Johdatus kvantti-informatiikkaan

Koko: px
Aloita esitys sivulta:

Download "Johdatus kvantti-informatiikkaan"

Transkriptio

1 Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018

2 Johdanto Lukemistona esim. Nielsen & Chuang: Quantum Computation and Quantum Information Kvantti-informatiikka ja -laskenta = informaation prosessointia kvanttimekaanisten järjestelmien avulla Miten kvanttilaskenta ja klassinen laskenta eroavat toisistaan? Kvanttikryptografia: klassista informaatiota voidaan kryptata kvanttitietokoneella, lisäksi vastaanottaja tietää jos viesti on luettu matkalla Kryptauksen purku: kvanttitietokoneella voidaan purkaa salattuja viestejä Lomittuminen (entanglement): kahden kvanttimekaanisen systeemit tilat kytkeytyneet toisiinsa Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

3 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus

4 Qubitti ja Diracin notaatio Qubitti kvanttilaskennan bitti, systeemin tila Matemaattinen otus, joka voidaan toteuttaa fysikaalisesti monilla eri tavoilla Merkinnöissä käytetään ns. Diracin notaatiota: 1 ja 0 vastaavat klassisia bittejä 1 ja 0 Bra 1 ja Ket 1 kytkeytyvät toisiinsa 1 = ( 1 ) Toisaalta merkintä 1 0 tarkoittaa tilojen sisätuloa Hilbertin avaruudessa Fysikaalisesti 1 yhdistetään kvanttimekaaniseen (ominais)tilaan φ 1, jolloin a b = φ a φ b dx ja a Ĥ b = φ a Ĥ φ b dx Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

5 Qubiteistä ja lisää käsitteitä Toisin kuin klassinen bitti, qubitit ovat yleisesti tilassa ϕ = α 0 + β 1 Qubitti on ennen mittaamista tilassa ϕ = α 0 + β 1 Mittaustulosten esiintymistodennäköisyydet saadaan kertoimien itseisarvoista Tilat 0 ja 1 nimetty laskentakannaksi (computational basis) 0 ja 1 muodostavat ortonormaalin kannan vektoriavaruuteen { 1, i = j i j = δ ij, missä δ ij = 0, i j Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

6 Qubitti ja informaation määrä ϕ = α 0 + β 1 Koska α 2 + β 2 = 1, voidaan tila ϕ kirjoittaa ϕ = e iγ( cos θ eiφ sin θ 2 1 ), missä termi e iγ voidaan jättää pois. (Miksi?) Numerot θ ja φ kuvaa pistettä ympyrällä Periaatteessa yhteen qubittiin voitaisiin koodata valtavasti informaatiota! Sitä ei voida kuitenkaan mitata miksi? Mitä jos tätä informaatiota ei mitata...? Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

7 Useita qubittejä Lomittuminen (entanglement) ja Bellin tila Tarkastellaan kahden qubitin muodostamaa järjestelmää Niillä on neljä tilaa laskentakannassa: 00, 01, 10 ja 11, joten ϕ = α α α α Tämän erikoistapaus on ns. Bellin tila (Bell state / EPR pair): ϕ = Qubitit ovat lomittuneessa (engl. entangled) tilassa. Avainasemassa kvanttiteleportaatioon ja supertiheään koodaukseen? Mitä tapahtuu jos Bellin tilan toisen qubitin arvo mitataan?

8 Lomittuneet tilat Kahden eri kvanttimekaanisen systeemin tilojen välillä on korrelaatio Systeemit voidaan erottaa ja korrelaatio säilyy silti! Einstein, Podolsky ja Rosen kirjoittivat 1935 artikkelin (Phys. Rev., 47, 777, (1935), linkki mycoursesissa) lomittumisesta Piilomuuttujateoria (hidden variable theory) = millä tavoin systeemit kommunikoivat tilansa toisilleen? Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

9 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus

10 Kvanttipiirit ja kvanttilaskenta Muutokset qubittien kvanttitilassa = kvanttilaskenta Klassinen tietokone koostuu logiikkaporteista (logic gate) ja niitä yhdistävistä johdoista (= elektroniikkapiiri) Kvanttitietokone koostuu kvanttiporteista (quantum gate) ja johdoista (= kvanttipiiri [quantum circuit]) Tarkastellaan muutamaa yksinkertaista kvanttiporttia ja niistä muodostettua kvanttipiiriä sekä niiden sovelluksia Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

11 Yhden qubitin kvanttipiirit (X, Z ja H-portit) [ ] α Yhden qubitin tila: ϕ = α 0 + β 1 pystyvektori β Tilaa muuttava piiri kuvataan 2 2 matriisilla, jota kerrotaan pystyvektorilla Esim kvantti-not: [ 0 1 ] [ ] [ ] [ ] [ ] α 0 1 α β X = X = = = ϕ = β 0 + α β 1 0 β α Ainoa vaatimus kvanttipiireille on unitaarisuus joka huolehtii normalisaation säilymisestä Unitaarinen matriisi U: U U = I, missä tarkoittaa transpoosin ja kompleksikonjugoinnin yhdistelmäoperaatiota Muita tärkeitä kvanttipiirejä Z [ ] (Z-portti) H 1 2 [ ] (Hadamard-portti)

12 Yhden qubitin kvanttipiirit (X, Z ja H-portit) Hadamard kiertää käytettävää laskentakantaa: H 1 [ 1 1 ] H(α 0 + β 1 ) = α + β

13 Usean qubitin kvanttipiirejä Klassisten porttien prototyyppiportti on NAND-portti, josta voidaan konstruoida kaikki muut portit (AND, OR, XOR, NOR) Kvanttiporttien vastine sille on CNOT (controlled not), jonka toimintaa kuvataan matriisilla U CN (Controlled not -portti) Sen toinen qubiteista on ohjausqubitti ja toinen kohdequbitti ; ; ; Mikä tahansa usean qubitin portti voidaan rakentaa yhdistämällä CNOT-portti ja yhden qubitin portteja

14 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus

15 Kvanttitiedon kopioitavuus No-cloning theorem Yritetäään kopioida qubittiin koodattu klassinen bitti ϕ 1 = a 0 + b 1 (a ja b ennalta tuntemattomia) Käytetään CNOT-porttia, jossa tuntematon qubitti on ohjausqubittina ja kohde on alustettu tilaan ϕ 2 = 0, jolloin niiden yhteistila on ϕ 1 ϕ 2 = [ a 0 + b 1 ] 0 = a 00 + b 10 Kun tähän tilaan kohdistetaan CNOT-portti, lopputuloksena ϕ 2 tunnetaan, jos ja vain jos ϕ 1 tunnetaan

16 Kvanttitiedon kopioitavuus No-cloning theorem Sen sijaan jos tilaa ϕ 1 ei tunneta: ϕ 1 ϕ 2 = a ab 01 + ab 10 + b 2 11 Halutun kopioinnin tila a 00 + b 11 toteutuu vain jos ab = 0, mikä on ristiriidassa oletuksen kanssa että tuntematon tila on sekatila ϕ 1 = a 0 + b 1 Mielivaltaista kvanttitilaa ei pystytä kopioimaan Vain puhtaat tilat voi kopioida tila romahdutettu ja informaatiota hävitetty

17 Kvanttiteleportaatio Osoittautuu, että kvanttitietoa voidaan siirtää paikasta toiseen ilman varsinaista kvanttitilan siirtokanavaa! Sitä varten palataan Bellin tiloihin / EPR-pareihin (kahden qubitin systeemi) Otetaan kaksi qubittia, joista toinen qubitti ohjataan yhden qubitin Hadamardin porttiin, joka ohjaa kahden qubitin CNOT-porttia Toinen qubiteista on CNOT-portin kohdequbittina, jolloin saadaan tilat β ij : = β = β = β = β

18 Kvanttiteleportaatio

19 Kvanttiteleportaatio Alice ja Bob muodostavat yhdessä EPR-parin, jonka qubitit he jakavat puoliksi keskenään ja menevät omille teilleen Myöhemmin Alicen pitäisi siirtää qubitti ϕ Bobille seuraavin ehdoin: 1. Alice ei tunne tilaa ϕ mittaaminen tuhoaisi tilan ja informaatiota 2. Alice voi lähettää Bobille vain klassista informaatiota Toiminta: Alice yhdistää tilan ϕ omaan EPR-parin puolikkaaseensa ja mittaa molemmat qubitit Tulos on joku joukosta 00, 01, 10, 11 ja Alice lähettää tämän klassisen informaation Bobille Tuloksen perusteella Bob operoi omaan EPR-parin puolikkaaseensa, jolloin alkuperäinen tila ϕ saadaan takaisin Kvanttitila siirrettiin klassisen informaation ja EPR-parien avulla!

20 Kvanttiteleportaation yksityiskohdat Alkuperäinen tila ϕ = α 0 + β 1 yhdistetään EPR-pariin β 00, saadaan tila ϕ 0 ϕ 0 = ϕ β 00 = 1 ] [α 0 ( ) + β 1 ( ) 2 Vasemmalta laskien kaksi ensimmäistä qubittia on Alicella, kolmas (oikean puolimmaisin) on Bobilla NB! Kaksi oikeanpuolimmaisinta qubittia lomittuneet (entangled) keskenään EPR-parin muodostuessa Alice lähettää qubittinsä CNOT- ja Hadamard-porttien läpi sekä mittaa lopputuloksen ϕ 2 = 1 [ 00 (α 0 + β 1 ) + 01 (α 1 + β 0 ) 2 ] + 10 (α 0 β 1 ) + 11 (α 1 β 0 )

21 Kvanttiteleportaation yksityiskohdat Alice kertoo edellisen mittauksen tulos (00, 01, 10, 11) Bobille klassista informaatiokanavaa pitkin Bob palauttaa mittaustuloksen perusteella lähetetyn tilan kohdistamalla omaan EPR-parin puoliskoonsa sopivat kvanttiporttien operaatiot (00 ei mitään, 01 X, 10 Z, 11 ZX) Kysymyksiä 1. Voidaanko kvanttiteleportaatiolla välittää tietoa yli valonnopeudella? Miksi? 2. Rikkooko kvanttiteleportaatio kvanttitilan kloonauksen kieltävän säännön (no cloning theorem)? Miksi?

22 Perusteita Kvanttipiirit Kvanttialgoritmeista Kvanttitietokoneen fysikaalinen toteutus

23 Perusperiaatteet Kvanttitietokoneen perustoimintayksikkö on qubitti kaksitasojärjestelmä Toteuttamista varten tarvitaan vankka fyysinen toteutus qubitistä (=informaation esitystapa, representaatio) Lisäksi tarvitaan järjestelmä, jossa qubittien tila kehittyy (=miten laskenta tapahtuu) Lopuksi qubittien tila pitää pystyä valmistelemaan laskua varten, sekä mittaamaan ne jälkeenpäin Näitä perusvaatimuksia voidaan toteuttaa useimmiten vain osittain Kvanttitietokone pitää eristää ympäristöstään, jotta sen ominaisuudet säilyvät Toisaalta eristäminen estää qubittien tilan manipuloimisen ja mittaamisen Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

24 Kvanttitietokoneen hyvyysluvut Keskeinen hyvyysluku kvanttitietokone-ehdokassysteemissä on kvanttikohina/dekoherenssi, joka sekoittaa systeemin tilojen aikaevoluution Rajoittaa pisintä laskua, jonka kvanttitietokoneella voi laskea Saadaan koherenssiajan ja unitaarimuunnokseen vaadittavan ajan suhteena Operaatiomäärä vaihtelee (kvanttipiste) (ydinspin) välillä [Nielsen & Chuang] Ydinspin vaikuttaa hyvältä heikon vuorovaikutuksen takia kuitenkin tila vaikea preparoida ja määrittää Muita keskeisiä hyvyyslukuja ovat tilojen fideliteetti (fidelity), systeemin entropia sekä mittauksen signaalikohinasuhde (SNR)

25 Esimerkki: kvanttitietokone optisista fotoneista Qubitin esitystapa: yksittäisen fotonin sijainti kahden kaviteetin välillä tai fotonin polarisaatio Kvanttiporttien toteutus: yksittäiselle fotonille vaiheen siirto ja säteenjakajat, sekä kahdelle fotonille keskinäinen vuorovaikutus kolmannen kertaluvun epälineaarisuuden kautta (keskinäinen vaihemodulaatio, cross phase modulation) Alkutilojen preparointi: yksittäisten fotonien tuottaminen (esim lasersädettä vaimentamalla) Tilojen määritys: yksittäisten fotonien havaitseminen (valomonistinputkilla) Hankaluudet: keskinäisen vaihemodulaation tuottaminen hankalaa kun yhtäaikaa absorption on oltava vähäistä (liittyvät toisiinsa) Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

26 Muita esimerkkejä Optisen kaviteetin kvanttielektrodynamiikka (yksittäisen fotonin sijainti tai polarisaatio, vuorovaikutus optisessa kaviteetissa olevien atomien avulla) Ioniloukut (atomiytimen spin, vuorovaikutus värähtelytilojen/fononien avulla) Ydinmagneettinen resonanssi (atomiytimen spin, vuorovaikutus sidosten avulla) Johdatus kvantti-informatiikkaan Sami Kujala Kevät 2018 Elektroniikan ja nanotekniikan laitos

Johdatus kvantti-informatiikkaan

Johdatus kvantti-informatiikkaan Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Taustaa esim. Nielsen & Chuang: Quantum Computation and Quantum Information Kvantti-informatiikka

Lisätiedot

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio

KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa

Lisätiedot

Kvanttitietokoneet, kvanttilaskenta ja kvanttikryptografia. Kvanttimekaniikka. Kvanttimekaniikan perusperiaatteet. Kvanttimekaniikan sovelluksia

Kvanttitietokoneet, kvanttilaskenta ja kvanttikryptografia. Kvanttimekaniikka. Kvanttimekaniikan perusperiaatteet. Kvanttimekaniikan sovelluksia Tietotekniikan perusteet - Luento 3 Kvanttitietokoneet, kvanttilaskenta ja kvanttikrptograia Kvanttimekaniikka Kvanttimekaniikka: Aineen kättätmistä kuvaava siikan perusteoria. Mikroskooppisella tasolla

Lisätiedot

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia

Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian

Lisätiedot

KVANTTILASKENTA. Klassinen laskettavuus vs. kvanttilaskenta (QC)

KVANTTILASKENTA. Klassinen laskettavuus vs. kvanttilaskenta (QC) KVANTTILASKENTA Klassinen laskettavuus vs. kvanttilaskenta (QC) Algoritmin konemallit (Turingin kone, RAM-kone, rekisterikone, laskurikone jne.) [QC: Jonkinlaiset versiot on, eivät kovin käyttökelpoiset,

Lisätiedot

Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, QKD)

Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, QKD) Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, ) Iikka Elonsalo Elektroniikan ja nanotekniikan laitos 4.5.2017 Sisältö Kryptografia Kvanttiavainjakelu 2/27 4.5.2017 Kryptografia

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Kvanttilaskenta - 2. tehtävät

Kvanttilaskenta - 2. tehtävät Kvanttilaskenta -. tehtävät Johannes Verwijnen January 8, 05 edx-tehtävät Vastauksissa on käytetty edx-kurssin materiaalia.. Problem The inner product of + and is. Edelleen false, kts. viikon tehtävä 6..

Lisätiedot

T Privacy amplification

T Privacy amplification T-79.4001 Privacy amplification Ari Nevalainen ajnevala@cc.hut.fi T-79.4001Privacy amplification 1/25 ALKUTILANNE Alkutilanne. Kaksi erikoistapausta. Yleinen tapaus. Yhteenveto. T-79.4001Privacy amplification

Lisätiedot

Aineen ja valon vuorovaikutukset

Aineen ja valon vuorovaikutukset Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

D-Wave kvanttitietokone; mitä se tekee?

