuloksina arvioidaan myös: päättely ja perustelutaitoja yhteistyö ja kommunikaatiotaitoja omatoimisuutta ohjeiden noudattamista yhteistyökykyä itsearviointitaitoja
5 PÄÄTTÖARVIOINNIN KRITEERIT ARVOSANALLE 8 Oppilas o huomaa eri tapauksien yhtäläisyydet ja säännönmukaisuudet o osaa käyttää puheessaan loogisia elementtejä kuten ja, tai, jos niin, ei, on olemassa, ei ole olemassa o osaa päätellä yksinkertaisten väitelauseiden totuusarvon o osaa muuntaa yksinkertaisen tekstimuodossa olevan ongelman matemaattiseen esitysmuotoon ja tehdä suunnitelman ongelman ratkaisemiseksi, ratkaista sen ja tarkistaa tuloksen oikeellisuuden o osaa käyttää luokittelua matemaattisten ongelmien ratkaisuissa o osaa esittää järjestelmällisesti mahdolliset ratkaisuvaihtoehdot taulukkoa, puu, polku tai muuta diagrammia käyttäen. Luvut ja laskutoimitukset o arvioida mahdollista tulosta sekä laatia suunnitelman laskun ratkaisemisesta ja hänellä on luotettava peruslaskutaito o korottaa luvun potenssiin, jonka eksponenttina on luonnollinen luku ja pystyy jakamaan luvun alkutekijöihinsä. o ratkaista tehtäviä, joissa tarvitaan neliöjuurta o käyttää verrantoa, prosenttilaskua ja muita laskutoimituksia arkielämässä eteen tulevien ongelmien ratkaisemisessa. o ratkaista ensimmäisen asteen yhtälön o sieventää yksinkertaisia algebrallisia lausekkeita o potenssien laskutoimitukset o muodostaa yksinkertaisesta arkielämään liittyvästä ongelmasta yhtälön ja ratkaista sen algebrallisesti tai päättelemällä o käyttää yhtälöparia yksinkertaisten ongelmien ratkaisemiseen o arvioida tuloksen järkevyyttä sekä tarkastaa ratkaisunsa eri vaiheet. Funktiot Oppilas o osaa määrittää pisteen koordinaatit koordinaatistosta o osaa laatia taulukon lukupareista annetun säännön mukaan o osaa etsiä lineaarisen funktion nollakohdan o osaa jatkaa lukujonoa annetun säännön mukaan ja pystyy kertomaan sanallisesti yleisen säännön annetun lukujonon muodostumisesta o tietää suoran yhtälön kulmakertoimen ja vakion merkityksen; hän osaa määrittää kahden suoran leikkauspisteen piirtämällä. o tunnistaa eri geometriset muodot ja tuntee niiden ominaisuudet o soveltaa oppimiansa piirin, pinta alan ja tilavuuden laskutapoja o käyttää harppia ja viivoitinta yksinkertaisten geometristen konstruktioiden tekemiseen o löytää yhdenmuotoisia ja yhteneviä sekä symmetrisiä kuvioita ja pystyy soveltamaan tätä taitoa kolmioiden ja nelikulmioiden ominaisuuksien tutkimisessa o soveltaa kahden kulman välisiä yhteyksiä yksinkertaisissa tilanteissa o käyttää Pythagoraan lausetta ja trigonometriaa suorakulmaisen kolmion osien ratkaisemiseen
6 o suorittaa mittauksia ja niihin liittyviä laskelmia sekä muuntaa tavanomaisimpia mittayksiköitä. Todennäköisyys ja tilastot o määrittää mahdollisten tapausten lukumäärän ja järjestää yksinkertaisen empiirisen tutkimuksen todennäköisyydestä; hän ymmärtää todennäköisyyden ja satunnaisuuden merkityksen arkielämän tilanteissa lukea erilaisia taulukoita ja diagrammeja ja määrittää annetusta aineistosta frekvenssit, keskiarvon, mediaanin ja tyyppiarvon
KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen 60-järjestelmään kellonaikojen avulla
7.6.1 MATEMATIIKKA VUOSILUOKAT 3 5 Vuosiluokkien 3 5 matematiikan opetuksen ydintehtävinä ovat matemaattisen ajattelun kehittäminen, matemaattisten ajattelumallien oppimisen pohjustaminen, lukukäsitteen
Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein:
9.8. MATEMATIIKKA Oppiaineen opetussuunnitelmaan on merkitty oppiaineen opiskelun yhteydessä toteutuva aihekokonaisuuksien ( = AK) käsittely seuraavin lyhentein: AK 1 = Ihmisenä kasvaminen AK 2 = Kulttuuri-identiteetti
Päättöarvioinnin kriteerit arvosanalle hyvä (8)
Tavoitteet Jokaisella oppilaalla on peruskoulun aikana mahdollisuus hankkia matemaattiset perustiedot ja -taidot, jotka antavat valmiuden luovaan matemaattiseen ajatteluun ja taitojen soveltamiseen eri
OPS OPPIMISTAVOITTEET JA OPETUKSEN KESKEISET SISÄLLÖT MATEMATIIKKA
OPS OPPIMISTAVOITTEET JA OPETUKSEN MATEMATIIKKA 2013 2014 MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä
7.6 Matematiikka. ympäristöään ja pohtii havaintojensa välisiä suhteita. Monet käytännön ongelmat ratkaistaan matemaattisesti.
7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Matematiikka. Aineen kuvaus
Matematiikka Aineen kuvaus Matematiikkaa lähestytään peruskäsitteistä: määrä, muoto ja jatkuva muutos. Matematiikka sovelluksineen palvelee lähes kaikkia eri oppiaineita ja eri elämän- alueita. Matematiikan
6. luokka 7. luokka. 6. luokka 7. luokka
VUOSILUOKAT 6-9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on matematiikan osaamisen vahvistaminen ja riittävien perusvalmiuksien tarjoaminen. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
MAS- linjan matematiikan kurssit
Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan
LUOKKA 1 LUOKKA 2 lukumäärä, lukusana ja numerosymboli. yhteydet luonnollisilla luvuilla luonnollisilla luvuilla
7.2.3. MATEMATIIKKA 88 TAVOITTEET: : oppii keskittymään, kuuntelemaan ja kommunikoimaan sekä kehittämään ajattelemistaan; ymmärtää lukukäsitteen ja oppii siihen soveltuvia peruslaskutaitoja; oppii perustelemaan
3. Lausekkeet ja yhtälöt (ma3) Keskeiset sisällöt polynomin käsite, polynomien yhteen-, vähennys- ja kertolasku
5.6 Matematiikka Perusopetus Opetuksen tavoitteet Matematiikan opetuksen tavoitteena on, että aikuisopiskelija oppii ymmärtämään matemaattisten käsitteiden ja sääntöjen merkityksen sekä oppii näkemään
MATEMATIIKKA VL LUOKKA. Laaja-alainen osaaminen. liittyvät sisältöalueet
MATEMATIIKKA VL.7-9 7.LUOKKA Opetuksen tavoitteet Tavoitteisiin liittyvät sisältöalueet Laaja-alainen osaaminen Merkitys, arvot ja asenteet T1 vahvistaa oppilaan motivaatiota, myönteistä minäkuvaa ja itseluottamusta
Matematiikka VUOSILUOKKA 3. Ylöjärven opetussuunnitelma 2004
Ylöjärven opetussuunnitelma 2004 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen
Matematiikka. 1. luokka 2. luokka. Tavoitteet Oppilas
Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Merkitys, arvot ja asenteet 7 Ei vaikuta arvosanan
Oppiaineen nimi: MATEMATIIKKA 7-9 Vuosiluokat Opetuksen tavoite Sisältöalueet Laaja-alainen osaaminen Arvioinnin kohteet oppiaineessa Hyvä/arvosanan kahdeksan osaaminen Merkitys, arvot ja asenteet 7 Ei
MATEMATIIKKA/Vuosiluokat 7-9
MATEMATIIKKA/Vuosiluokat 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matema ikan opetuksen tehtävänä on vahvistaa matemaa sta yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden
S5-S9 L1, L2, L4, L5, L6, L7 havaintojensa pohjalta kannustaa oppilasta esittämään ratkaisujaan ja päätelmiään muille
MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen
Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja
7 Matematiikka. 3. luokka
7 Matematiikka Matematiikka on tapa hahmottaa ja jäsentää ympäröivää maailmaa. Lapsi löytää ja omaksuu leikin, toiminnan sekä keskustelujen avulla matemaattisia käsitteitä, termejä, symboleja ja periaatteita.
Laaja-alaiseen osaamiseen liittyvät painotukset matematiikassa vuosiluokilla 1-9
Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle
Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
6.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
MATEMATIIKKA. Oppiaineen tehtävä
1 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaan loogista, täsmällistä ja luovaa ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden ymmärtämiselle
Matematiikka 7-9. Matematiikan tehtävä. Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa
Matematiikka 7-9 Matematiikan tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
1 lk Tavoitteet. 2 lk Tavoitteet
MATEMATIIKKA Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9
Perusopetuksen opetussuunnitelman perusteet 2014 matematiikassa vuosiluokilla 7 9 Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista
5.6.3 Matematiikan lyhyt oppimäärä
5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa
Oppilas oppii Luvut ja laskutoimitukset Geometria Mittaaminen ja taulukot ymmärtämään lukukäsitteen ja oppii käyttämään
101 7.3.4 Matematiikka Matematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien oppimiseen.
Matematiikka. 1. luokka 2. luokka. yksinumeroinen - kaksinumeroinen - lukujonoja, hajottaminen ja kokoaminen kolminumeroinen konkreettisin välinein
40 Matematiikka 7.6 Matematiikka M atematiikan opetuksen tehtävänä on tarjota mahdollisuuksia matemaattisen ajattelun kehittämiseen ja matemaattisten käsitteiden sekä yleisimmin käytettyjen ratkaisumenetelmien
PERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN
HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan
Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.
Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5
MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty )
MATEMATIIKKA VUOSILUOKAT 1-2 (päivitetty 16.12.2015) Merkitys, arvot ja asenteet T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä
Matematiikka. Vuosiluokkien 1 2 yhteiset tavoitteet
9.2.4. Matematiikka Koulumme matematiikan opetus antaa oppilaalle välineitä ja taitoja ratkaista arkipäivän ongelmia matemaattisen ajattelun avulla. Opetus tarjoaa oppilaalle välineen oppia tunnistamaan
MATEMATIIKKA MATEMATIIKAN PITKÄ OPPIMÄÄRÄ. Oppimäärän vaihtaminen
MATEMATIIKKA Oppimäärän vaihtaminen Opiskelijan siirtyessä matematiikan pitkästä oppimäärästä lyhyempään hänen suorittamansa pitkän oppimäärän opinnot luetaan hyväksi lyhyemmässä oppimäärässä siinä määrin
PITKÄ MATEMATIIKKA. Pakolliset kurssit
13 PITKÄ MATEMATIIKKA Suoritusohje: Pakolliset kurssit suoritetaan numerojärjestyksessä, poikkeuksena kurssi MAA6, jonka voi suorittaa jo kurssin MAA2 jälkeen. Syventävien kurssien suoritusjärjestys mainitaan
Rauman normaalikoulun opetussuunnitelma 2016 Matematiikka vuosiluokat 1-9
2016 Matematiikka vuosiluokat 1-9 Rauman normaalikoulun opetussuunnitelma Matematiikka vuosiluokat 1-2 Rauman normaalikoulun matematiikan opetuksen pohjana ovat perusopetuksen opetussuunnitelman perusteiden
PERUSKOULUN KURSSIT ENGLANTI. EN 0: Englanti - valinnainen. Ks. oppikirjaluettelo.
ENGLANTI EN 0: Englanti - valinnainen Perehdyttää englannin kielen alkeisiin jokapäiväisissä käyttötilanteissa. UNIT 1-4 englanti maailmankielenä, perheestä kertominen, tervehtiminen, ruoka-aineita, kahvilassa
MATEMATIIKKA VUOSILUOKAT 7-9
MATEMATIIKKA VUOSILUOKAT 7-9 Oppiaineen tehtävä vuosiluokilla 7-9 Vuosiluokkien 7 9 matematiikan opetuksen tehtävänä on vahvistaa matemaattista yleissivistystä. Opetuksessa syvennetään matemaattisten käsitteiden
MATEMATIIKKA. MAA Matematiikan pitkä oppimäärä
MATEMATIIKKA Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija matemaattisen
MATEMATIIKKA. Oppiaineen tehtävä
MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua sekä vahvistaa matemaattista yleissivistystä. Opetuksessa
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun
Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen
Tavoite T2 kannustaa oppilasta ottamaan vastuuta matematiikan oppimisesta sekä yksin että yhdessä toimien
Tavoite 5 6 7 8 9 10 T2 kannustaa ottamaan vastuuta oppimisesta sekä yksin että yhdessä toimien on läsnä oppitunnilla. ottaa vastuuta omasta oppimisestaan. ottaa vastuuta omasta oppimisestaan ja kykenee
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
MATEMATIIKKA. Oppiaineen tehtävä
14.4.4 MATEMATIIKKA Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden ja rakenteiden
Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen kehittymistä
MATEMATIIKKA JOENSUUN SEUDUN OPETUSSUUNNITELMASSA Merkitys, arvot ja asenteet Opetuksen tavoite: T1 tukea oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä myönteisen minäkuvan ja itseluottamuksen
Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto, liikunta
Espoon suomenkielisen perusopetuksen opetussuunnitelma Luvut 13 15 OPPIAINEIDEN OPETUSSUUNNITELMAT Oppiaineet: matematiikka, ortodoksinen uskonto, katolinen uskonto, islam, juutalainen uskonto, elämänkatsomustieto,
Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS
Pitkä matematiikka, Lyhyt matematiikka MATEMATIIKKA, PITKÄ, LUKIO-OPETUS Matematiikka tarjoaa välineitä johdonmukaisen ja täsmällisen ajattelun edistämiseen, avaruuden hahmottamiseen sekä käytännön ja
Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.
13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin
Matematiikan opetuksen keskeiset tavoitteet
Matematiikan opetuksen keskeiset tavoitteet Tukimateriaalia eriyttämiseen: Mihin kannattaa keskittyä silloin, kun oppilaalla on vaikeuksia perusasioiden oppimisessa luokilla 1 2, 3 4 ja 5 6 sekä 7 9 Olemme
Matematiikan pitkä oppimäärä
Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän
SISÄLLYSLUETTELO. Äidinkieli ja kirjallisuus 2. Vieraat kielet 11. Matematiikka 18. Biologia 24. Maantieto 28. Fysiikka 32. Kemia 36.
SISÄLLYSLUETTELO Äidinkieli ja kirjallisuus 2 Vieraat kielet 11 Matematiikka 18 Biologia 24 Maantieto 28 Fysiikka 32 Kemia 36 Terveystieto 39 Uskonto 44 Elämänkatsomustieto 51 Historia 54 Yhteiskuntaoppi
1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
Reaaliluvut 1/7 Sisältö ESITIEDOT:
Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Matematiikan pitkä oppimäärä
Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle matemaattiset valmiudet, joita tarvitaan ammatillisissa opinnoissa ja korkeakouluopinnoissa. Pitkän
matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117
Kurssikuvausten väljyyttä voidaan käyttää resurssien salliessa keskeisten sisältöjen syventämiseen ja eheyttävien kokonaisuuksien muodostamiseen.
5.6. Matematiikka Matematiikan asema aikamme kulttuurissa edellyttää valmiutta ymmärtää, hyödyntää ja tuottaa matemaattisesti esitettyä tietoa. Matematiikan opetuksen tehtävänä on tutustuttaa opiskelija
ÄIDINKIELI Kielentuntemus Tekstit ja media Kirjoittaminen ja muut tuotokset
ÄIDINKIELI Kielentuntemus Tekstit ja media Kirjoittaminen ja muut tuotokset Ai1, Ai2, Ai3 Keskeisiä oikeakielisyysasioita Laaja tekstikäsitys Kirjoitetaan erilaisia fiktiivi- Opiskeltavia tekstilajeja
AMMATILLISEEN PERUSKOULUTUKSEEN OHJAAVA JA VALMISTAVA KOULUTUS 2010. Ylä-Savon ammattiopisto
AMMATILLISEEN PERUSKOULUTUKSEEN OHJAAVA JA VALMISTAVA KOULUTUS 2010 Ylä-Savon ammattiopisto MÄÄRÄYS 15/011/2010 OPETUSSUUNNITELMAN PERUSTEET 1. JOHDANTO... 3 2. AMMATILLISEEN PERUSKOULUTUKSEEN OHJAAVAN
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Aiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!
Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
Kuutio ja OPS 2016 K U U T I O OPS 2016. Oppiaineen tehtävä. Oppimiskäsitys
Kuutio ja OPS 2016 Uusittu Kuutio noudattaa vuoden 2016 opetussuunnitelman perusteita ja vastaa digitaalisen kehityksen mukanaan tuomiin haasteisiin. Sen monipuoliset tehtävät ja mielenkiintoiset teemasivut
PII JA OPETUSSUUNNITELMAN PERUSTEET
PII JA OPETUSSUUNNITELMAN PERUSTEET Yläkoulun matematiikan oppimateriaali Pii noudattaa uuden opetussuunnitelman perusteita. Sarja tarjoaa kaikille oppijoille oman taitotasonsa mukaisia haasteita ja myönteisiä
KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut
KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen
2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta
8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Iitin perusopetuksen opetussuunnitelma Oppimistavoitteet ja oppisisällöt vuosiluokittain
1 Iitin perusopetuksen opetussuunnitelma Oppimistavoitteet ja oppisisällöt vuosiluokittain Sisällysluettelo Äidinkieli ja kirjallisuus 2 Englanti, a1 9 Ruotsi, b1 13 Matematiikka 18 Biologia ja maantieto
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN
MATEMAATTIS- LUONNONTIETEELLINEN OSAAMINEN Matematiikka ja matematiikan soveltaminen, 4 osp Pakollinen tutkinnon osa osaa tehdä peruslaskutoimitukset, toteuttaa mittayksiköiden muunnokset ja soveltaa talousmatematiikkaa
Matematiikka 5. luokka
Matematiikka 5. luokka Hyvä osaaminen 6. luokan päättyessä on lihavoitu. Vuosiluokan hyvä osaaminen on alleviivattu. T2 Ohjata oppilasta havaitsemaan yhteyksiä oppimiensa asioiden välillä Harjoittelen
MATEMATIIKKA 1 2lk. Oppiaineen tehtävä
13.4.4 MATEMATIIKKA 1 2lk Oppiaineen tehtävä Matematiikan opetuksen tehtävänä on kehittää oppilaiden loogista, täsmällistä ja luovaa matemaattista ajattelua. Opetus luo pohjan matemaattisten käsitteiden
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Vetelin kunta Oppimisen seurantalomake 0-2 lk
Vetelin kunta Oppimisen seurantalomake 0-2 lk Koulu: Oppilas: ÄIDINKIELI Lukeminen 20. Luet kokonaisia kirjoja. 19. Osaat tehdä johtopäätöksiä lukemastasi. 18. Löydät lukemastasi tarvittavia tietoja. 17.
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
Kemia. Perusteluonnoksen 15.4.2014 pohjalta. Hannes Vieth Helsingin normaalilyseo
Kemia Perusteluonnoksen 15.4.2014 pohjalta Hannes Vieth Helsingin normaalilyseo OPPIAINEEN TEHTÄVÄ Kemian opetus tukee oppilaan luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä. auttaa ymmärtämään
MATEMATIIKKA. Elina Mantere Helsingin normaalilyseo elina.mantere@helsinki.fi. Elina Mantere
MATEMATIIKKA Helsingin normaalilyseo elina.mantere@helsinki.fi OPPIAINEEN TEHTÄVÄ Kehittää loogista, täsmällistä ja luovaa matemaattista ajattelua. Luoda pohja matemaattisten käsitteiden ja rakenteiden
MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi
MAOL-opas koulukohtaisen opetussuunnitelmatyön avuksi Pedagoginen valiokunta 2003 Sisällysluettelo 1. Esipuhe... 3 2. Vanha ja uusi tuntijako ja niiden erot... 4 2.1. Perusopetuksen tuntijako... 4 2.1.1.
EHDOTUS. EHDOTUS Matematiikan opetussuunnitelmien perusteiden oppiainekohtaiset osat
EHDOTUS Matemaattisten aineiden opettajien liitto MAOL ry 12.2.2015 Asemamiehenkatu 4 00520 HELSINKI Opetushallitus Hakaniemenranta 6 00530 Helsinki EHDOTUS Matematiikan opetussuunnitelmien perusteiden
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
MAB 9 kertaus MAB 1. Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi
MAB 9 kertaus MAB 1 Murtolukujen laskutoimitukset: Yhteen- ja vähennyslaskuissa luvut lavennettava samannimisiksi Kertolaskussa osoittajat ja nimittäjät kerrotaan keskenään Jakolasku lasketaan kertomalla
Matemaattisten menetelmien hallinnan tason testi.
Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys
Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa
Matematiikan opetuksen keskeiset tavoitteet yläkouluikäisten valmistavassa opetuksessa Olemme valinneet opetussuunnitelman perusteiden 2014 tavoitteiden, sisältöjen ja hyvän osaamisen kuvausten pohjalta
2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p
LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE 2.2.2018 RATKAISUT 1. a) 3,50 b) 56 c) 43300 km d) 15 e) 21.08 f) 23.9. kukin oikea vastaus a-kohdassa pelkkä 3,50 ilman yksikköä kelpuutetaan, samoin c-kohdassa pelkkä
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.
Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =
5.6.2 Matematiikan pitkä oppimäärä
5.6.2 Matematiikan pitkä oppimäärä Matematiikan pitkän oppimäärän opetuksen tehtävänä on antaa opiskelijalle ammatillisten ja korkeakouluopintojen edellyttämät matemaattiset valmiudet sekä matemaattinen
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LUKUVUODEN E-KURSSI MAB3
1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
MAY01 Lukion matematiikka 1
MAY01 Lukion matematiikka 1 - Oppikirja: Yhteinen tekijä, Lukion matematiikka 1: Luvut ja lukujonot (paperisena tai sähköisenä ) - Kurssilla tarvitaan myös tietokone, TI-laskinohjelma, geogebraohjelma,
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
1. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua
. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua. Jatka. + 00 000 0 0 0 0 0 0 0 000 + 0 000 0 0 0 0 0 0 0 + 0,0,,,,,,0 0,,,,,,, + 0,,,0,,0,,00. Merkitse laskutapa ja laske. a), +, + 0,,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
Matematiikan didaktiikka, osa II Estimointi
Matematiikan didaktiikka, osa II Estimointi Sarenius Kasvatustieteiden tiedekunta, Oulun yksikkö Arviointi Arvionti voidaan jakaa kahteen osaan; laskutoimitusten lopputulosten arviointiin ja arviontiin
Ensimmäisen ja toisen asteen yhtälöt
Ensimmäisen ja toisen t nimittäjien poistaminen sieventäminen ensimmäisen identtinen yhtälö yhtälö verranto toisen asteen yhtälö korkeamman ristiin kertominen suhde täydellinen toisen ratkaisukaava vaillinainen