9 Lukumäärien laskemisesta

Samankaltaiset tiedostot
C (4) 1 x + C (4) 2 x 2 + C (4)

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Tehtävä 11 : 1. Tehtävä 11 : 2

MS-A0402 Diskreetin matematiikan perusteet

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

Laskennallisen kombinatoriikan perusongelmia

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Klassinen todennäköisyys

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

4.7 Todennäköisyysjakaumia

Ortogonaalisuus ja projektiot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

Joulukuun vaativammat valmennustehtävät ratkaisut

Matematiikan tukikurssi

8. Ortogonaaliprojektiot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

Luku 11. Jatkuvuus ja kompaktisuus

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

Matematiikan tukikurssi

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

Sattuman matematiikkaa III

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Luku 2. Jatkuvuus ja kompaktisuus

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Matematiikan tukikurssi

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

4.3 Erillisten joukkojen yhdisteet

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Talousmatematiikan verkkokurssi. Koronkorkolaskut

4 Matemaattinen induktio

****************************************************************** ****************************************************************** 7 Esim.

q =, r = a b a = bq + r, b/2 <r b/2.

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

funktiojono. Funktiosarja f k a k (x x 0 ) k

VALIKOITUJA KOHTIA LUKUTEORIASTA

Kolmivaihejärjestelmän oikosulkuvirran laskemista ja vaikutuksia käsitellään standardeissa IEC-60909, , , 60781, ja

Luku kahden alkuluvun summana

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Tehtäviä neliöiden ei-negatiivisuudesta

3 x < < 3 x < < x < < x < 9 2.

2 Taylor-polynomit ja -sarjat

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

, sanotaan niiden sääntöjen ja menetelmien kokonaisuutta, joilla otos poimitaan määritellystä perusjoukosta.

M y. u w r zi. M x. F z. F x. M z. F y

tasapainotila saavutetaan kun vuo aukon läpi on sama molempiin suuntiin

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

3.6 Todennäköisyyden laskusääntöjä Onneksi ennalta arvaamaton todennäköisyys noudattaa täsmällisiä sääntöjä. Tutustutaan niistä keskeisimpiin.

Tämä merkitsee geometrisesti, että funktioiden f

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

Jakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 3

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

3 x < < 3 x < < x < < x < 9 2.

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

Kiinteätuottoiset arvopaperit

Riemannin sarjateoreema

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Eulerin φ-funktion ominaisuuksia

3. Markovin prosessit ja vahva Markovin ominaisuus

9. Ominaisarvot. Diagonalisointi

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

Jäykistävän seinän kestävyys

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

Nuo mainiot binomikertoimet

Ensimmäinen induktioperiaate

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ensimmäinen induktioperiaate

K-KS vakuutussumma on kiinteä euromäärä

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

Tilastolliset menetelmät: Varianssianalyysi

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

1 Eksponenttifunktion määritelmä

b 4i j k ovat yhdensuuntaiset.

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

Transkriptio:

9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta se saa appulasta Cr Esimeri 9 Tarastellaa jouoa {,, }, jossa o olme aliota Sillä o seuraavat osajouot: tyhjä jouo, ysiöt {}, {}, {}, asiot {, }, {, }, {, } ja jouo itse {,, } Lasemalla eriooiste osajouoje luumäärät saadaa selville seuraavat biomiertoimet:, 0,, Jouolla {,, } ei ole yhtää sellaista osajouoa, joa alioide määrä o suurempi ui olme Site 0 aiilla luoollisilla luvuilla Esimeri 9 Oletetaa, että Nr{0} ja meritää X { N } Havaitaa, että jouo X muodostavat luoolliset luvut,,, jote jouo X alioide luumäärä o Jouo X aioa olla-alioie osajouo o Ysialioisia osajouoja jouolla X o appaletta, imittäi ysiöt {},,{} Niide omplemetit X r {},, X r {} ovat puolestaa jouo X ( )-alioiset osajouot Niitä o siis yhtä paljo ui ysialioisia osajouoja, eli appaletta Sellaisia osajouoja, joissa o aliota, jouolla X o vai ysi, imittäi jouo X itse Näi saadaa pääteltyä seuraavat biomiertoimet:,, 0, Pieiä biomiertoimia voi lasea ii saotu Pascali olmio avulla (uva 9) Se perustuu myöhemmi todistettavaa Pascali idetiteettii (lause 9) 90

0 0 0 0 0 0 À À À À À À 6 Kuva 9: Pascali olmiosta voidaa luea biomiertoimie arvoja Esimeri 9 Tarastellaa erilaisia reittejä pisteestä A pisteesee B uvassa 9 Sallitaa vai sellaiset reitit, joissa joaisella aseleella liiutaa joo ysi asel oiealle tai ysi asel ylöspäi, siis uolte osoittamii suutii Joaie tällaie reitti voidaa uvata bittijooa, jossa 0 taroittaa aselta oiealle ja taroittaa aselta ylös Esimerisi reittiä, jossa liiutaa esi pisteestä A viisi aselta oiealle ja se jälee olme aselta ylös pisteesee B, vastaa joo 0000 0 Ysi asel taroittaa yhde ruudu sivu mittaista siirtymistä Y B X A Kuva 9: Sallitut reitit pisteestä A pisteesee B voidaa uvata ahdesa biti jooia Huomataa, että joaie sallittu reitti muodostuu ahdesasta aseleesta, joista olme aselee pitää suutautua ylöspäi Joaista sallittua reittiä vastaa siis täsmällee ysi ahdesa biti joo, jossa o olme yöstä 9

Kolme yöstä sisältävä ahdesa biti joo voidaa muodostaa valitsemalla ahdesa mahdollise paia jouosta e paiat, joihi yöset tulevat Valitsemalla yöste paioisi esimerisi, ja 6 saadaa joo 000 00 Kaiie mahdolliste paioje jouosta {,,,,, 6, 7, 8} valittii siis yöste paioisi osajouo {,, 6} Havaitaa, että olme yöstä sisältäviä ahdesa biti jooja o yhtä mota ui ahdesa alio jouolla o -alioisia osajouoja, siis 8 Tämä o siis myös erilaiste sallittuje reittie luumäärä pisteestä A pisteesee B Edellise esimeri päättelyä soveltamalla voidaa todistaa ii saottu Pascali idetiteetti, joho uvassa 9 havaiollistettu Pascali olmio perustuu Lause 9 (Pascali idetiteetti) Oletetaa, että, N ja 0 < < Tällöi + Todistus Tarastellaa erilaisia reittejä pisteestä A pisteesee B Sallitaa vai sellaiset reitit, joissa joaisella aseleella liiutaa joo ysi asel oiealle tai ysi asel ylöspäi, siis uolte osoittamii suutii uvassa 9 Oletetaa, että reitti pisteestä A pisteesee B muodostuu yhteesä aseleesta, joista suutautuu oiealle ja ylöspäi Samaa tapaa ui esimerissä 9 voidaa päätellä, että tällaiste reittie luumäärä o Huomataa, että joaie äistä reiteistä ulee joo pistee X tai pistee Y autta, sillä reiti viimeisei aselee pitää suutautua ylöspäi tai oiealle Y B X A Kuva 9: Joaie sallittu reitti pisteestä A pisteesee B ulee joo pistee X tai Y autta 9

Reitit pisteestä A pisteesee X muodostuvat aseleesta, joista appaletta suutautuu ylöspäi Niide luumäärä o Reitit pisteestä A pisteesee Y muodotuvat aseleesta, joista appaletta suutautuu ylöspäi Niide luumäärä o Kutai reittiä voidaa jataa vai yhdessä tavalla pisteestä X pisteesee B Tämä pätee myös pistee Y tapausessa Pisteestä A pisteesee B ulevie sallittuje reittie ooaismääräsi saadaa site pistee X autta ulevie ja pistee Y autta ulevie reittie luumäärie summa + Pisteestä A pisteesee B ulevie sallittuje reittie luumäärä o yt lasettu ahdella eri tavalla, ja yhdistämällä saadut tuloset voidaa päätellä, että + Seuraavasi tavoitteea o johtaa aava biomiertoimie lasemisesi ilma Pascali olmiota Siihe tarvitaa alla määriteltävää ertoma äsitettä Määritelmä 96 Määritellää luoollise luvu ertoma! asettamalla 0! ja aiilla N ( + )! ( + )! Esimeri 97 Kertoma määritelmä muaa 0! ja! 0!!!!! 6!! 6 9

Lause 98 Oletetaa, että N ja Luvu ertoma o luoolliste luuje,, tulo; toisi saottua! Todistus Idutiolla; jätetää harjoitustehtäväsi Lause 99 Oletetaa, että, N ja Tällöi!!( )! Todistus Todistetaa väite idutiolla luvu suhtee Aluasel: Oletetaa, että 0 Kosa N ja, ii 0 Yhtälö vasemmasi puolesi saadaa siis 0 0 Tässä äytettii tietoa, että tyhjällä jouolla o vai ysi olla-alioie osajouo, imittäi tyhjä jouo itse Yhtälö oieasi puolesi saadaa määritelmää 96 äyttäe!!( )! 0! 0!0! Yhtälö vase ja oiea puoli ovat yhtä suuret, jote yhtälö pätee Idutioasel: Aloitetaa teemällä idutio-oletus Oletetaa, että N ja että aiilla luoollisilla luvuilla pätee!!( )! Seuraavasi tavoitteea o äyttää idutio-oletuse avulla, että aiilla luoollisilla luvuilla + pätee vastaavasti + ( + )!!( + )! (IV) Oletetaa, että N ja + Jos 0, ii yhtälö (IV) o voimassa, sillä + 0 ( + )! ( + )! ( + )! 0!( + 0)! Tässä äytettii tietoa, että ( + )-alioisella jouolla o vai ysi olla-alioie osajouo, imittäi tyhjä jouo 9

Jos +, ii yhtälö (IV) o voimassa, sillä + ( + )! ( + )! + ( + )! ( + )!0! Tässä äytettii tietoa, että (+)-alioisella jouolla o vai ysi (+)-alioie osajouo, imittäi jouo itse Tarastellaa lopusi tapausta, jossa luvulle N pätee 0 < < + eli Tällöi voidaa äyttää Pascali idetiteettiä (lause 9), joa muaa + + Epäyhtälöistä seuraa, että 0 Kumpaai yhteelasettavaa voidaa site äyttää idutio-oletusta, jolloi saadaa! + ( )!( ( ))! +!!( )!! ( )!( + )! +!!( )! Lavetamalla esimmäistä murtolauseetta luvulla ja toista luvulla + saadaa yhteelasettavat samaimisisi ja summa voidaa sievetää ottamalla yhteie teijä: () (6)! ( + )! +!( + )!!( + )!! ( + + )!( + )!! ( + )!( + )! ( + )!!( + )! (7) Yhdistämällä yhtälöt (), (6) ja(7) saadaa haluttu yhtälö (IV): + ( + )!!( + )! Johtopäätös: Aluaseleesta ja idutioaseleesta seuraa idutioperiaattee ojalla, että aiilla N pätee: jos N ja, ii!!( )! 9

Esimeri 90 Esimerissä 9 pisteestä A pisteesee B johtavie sallittuje reittie luumääräsi saatii 8 Lausee 99 avulla voidaa yt lasea, että 8 8!!(8 )! 8!!! 6 7 8 6 7 8 7 8 6 Esimeri 9 Matemaattis-luootieteellise tiedeua tiedeutaeuvostossa o 9 jäsetä Kuia moella tavalla tiedeutaeuvosto jäseistä voidaa muodostaa uusiheie toimiuta? Kuusiheie toimiuta muodostetaa valitsemalla 9 jäsee jouosta uusi jäsetä, jote erilaiste vaihtoehtoje määrä o 9 6 9! 6!(9 6)! 9! 6 7 8 9 7 7 9 7 6!! 6 Esimeri 9 Tiedeutaeuvosto 9 jäseestä viisi o opiselijoita Kuia moella tavalla tiedeutaeuvosto jäseistä voidaa muodostaa uusiheie toimiuta, jos siiä saa olla eitää asi opiselijaa? Kysymyse tilateessa mahdollisia ovat toimiuat, joissa ei ole yhtää opiselijaa, seä toimiuat, joissa o ysi tai asi opiselijaa Tarastellaa ämä eri vaihtoehdot erisee Toimiuta, jossa ei ole yhtää opiselijaa, voidaa muodostaa valitsemalla aii uusi jäsetä heilöua edustaja jouosta Erilaisia vaihtoehtoja o site! 8 9 0 76 6 6!7! 6 Toimiuta, jossa o tasa ysi opiselija, voidaa muodostaa valitsemalla esi ysi jäse viide opiselija jouosta ja valitsemalla se jälee loput viisi toimiua jäsetä heilöua edustaja jouosta Erilaisia vaihtoehtoja o! 87 6!8! Toimiuta, jossa o tasa asi opiselijaa, voidaa muodostaa valitsemalla esi asi jäsetä viide opiselija jouosta ja se jälee loput eljä toimiua jäsetä heilöua edustaja jouosta Erilaisia vaihtoehtoja o site!!!! 0 7 7 0!9! 96

Sellaiste toimiutie luumäärä, joissa o eitää asi opiselijajäsetä, saadaa yt lasemalla yhtee iide toimiutie määrät, joissa o 0, tai opiselijajäsetä Erilaisia vaihtoehtoja o yhteesä + 6 + 76 + 6 + 7 0 0 97