D-Wave kvanttitietokone; mitä se tekee? Lähde: D-Wave Systems Inc., https://www.dwavesys.com/ Taneli Juntunen, M.Sc. (Tech.) D-Wave kvanttitietokone; mitä se tekee? Kvantti-ilmiöt 4.5.2017 Aalto University School of Electrical Engineering Aalto

Lisätiedot

Etsintäongelman kvanttialgoritmi. Jari Tuominiemi

Etsintäongelman kvanttialgoritmi. Jari Tuominiemi Etsintäongelman kvanttialgoritmi Jari Tuominiemi Helsinki 22.11.2004 Vaihtoehtoiset laskentaparadigmat -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos i Sisältö 1 Johdanto 1 2 Kvanttilaskennan

Lisätiedot

Tilat ja observaabelit

Tilat ja observaabelit Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ

Lisätiedot

LOMITTUMINEN ja KVANTTITELEPORTAATIO

LOMITTUMINEN ja KVANTTITELEPORTAATIO LOMITTUMINEN ja KVANTTITELEPORTAATIO Vuonna 1993 tutkijat kehittivät kvanttifysiikan lakeihin perustuvan teoreettisen pohjan kvanttiteleportaatiolle. Kvanttiteleportaatio eli kaukosiirto on kvanttifysikaalinen

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuus ja Gisinin teoreema

Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuus ja Gisinin teoreema Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuus ja Gisinin teoreema Kirjoittaja: Riku E. Järvinen Ohjaaja: Professori Jukka Maalampi Pro Gradu Fysiikan laitos Toukokuu 2018 Anybody who is

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Tieteen popularisointi Kvanttipiirit

Tieteen popularisointi Kvanttipiirit Tieteen popularisointi Kvanttipiirit Esa Kivirinta esakiv (at) gmail.com Materiaali on tarkoitettu yläasteen fysiikan oppitunneille lisämateriaaliksi sekä yleisesti peruskoulun suorittaneille. Materiaalissa

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta

Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta Puhtaiden lomittuneiden kubittien Bell-tyypin epälokaalisuudesta ja Gisinin teoreemasta Kirjoittaja: Riku E. Järvinen Ohjaaja: Professori Jukka Maalampi Pro Gradu Fysiikan laitos Helmikuu 2018 Anybody

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

Tekijöihinjaon kvanttialgoritmi

Tekijöihinjaon kvanttialgoritmi Tekijöihinjaon kvanttialgoritmi Vesa Kivistö Helsinki 14.11.2004 Vaihtoehtoiset laskentaparadigmat -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Sisältö 1 Johdanto... 3 2 Hadamard ja Walsh-Hadamard

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k)

ACKERMANNIN ALGORITMI. Olkoon järjestelmä. x(k+1) = Ax(k) + Bu(k) ACKERMANNIN ALGORITMI Olkoon järjestelmä x(k+1) = Ax( + Bu( jossa x( = tilavektori (n x 1) u( = ohjaus (skalaari) A (n x n matriisi) B (n x 1 matriisi) Oletetaan, että ohjaus u( = Kx( on rajoittamaton.

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Stanislav Rusak CASIMIRIN ILMIÖ

Stanislav Rusak CASIMIRIN ILMIÖ Stanislav Rusak 6.4.2009 CASIMIRIN ILMIÖ Johdanto Mistä on kyse? Mistä johtuu? Miten havaitaan? Sovelluksia Casimirin ilmiö Yksinkertaisimmillaan: Kahden tyhjiössä lähekkäin sijaitsevan metallilevyn välille

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Kvanttimekaniikka II A/S. Jani Tuorila Fysiikan laitos Oulun yliopisto

Kvanttimekaniikka II A/S. Jani Tuorila Fysiikan laitos Oulun yliopisto Kvanttimekaniikka II 763313A/S Jani Tuorila Fysiikan laitos Oulun yliopisto 17 huhtikuuta 015 Sisältö 1 Tilavektori 1 11 Hilbertin avaruus 3 111 Lineaarinen vektoriavaruus 3 11 Sisätulo 4 1 Hilbertin avaruuden

Lisätiedot

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri

Kvanttimekaniikka: Luento 4. Martikainen Jani- Petri Kvanttimekaniikka: Luento 4 Martikainen Jani- Petri Viimeksi Ajasta riippuva Schrödingerin yhtälö Alkuarvo- ongelman ratkaisu Aaltofunktio Tänään Mittauspostulaatti Diracin merkintätapa. Hermiittiset operaattorit

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Tieteen popularisointi Kvanttipiirit

Tieteen popularisointi Kvanttipiirit Tieteen popularisointi Kvanttipiirit Esa Kivirinta esakiv (at) gmail.com Materiaali on tarkoitettu lukion fysiikan sähkömagnetismin oppitunneille lisämateriaaliksi sekä yleisesti lukion suorittaneille.

Lisätiedot

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.

Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Paavo Kyyrönen & Janne Raassina

Paavo Kyyrönen & Janne Raassina Paavo Kyyrönen & Janne Raassina 1. Johdanto 2. Historia 3. David Deutsch 4. Kvanttilaskenta ja superpositio 5. Ongelmat 6. Tutkimus 7. Esimerkkejä käyttökohteista 8. Mistä näitä saa? 9. Potentiaali 10.

Lisätiedot

Kvanttiavaimen jakamiseen perustuvan salausmenetelmän (QKD) sovellukset

Kvanttiavaimen jakamiseen perustuvan salausmenetelmän (QKD) sovellukset Kvanttiavaimen jakamiseen perustuvan salausmenetelmän () sovellukset Teemu Manninen Aalto-yliopisto Mikro- ja nanotekniikan laitos: Prof. Ilkka Tittonen, Teemu Manninen, Iikka Elonsalo Comnet: Prof. Olav

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena

Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Mikrotietokone Moderni tietokone Ajattelemme tietokonetta yleensä läppärinä tai pöytäkoneena Sen käyttötarkoitus on yleensä työnteko, kissavideoiden katselu internetistä tai pelien pelaaminen. Tietokoneen

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos

Lukujonot Z-muunnos Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt. Z-muunnos. 5. joulukuuta Z-muunnos Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt 5. joulukuuta 2016 Lukujonot Z-muunnoksen ominaisuuksia Z-käänteismuunnos Differenssiyhtälöt Lukujonot Lukujonot Z-muunnoksen ominaisuuksia

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Kvanttitietokoneen toiminnan simulointi ja emulointi

Kvanttitietokoneen toiminnan simulointi ja emulointi Janne Mäyrä Kvanttitietokoneen toiminnan simulointi ja emulointi Tietotekniikan kandidaatintutkielma 30. lokakuuta 2017 Jyväskylän yliopisto Informaatioteknologian tiedekunta Tekijä: Janne Mäyrä Yhteystiedot:

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2017 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Paulin spinorit ja spinorioperaattorit

Paulin spinorit ja spinorioperaattorit Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos

Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 3. helmikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:

Lisätiedot

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y ) MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y

Lisätiedot

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2

z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2 BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Puolustusvoimien tutkimuslaitos Tutkimuskatsaus Kvanttilaskenta ja kyberturvallisuus

Puolustusvoimien tutkimuslaitos Tutkimuskatsaus Kvanttilaskenta ja kyberturvallisuus Kvanttilaskenta ja kyberturvallisuus Mika Helsingius Informaatiotekniikkaosasto Kvanttilaskenta kehittyy tällä hetkellä nopeasti. Kvanttitietokoneet, kvanttiverkot ja kvanttiturvalliset salausmenetelmät

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5 MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Perustilan fotonit. Taneli Tolppanen. LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 2019

Perustilan fotonit. Taneli Tolppanen. LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 2019 Perustilan fotonit Taneli Tolppanen LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 019 Sisältö 1 Johdanto Kubitti ja harmoninen värähtelijä 3.1 Kubitti...............................

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot