Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, QKD)
|
|
- Olivia Jaakkola
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kvanttiavainjakelu (Kvantnyckeldistribution, Quantum Key Distribution, ) Iikka Elonsalo Elektroniikan ja nanotekniikan laitos
2 Sisältö Kryptografia Kvanttiavainjakelu 2/
3 Kryptografia Symmetrinen salaus Alice Viesti Salaus Avain A Avain A = Avain B One-time pad, AES Epäsymmetrinen salaus Eve Bob Viesti Salattu viesti Purku Avain B Avain A: julkinen avain Avain B: yksityinen avain Yksityisen avaimen laskeminen julkisesta vaikeaa 3/
4 Kryptografia Tällä hetkellä käytössä olevat epäsymmetriset salausmenetelmät voidaan murtaa Shorin algoritmeilla Vaatii kvanttitietokoneen, jossa tarpeeksi qubitteja Ei voida käyttää, jos halutaan pitää data salassa yli 20 vuotta Symmetrinen salaus Groverin algoritmi nopeuttaa brute force -purkamista One-time-pad (OTP) aina turvallinen Ongelmana avaimien turvallinen siirtäminen 4/
5 Kryptografia One-time pad Avain A = Avain B Täysin satunnainen Käytetään vain kerran Vähintään yhtä pitkä kuin alkuperäinen viesti Mahdoton murtaa Oikean avaimen arvaaminen on sama asia kuin oikean alkuperäisen viestin arvaaminen Salaus ja sen purku bittitason XOR-operaatiolla Avain täytyy jakaa turvallisesti Alicen ja Bobin välillä 5/
6 Kryptografia Post-quantum cryptography Epäsymmetrisiä algoritmeja, jotka ovat turvallisia sekä klassisia että kvanttitietokoneita vastaan Turvallisuus perustuu oletukseen, että tehokasta hyökkäystä ei ole Eivät välttämättä ole uusia algoritmeja McEliece /
7 Sisältö Kryptografia Kvanttiavainjakelu 7/
8 Kvanttiavainjakelu Quantum key distribution () Käytetään kvanttimekaniikan ominaisuuksia salausavaimien todistettavasti turvalliseen jakamiseen Bittiarvojen koodaamiseen käytetään yksittäisiä fotoneja Ei ota kantaa jaettujen avainten käyttöön 8/
9 Implementaatio PC Classical channel PC USB USB Alice Quantum channel Bob 9/
10 Optinen tietoliikenne Tyypillinen tietoliikennetekniikan laser: λ = 1550 nm, P = 1 mw Yhdessä nanosekunnissa emittoituu n = P 1 ns hc/λ fotonia :ssa on kyse yksittäisistä fotoneista 10/
11 BB84-protokolla Kaksi hermiittistä kaksiulotteisen Hilbertin avaruuden operaattoria Operaattoreiden σ x ja σ z ominaistilat: σ x ±x = ±1 ±x σ z ±z = ±1 ±z +z 0 +x 1 2 ( ) z 1 x 1 2 ( 0 1 ) 11/
12 BB84 Alice valitsee satunnaisen tilan satunnaisesta kannasta (x tai z) ja lähettää sen Bobille Tilat +z ja +x vastaavat bittiä 0 ja tilat z ja x bittiä 1 Bob mittaa vastaanottamansa tilan satunnaisessa kannassa (x tai z) Jos Bob valitsi saman kannan kuin Alice, hän saa varmasti oikean bittiarvon Muussa tapauksessa mittaustulos on täysin satunnainen Alice ja Bob vertailevat kantavalintojaan julkisesti ja hylkäävät kaikki mittaukset, jotka tehtiin eri kannoissa (sifting) 12/
13 BB84 Fotonien polarisaatio 1. Alice mittaa n:n fotonin polarisaation satunnaisesti valituissa kannoissa ({, } tai {, }) ja lähettää fotonit Bobille ja vastaavat bittiä 0; ja bittiä 1 2. Bob mittaa vastaanottamiensa fotonien polarisaation satunnaisissa kannoissa Sama kanta sama tulos; eri kanta satunnainen tulos 3. Alice ja Bob vertailevat valitsemiaan kantoja ja hylkäävät eri kannoissa suoritetut mittaukset Keskimäärin puolet vastaanotetuista biteistä hylätään Ideaalitilanteessa lopputuloksena on jaettu salausavain 13/
14 BB84 Esimerkki Alicen polarisaatio Alicen bitti Bobin polarisaatio Bobin bitti Kanta Siftattu avain /
15 Salakuuntelu Eve aiheuttaa virheen yksittäiseen bittiin todennäköisyydellä 1/4 Havaitakseen salakuuntelun Alice ja Bob vertailevat pientä osaa jaetusta avaimesta Julkinen kanava verratut bitit täytyy hylätä Quantum bit error rate (QBER): virheellisten bittien suhteellinen osuus Jos QBER < 11 %, Alice ja Bob voivat jatkaa protokollaa 15/
16 Salakuuntelu 16/
17 Vaiheet Raaka-avaimen jako ja kantojen vertailu Virheenkorjaus (Cascade-protokolla) Epäideaaliset detektorit ja sironta aiheuttavat virheitä Yksityisyyden vahvistus (privacy amplification) Avain lyhennetään hash-funktiolla turvallisuuden takaamiseksi Todennus (authentication) Estetään man-in-the-middle-hyökkäys 17/
18 Käytännön toteutus Polarisaatio ei säily tavallisissa tietoliikennekuiduissa vaihekoodaus Ei käytännöllistä yksifotonilähdettä vaimennettu laser Detektorit havaitsevat myös virheellisesti fotoneja (dark count) Vaimennus Optisten vahvistimien käyttö ei mahdollista Kvanttitoistimien tutkimus pitkällä Tarvitaan hyvä satunnaislukugeneraattori 18/
19 Laser fotonilähteenä f(n; µ) µ = 0.1 µ = 0.5 µ = n Fotonien lukumäärä laserpulssissa noudattaa Poisson-jakaumaa: f (n; µ) = µn n! e µ, n = 0, 1, 2,... Pulsseja vaimennetaan s.e. keskimääräinen fotoniluku µ 1 Esim. jos µ = 0.1, niin Pr(N = 0) 0.90 ja Pr(N > 1) /
20 Clavis 2 20/
21 Clavis2 21/
22 maailmalla Kaupalliset laitteet: ID Quantique Clavis 2 : 54 km, 18.5 bps Clavis 3 : 50 km, 3 kbps Toshiban T12-protokolla: 50 km, 1.17 Mbps Ennätyksiä: 404 km, bps (kolmessa kuukaudessa 2584 bittiä lopulliseen avaimeen) 22/
23 Avainten hallinta Clavis 2 Avaimet ovat tallessa -laitteita hallitsevien tietokoneiden keskusmuisteissa Jokaista avainta vastaa 8-tavuinen ID Avainten pyytämiseen muistista on erityinen protokolla Pituus 1 ja 32 tavun välillä Voidaan pyytää joko uusi tai tiettyä ID:tä vastaava avain 23/
24 Avainluontinopeus etäisyyden funktiona Clavis SARG04 BB Rs [bits/s] l [km] 24/
25 54 km:n kuitu Clavis 2 Avainluontinopeus (key rate) 18.5 bps Avainerien väli 32 min One-time pad: 1 Mt:n tiedosto voidaan salata joka viides päivä AES-256 Key rate (bits/s) Reservoir size (kilobits) Time (h) 25/
26 Esimerkki avaimenluonnista (25 km, QBER 3.5 %) Clavis 2 Alicen avain % Bobin avain % Siftattu avain % Vuodetut bitit % Lopullinen avain % Yksi bitti avainta jokaista 2100 lähetettyä pulssia kohden 26/
27 Lukemiseta Teemu Mannisen diplomityö: master_manninen_teemu_2017.pdf?sequence=1&isallowed=y 27/
Kvanttiavaimen jakamiseen perustuvan salausmenetelmän (QKD) sovellukset
Kvanttiavaimen jakamiseen perustuvan salausmenetelmän () sovellukset Teemu Manninen Aalto-yliopisto Mikro- ja nanotekniikan laitos: Prof. Ilkka Tittonen, Teemu Manninen, Iikka Elonsalo Comnet: Prof. Olav
SALAUSMENETELMÄT. Osa 2. Etätehtävät
SALAUSMENETELMÄT Osa 2 Etätehtävät A. Kysymyksiä, jotka perustuvat luentomateriaaliin 1. Määrittele, mitä tarkoitetaan tiedon eheydellä tieoturvan yhteydessä. 2. Määrittele, mitä tarkoittaa kiistämättömyys
Ongelma 1: Miten tieto kannattaa koodata, jos sen halutaan olevan hyvin vaikeasti luettavaa?
Ongelma 1: Miten tieto kannattaa koodata, jos sen halutaan olevan hyvin vaikeasti luettavaa? 2012-2013 Lasse Lensu 2 Ongelma 2: Miten tietoa voidaan (uudelleen)koodata tehokkaasti? 2012-2013 Lasse Lensu
T Privacy amplification
T-79.4001 Privacy amplification Ari Nevalainen ajnevala@cc.hut.fi T-79.4001Privacy amplification 1/25 ALKUTILANNE Alkutilanne. Kaksi erikoistapausta. Yleinen tapaus. Yhteenveto. T-79.4001Privacy amplification
Salaustekniikat. Kirja sivut: ( )
Salaustekniikat Kirja sivut: 580-582 (647-668) Johdanto Salaus on perinteisesti ollut salakirjoitusta, viestin luottamuksellisuuden suojaamista koodaamalla viesti tavalla, jonka vain vastaanottaja(t) pystyy
Tietoturvan perusteet - Syksy 2005. SSH salattu yhteys & autentikointi. Tekijät: Antti Huhtala & Asko Ikävalko (TP02S)
Tietoturvan perusteet - Syksy 2005 SSH salattu yhteys & autentikointi Tekijät: Antti Huhtala & Asko Ikävalko (TP02S) Yleistä SSH-1 vuonna 1995 (by. Tatu Ylönen) Korvaa suojaamattomat yhteydentottotavat
Kvanttitietokoneet, kvanttilaskenta ja kvanttikryptografia. Kvanttimekaniikka. Kvanttimekaniikan perusperiaatteet. Kvanttimekaniikan sovelluksia
Tietotekniikan perusteet - Luento 3 Kvanttitietokoneet, kvanttilaskenta ja kvanttikrptograia Kvanttimekaniikka Kvanttimekaniikka: Aineen kättätmistä kuvaava siikan perusteoria. Mikroskooppisella tasolla
Salakirjoitusmenetelmiä
Salakirjoitusmenetelmiä LUKUTEORIA JA LOGIIKKA, MAA 11 Salakirjoitusten historia on tuhansia vuosia pitkä. On ollut tarve lähettää viestejä, joiden sisältö ei asianomaisen mielestä saanut tulla ulkopuolisten
Tietoturvatekniikka Ursula Holmström
Tietoturvatekniikka Ursula Holmström Tietoturvatekniikka Tietoturvan osa-alueet Muutama esimerkki Miten toteutetaan Eheys Luottamuksellisuus Saatavuus Tietoturvaterminologiaa Luottamuksellisuus Eheys Saatavuus
Tietoliikenteen perusteet
Tietoliikenteen perusteet Luento 11: Tiedonsiirron turvallisuus: kryptografiaa ja salausavaimia Syksy 2015, Timo Karvi Kurose&Ross: Ch 8 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights Reserved
Luento 11: Tiedonsiirron turvallisuus: kryptografiaa ja salausavaimia. Syksy 2014, Tiina Niklander
Tietoliikenteen perusteet Luento 11: Tiedonsiirron turvallisuus: kryptografiaa ja salausavaimia Syksy 2014, Tiina Niklander Kurose&Ross: Ch 8 Pääasiallisesti kuvien J.F Kurose and K.W. Ross, All Rights
Osa1: Peruskäsitteitä, klassiset salakirjoitukset. Salausmenetelmät. Jouko Teeriaho LapinAMK
Osa1: Peruskäsitteitä, klassiset salakirjoitukset Salausmenetelmät Jouko Teeriaho LapinAMK SALAUSMENELMÄT OSANA TEKNISTÄ TIETOTURVAA Tietoturvallisuus Yleinen tietoturva Tekninen tietoturva Palomuurit,
Johdatus kvantti-informatiikkaan
Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Taustaa esim. Nielsen & Chuang: Quantum Computation and Quantum Information Kvantti-informatiikka
Tietoturva 811168P 5 op
811168P 5 op 6. Oulun yliopisto Tietojenkäsittelytieteiden laitos Mitä se on? on viestin alkuperän luotettavaa todentamista; ja eheyden tarkastamista. Viestin eheydellä tarkoitetaan sitä, että se ei ole
Johdatus kvantti-informatiikkaan
Johdatus kvantti-informatiikkaan Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2018 Johdanto Lukemistona esim. Nielsen & Chuang: Quantum Computation and Quantum Information
Salaustekniikat. Tuomas Aura T-110.2100 Johdatus tietoliikenteeseen kevät 2010
Salaustekniikat Tuomas Aura T-110.2100 Johdatus tietoliikenteeseen kevät 2010 Luennon sisältö 1. Tietoturvan tavoitteet 2. Kryptografia 3. Salattu webbiyhteys 2 Tietoturvan tavoitteet Tietoturvatavoitteita:
Modernien salausalgoritmien aikajana
Osa2: Jono- ja lohkosalaus Modernien salausalgoritmien aikajana II ww 41-45 50 ekr 1550 1919 Block ciphers 1976 DES -----------------------> 2001 AES 1975 Caesarsalaus Vigeneren salaus One Time Pad Enigma
Kryptologia Esitelmä
Kryptologia p. 1/28 Kryptologia Esitelmä 15.4.2011 Keijo Ruohonen keijo.ruohonen@tut.fi Kryptologia p. 2/28 Kryptologian termejä Kryptaus: Tiedon salaus käyttäen avainta Dekryptaus: Salauksen purku käyttäen
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT SALAUKSEN PERUSTEITA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Kryptologia (math.tut.fi/~ruohonen/k.pdf) HISTORIAA Salausta on käytetty alkeellisella tasolla
Pikaviestinnän tietoturva
Ongelmat, vaihtoehdot ja ratkaisut 4.5.2009 Kandidaatintyö, TKK, tietotekniikka, kevät 2009 Varsinainen työ löytyy osoitteesta http://olli.jarva.fi/kandidaatintyo_ pikaviestinnan_tietoturva.pdf Mitä? Mitä?
Kryptografiset vahvuusvaatimukset luottamuksellisuuden suojaamiseen - kansalliset suojaustasot
Ohje 1 (5) Dnro: 11.11.2015 190/651/2015 Kryptografiset vahvuusvaatimukset luottamuksellisuuden suojaamiseen - kansalliset suojaustasot 1 Johdanto Tässä dokumentissa kuvataan ne kryptografiset vähimmäisvaatimukset,
RSA-salausmenetelmä LuK-tutkielma Tapani Sipola Op. nro Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2017
RSA-salausmenetelmä LuK-tutkielma Tapani Sipola Op. nro. 1976269 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2017 Sisältö Johdanto 2 1 Salausmenetelmien yleisiä periaatteita 3 2 Määritelmiä ja
Hammastankohissin modernisointi. Heikki Laitasalmi
Hammastankohissin modernisointi Heikki Laitasalmi Loppudemossa Mitä oltiinkaan tekemässä V-malli Modbus viestintä (PLC VFD) Esitellään laitteet Lopuksi Modbusia käytännössä Hammastankohissi Arkkitehtuuri
Yritysturvallisuuden perusteet. 11. Luento Tietotekninen turvallisuus
Yritysturvallisuuden perusteet Teemupekka Virtanen Helsinki University of Technology Telecommunication Software and Multimedia Laboratory teemupekka.virtanen@hut.fi 11. Luento Tietotekninen turvallisuus
T-79.4501 Cryptography and Data Security
T-79.4501 Cryptography and Data Security Lecture 11 Bluetooth Security Bluetooth turvallisuus Uhkakuvat Bluetooth turvallisuuden tavoitteet Linkkitason turvamekanismit Pairing menettely Autentikointi ja
Nokeval No 280701. Käyttöohje. Tekstinäyttö 580-ALF
Nokeval No 28070 Käyttöohje Tekstinäyttö 580-ALF Nokeval Oy Yrittäjäkatu 2 3700 NOKIA Puh. 03-342 4800 Fax. 03-342 2066 2 Kenttänäytttösarja 580 sarjaviesteille 5820 580 Sarjaviesti RS-232 tai RS-485 PC
Kryptovaluuttoista ja lohkoketjuista osa 3. Jyväskylä Henri Heinonen
Kryptovaluuttoista ja lohkoketjuista osa 3 Jyväskylä 24.4.2018 Henri Heinonen (henri.t.heinonen@jyu.fi) Digitaalinen allekirjoittaminen Asymmetrisen avaimen kryptografiassa käytetään avainpareja, joiden
Mittaustulosten tilastollinen käsittely
Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe
Aineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
Kuljetus- ja sovelluskerroksen tietoturvaratkaisut. Transport Layer Security (TLS) TLS:n suojaama sähköposti
Kuljetus- ja sovelluskerroksen tietoturvaratkaisut Transport Layer Security (TLS) ja Secure Shell (SSH) TLS Internet 1 2 Transport Layer Security (TLS) Sopii monenlaisille sovellusprotokollille, esim HTTP
Monimutkaisempi stop and wait -protokolla
Monimutkaisempi stop and wait -protokolla Lähettäjä: 0:A vastaanottaja: ajastin lähettäjälle jos kuittausta ei kuulu, sanoma lähetetään automaattisesti uudelleen kuittaus: = ok, lähetä seuraava uudelleenlähetys
myynti-insinööri Miikka Lintusaari Instrumentointi Oy
TERVEYDENHUOLLON 25. ATK-PÄIVÄT Kuopio, Hotelli Scandic 31.5-1.6.1999 myynti-insinööri Miikka Lintusaari Instrumentointi Oy Uudet tietoturvaratkaisut SUOMEN KUNTALIITTO Sairaalapalvelut Uudet tietoturvaratkaisut
Puolustusvoimien tutkimuslaitos Tutkimuskatsaus Kvanttilaskenta ja kyberturvallisuus
Kvanttilaskenta ja kyberturvallisuus Mika Helsingius Informaatiotekniikkaosasto Kvanttilaskenta kehittyy tällä hetkellä nopeasti. Kvanttitietokoneet, kvanttiverkot ja kvanttiturvalliset salausmenetelmät
ELEC-C7241 Tietokoneverkot Multimedia, tietoturva, jne.
ELEC-C7241 Tietokoneverkot Multimedia, tietoturva, jne. Pasi Sarolahti (osa kalvoista: Sanna Suoranta) 14.3.2017 Projekti Lähetä tilanneraportti MyCoursesiin perjantaihin 17.3. mennessä Sisältää Nykytilan
Tietoliikenteen salaustekniikat
Tietoliikenteen salaustekniikat Huom. Tietoliikenneturvallisuus- osaan tietoturvasuunnitelmassa ei kirjoiteta yksityiskohtaisia teknisiä ratkaisuja. Tämä kappale luennoissa on tarkoitettu informatiiviseksi.
Enigmail-opas. Asennus. Avainten hallinta. Avainparin luominen
Enigmail-opas Enigmail on Mozilla Thunderbird ja Mozilla Seamonkey -ohjelmille tehty liitännäinen GPG-salausohjelmiston käyttöä varten. Sitä käytetään etenkin Thunderbirdin kanssa sähköpostin salaamiseen
Langattomat lähiverkot. Matti Puska
Langattomat lähiverkot 1 FWL 2 FWL Salaus Radioaaltojen etenemistä ei voida rajoittaa vain halutulle alueelle. Liikenteen salauksen tavoitteena on turvata radiotiellä siirrettävien sanomien ja datan yksityisyys
5. SALAUS. Salakirjoituksen historiaa
1 5. SALAUS Salakirjoituksen historiaa Egyptiläiset hautakirjoitukset n. 2000 EKr Mesopotamian nuolenpääkirjoitukset n. 1500 EKr Kryptografia syntyi Arabiassa 600-luvulla lbn ad-durahaim ja Qualqashandi,
Tietoturvan Perusteet : Tiedon suojaaminen
010627000 Tietoturvan Perusteet : Tiedon suojaaminen Pekka Jäppinen September 26, 2007 Pekka Jäppinen, Lappeenranta University of Technology: September 26, 2007 Suojausmenetelmät Tiedon Salaaminen (kryptografia)
Option GlobeSurfer III pikakäyttöopas
Option GlobeSurfer III pikakäyttöopas Laitteen ensimmäinen käyttöönotto 1. Aseta SIM-kortti laitteen pohjaan pyötätuen takana olevaan SIM-korttipaikkaan 2. Aseta mukana tullut ethernetkaapeli tietokoneen
Tehtävä 2: Tietoliikenneprotokolla
Tehtävä 2: Tietoliikenneprotokolla Johdanto Tarkastellaan tilannetta, jossa tietokone A lähettää datapaketteja tietokoneelle tiedonsiirtovirheille alttiin kanavan kautta. Datapaketit ovat biteistä eli
Laskuharjoitus 5. Mitkä ovat kuvan 1 kanavien kapasiteetit? Kuva 1: Kaksi kanavaa. p/(1 p) ) bittiä lähetystä kohti. Voidaan
Informaatioteoria ELEC-C7 5 Laskuharjoitus 5 Tehtävä 5.3 Mitkä ovat kuvan kanavien kapasiteetit?.3.7 a b Kuva : Kaksi kanavaa b Binäärisessä Z-kanavassa virhe tapahtuu todennäköisyydellä p ja virhe todennäköisyydellä.
Tietoliikenteen salaaminen Java-sovelluksen ja tietokannan välillä
Tietoliikenteen salaaminen Java-sovelluksen ja tietokannan välillä Miika Päivinen 13.12.2005 Joensuun yliopisto Tietojenkäsittelytiede Pro gradu -tutkielma TIIVISTELMÄ Sähköisen kanssakäymisen määrän lisääntyessä
KVANTTITELEPORTAATIO. Janne Tapiovaara. Rauman Lyseon lukio
KVANTTITELEPORTAATIO Janne Tapiovaara Rauman Lyseon lukio BEAM ME UP SCOTTY! Teleportaatio eli kaukosiirto on scifi-kirjailijoiden luoma. Star Trekin luoja Gene Roddenberry: on huomattavasti halvempaa
Varmennepalvelu Yleiskuvaus Kansallisen tulorekisterin perustamishanke
Versio 1.01 Varmennepalvelu Yleiskuvaus Kansallisen tulorekisterin perustamishanke Varmennepalvelu Yleiskuvaus 2 (8) Versiohistoria Versio Päivämäärä Kuvaus 1.0 30.10.2017 Dokumentti julkaistu. 1.01 15.12.2017
NÄIN TOIMII. alakirjoituksen historia ulottuu tuhansien
NÄIN TOIMII MTÅRVCC KRYPTA Verkkopankissa asiointi olisi mahdotonta ilman teknisiä salausmenetelmiä. Tietoturvasta huolestunut kotikäyttäjä voi suojata myös tärkeät tiedostonsa tehokkaalla salauksella.
Langattomien verkkojen tietosuojapalvelut
Langattomien verkkojen tietosuojapalvelut Sisältö Työn tausta & tavoitteet Käytetty metodiikka Työn lähtökohdat IEEE 802.11 verkkojen tietoturva Keskeiset tulokset Demonstraatiojärjestelmä Oman työn osuus
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Koostanut Juulia Lahdenperä ja Rami Luisto. Salakirjoituksia
Salakirjoituksia Avainsanat: salakirjoitus, suoraan numeroiksi, Atblash, Caesar-salakirjoitus, ruudukkosalakirjoitus, julkisen avaimen salakirjoitus, RSA-salakirjoitus Luokkataso: 3.-5. luokka, 6.-9. luokka,
Osa4: Julkisen avaimen salaukset: RSA ja Elliptisten käyrien salaus. Tiivistefunktiot ja HMAC, Digitaalinen allekirjoitus RSA
Osa4: Julkisen avaimen salaukset: RSA ja Elliptisten käyrien salaus. Tiivistefunktiot ja HMAC, Digitaalinen allekirjoitus RSA RSA on ensimmäinen julkisen avaimen salausmenetelmä, jonka esittivät tutkijat
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
RSA-salakirjoitus. Simo K. Kivelä, Apufunktioita
Simo K. Kivelä, 25.1.2005 RSA-salakirjoitus Ron Rivest, Adi Shamir ja Leonard Adleman esittivät vuonna 1978 salakirjoitusmenettelyn, jossa tietylle henkilölle osoitetut viestit voidaan salakirjoittaa hänen
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
I. AES Rijndael. Rijndael - Internal Structure
I. AES Rndael NOKIA T-79.53 Additional material Oct 3/KN Rndael - Internal Structure Rndael is an iterated block cipher with variable length block and variable key size. The number of rounds is defined
Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:
Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan
Pitkän kantaman aktiivinen hyperspektraalinen laserkeilaus
Pitkän kantaman aktiivinen hyperspektraalinen laserkeilaus MATINE:n Tutkimusseminaari, 18.11.2015 Helsinki Sanna Kaasalainen, Olli Nevalainen, Teemu Hakala Paikkatietokeskus Sisällys Taustaa Multispektraaliset
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26
System.out.printf("%d / %d = %.2f%n", ekaluku, tokaluku, osamaara);
Kysy Karilta tai Kimmolta, jos tehtävissä on jotain epäselvää. Kerro WETOon liittyvät ongelmat suoraan Jormalle sähköpostitse (jorma.laurikkala@uta.fi). Muista nimetä muuttujat hyvin sekä kommentoida ja
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia
T-79.4001 Tietojenkäsittelyteorian seminaari 0..008 1 Alijärjestelmän mittaus ja muita epätäydellisiä mittauksia Loepp & Wootters, Protecting Information, luvut.4-.5 T-79.4001 Tietojenkäsittelyteorian
HARJOITUSTYÖ: LabVIEW, Liiketunnistin
Tämä käyttöohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: LabVIEW, Liiketunnistin Tarvittavat laitteet: PC Labview
5. Julkisen avaimen salaus
Osa3: Matematiikkaa julkisen avaimen salausten taustalla 5. Julkisen avaimen salaus Public key cryptography 5. 1 Julkisen avaimen salausmenetelmät - Diffien ja Hellmannin periaate v. 1977 - RSA:n perusteet
Ohjelman välitys ja salaus IPTV-järjestelmässä
Mikko Hänninen Ohjelman välitys ja salaus IPTV-järjestelmässä Metropolia Ammattikorkeakoulu Insinööri (AMK) Tietotekniikka Insinöörityö 23.5.2017 Tiivistelmä Tekijä(t) Otsikko Sivumäärä Aika Mikko Hänninen
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
LAS-TIEDOSTON SISÄLTÖ LIITE 2/1
LAS-TIEDOSTON SISÄLTÖ LIITE 2/1 LAS-TIEDOSTON SISÄLTÖ Las-tiedoston version 1.4 mukainen runko koostuu neljästä eri lohkosta, ja jokaiseen lohkoon voidaan tallentaa vain standardissa sovittua tietoa ja
Keskinäisinformaatiosta
Keskinäisinformaatiosta Mikko Malinen 31. heinäkuuta, 2008 1 Johdanto Keskinäisinformaatio (mutual information) on tärkeitä informaatioteorian käsitteitä. Keskinäisinformaatio I(X; Y ) on eräs riippuvuuden
5. Siirtoyhteyskerros linkkikerros (Data Link Layer)
5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen
Signaalien generointi
Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut
5. Siirtoyhteyskerros linkkikerros (Data Link Layer)
5. Siirtoyhteyskerros linkkikerros (Data Link Layer) yhtenäinen linkki solmusta solmuun bitit sisään => bitit ulos ongelmia: siirtovirheet havaitseminen korjaaminen solmun kapasiteetti vuonvalvonta yhteisen
Lyhyt oppimäärä mistä salauksessa on kyse? Risto Hakala, Kyberturvallisuuskeskus, Viestintävirasto
Lyhyt oppimäärä mistä salauksessa on kyse? Risto Hakala, risto.hakala@viestintavirasto.fi Kyberturvallisuuskeskus, Viestintävirasto Sisältö Tiedon suojauksessa käytetyt menetelmät Salausratkaisun arviointi
Kuljetus- ja sovelluskerroksen tietoturvaratkaisut. Transport Layer Security (TLS) TLS:n turvaama HTTP. TLS:n suojaama sähköposti
Kuljetus- ja sovelluskerroksen tietoturvaratkaisut Transport Layer Security (TLS) ja Secure Shell (SSH) TLS Internet 1 2 Transport Layer Security (TLS) Sopii monenlaisille sovellusprotokollille, esim HTTP
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Yritysturvallisuuden perusteet
Yritysturvallisuuden perusteet Teemupekka Virtanen Helsinki University of Technology Telecommunication Software and Multimedia Laboratory teemupekka.virtanen@hut.fi 11. Luento Tietotekninen turvallisuus
Harjoitus 5. Esimerkki ohjelman toiminnasta: Lausekielinen ohjelmointi I Kesä 2018 Avoin yliopisto 1 / 5
Kysy Karilta tai Kimmolta, jos tehtävissä on jotain epäselvää. Kerro WETOon liittyvät tekniset ongelmat suoraan Jormalle sähköpostitse (jorma.laurikkala@uta.fi). Muista nimetä muuttujat hyvin sekä kommentoida
Etsintäongelman kvanttialgoritmi. Jari Tuominiemi
Etsintäongelman kvanttialgoritmi Jari Tuominiemi Helsinki 22.11.2004 Vaihtoehtoiset laskentaparadigmat -seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos i Sisältö 1 Johdanto 1 2 Kvanttilaskennan
WL54AP2. Langattoman verkon laajennusohje WDS
WL54AP2 Langattoman verkon laajennusohje WDS Näitä ohjeita seuraamalla saadaan langaton lähiverkko laajennettua yksinkertaisesti kahden tai useamman tukiaseman verkoksi. Tukiasemien välinen liikenne(wds)
Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden
Luku II: Kryptografian perusteita
Luku II: Kryptografian perusteita Tässä toisessa luvussa esitellään muutamia peruskäsitteita ja -tekniikoita symmetrisestä salauksesta, julkisen avaimen salauksesta eli epäsymmetrisestä salauksesta, kryptografisista
Ti LÄHIVERKOT -erikoistyökurssi. X Window System. Jukka Lankinen
Ti5316800 LÄHIVERKOT -erikoistyökurssi X Window System Jukka Lankinen 2007-2008 Sisällys Esitys vastaa seuraaviin kysymyksiin: Mikä on X Window System? Minkälainen X on? Mistä sen saa? Miten X:ää käytetään?
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Bayesläiset piste- ja väliestimaatit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
010627000 Tietoturvan Perusteet Autentikointi
010627000 Tietoturvan Perusteet Autentikointi Pekka Jäppinen 10. lokakuuta 2007 Pekka Jäppinen, Lappeenranta University of Technology: 10. lokakuuta 2007 Autentikointi Aidoksi/oikeaksi tunnistaminen Tarvitaan
Palmikkoryhmät kryptografiassa
Palmikkoryhmät kryptografiassa Jarkko Peltomäki 27. marraskuuta 2010 Palmikkoryhmät ovat epäkommutatiivisia äärettömiä ryhmiä. Niillä on monimutkainen rakenne, mutta toisaalta niillä on geometrinen tulkinta
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla
6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa
Standardiliitännät. Tämä ja OSI 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL
Standardiliitännät 7LHWROLLNHQQHWHNQLLNDQSHUXVWHHW $(/&7 0DUNXV3HXKNXUL Tämä ja OSI Liitännät toiminnalliset ominaisuudet sähköiset ominaisuudet X.25 Kehysvälitys 7 sovellus 6 esitystapa 5 yhteysjakso
Moduli 4: Moniulotteiset taulukot & Bittioperaatiot
C! : Moniulotteiset taulukot & Bittioperaatiot 15.3.2016 Agenda Pieni kertausharjoitus Moniulotteiset taulukot Esimerkki taulukoista Tauko (bittitehtävä) Binäärioperaatioista Esimerkki (vilkaistaan IP
Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 41
Diskreetin matematiikan perusteet Laskuharjoitus 5 / vko 4 Tuntitehtävät 4-42 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 45-46 loppuviikon harjoituksissa. Kotitehtävät 43-44 tarkastetaan loppuviikon
Taajuusmittauskilpailu Hertsien herruus 2008. Mittausraportti
Taajuusmittauskilpailu Hertsien herruus 2008 1. MITTAUSJÄRJESTELMÄ Mittausraportti Petri Kotilainen OH3MCK Mittausjärjestelmän lohkokaavio on kuvattu alla. Vastaanottoon käytettiin magneettisilmukkaantennia
ECC Elliptic Curve Cryptography
Jouko Teeriaho kevät 2018 ECC Elliptic Curve Cryptography Elliptisten käyrien salaus lähemmin tarkasteltuna 1. Miksi on siirrytty ECC:hen? 1) käyttäjien autentikointi, 2) symmetrisestä avaimesta sopiminen
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Esimerkkejä vaativuusluokista
Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään
1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia