Luku kahden alkuluvun summana

Koko: px
Aloita esitys sivulta:

Download "Luku kahden alkuluvun summana"

Transkriptio

1 Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008

2 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun summana. Tämä on hyvin olennainen ysymys, un selvitetään Goldbachin onjetuurin totuutta. Goldbachin onjetuuri sanoo, että joainen neljää suurempi parillinen oonaisluu voidaan esittää ahden aluluvun summana. Lisäsi tutielmassa oetettiin rataista seuraavaa ongelmaa: joainen mielivaltaisen suuri parillinen luu voidaan esittää ahden aluluvun summana. Tutielman tuloset raennetaan niiden tietojen pohjalta, joita esiintyy luion pitässä matematiiassa ja irjassa: Fundamentals of Number Theory [1]. Tutielmassa löydetään ombinatoristinen formula, joa lasee uina monella eritavalla luu voidaan esittää luua suurempien ahden eri aluluvun summana. Lisäsi tutielmassa osoitetaan, että jos asi tutielmassa esitettyä onjetuuria pitävät paiaansa, niin joainen mielivaltaisen suuri parillinen luu voidaan esittää ahden aluluvun summana.

3 Sisällysluettelo 1. Johdanto 1. Muutamia peruslauseita ja määritelmiä 1 3. Tuloset ja niiden todistuset 3.1 Seula 3 3. Funtio v(d; Funtio h(d; Funtio H( ja funtio V( 8 4. Tulosten arviointi 9 Lähdeluettelo 10 Liite 1 11

4 1 1. Johdanto Vuonna 174 Christian Goldbach lähetti Leonhard Eulerille yhdelle aiien aiojen tunnetuimmalle matemaatiolle irjeen, joa sisälsi seuraavan väittämän: Joainen viittä suurempi oonaisluu voidaan esittää olmen aluluvun summana. Euler iinnostui ovasti ongelmasta ja vastasi Goldbachille onjetuurilla, että joainen ahta suurempi parillinen luu voidaan esittää ahden aluluvun summana []. Tämä on ysi aiamme tunnetuimpia avoimia matematiian ongelmia. Tietooneiden avulla on voitu taristaa, että joainen luua pienemmistä parillisista luvuista voidaan esittää ahden aluluvun summana []. Goldbachin onjetuurin sisältö on helppo ymmärtää, mutta sen todellinen sisäistäminen vie paljon aiaa. Monet matemaatiot ovat aiojen uluessa esineet uusia ja uusia työaluja äydäseen tämän hienon ongelman imppuun, mutta se on estänyt aii hyöäyset uin allio. On paljon mahdollista, että me emme tule näemään sitä päivää jolloin tämä ongelma rataistaan. Ennen varsinaisen tutielman alua esitetään muutamia olennaisia lauseita ja määritelmiä, joita ei esiinny luion pitässä matematiiassa. Tutielma alaa seulan muodostamisella, jona avulla saadaan selville uina monella eri tavalla luu voidaan esittää ahden eri suuren luua suurempien aluluujen summana(t(. Sen jäleen muodostetaan tämän seulan pohjalta aava, joa antaa tulosesi T(:n arvon. Seuraavassa olmessa luvussa siitä eteenpäin puretaan T( osiin, joita on helpompi äsitellä. Lopusi osoitetaan, että jos asi tutielmassa esitettyä onjetuuria pitävät paiaansa, niin joainen mielivaltaisen suuri parillinen oonaisluu voidaan esittää ahden aluluvun summana.. Muutamia peruslauseita ja määritelmiä Tässä luvussa esitetään muutamia yleisesti tunnettuja lauseita ja määritelmiä, jota ovat olennaisia tutielman tulosten todistamisesi. Lauseet ja määritelmät on pääosin poimittu irjasta: Fundamentals of Number Theory [1]. Myös lauseiden todistuset löytyvät yseisestä irjasta, enä sen tähden esitä niitä tutielmassa.

5 Määritelmä 1 Funtio f: N -> R on multipliatiivinen, jos aiilla syt(a, b = 1 pätee f(af(b = f(ab (Huom. Toimin aina oonaisluualueessa ellen eriseen toisin mainitse. Määritelmä (iso O f(x = O(g(x, jos on olemassa vaio M, että suurilla x:n arvoilla. Määritelmä 3 f ( x g( x Oloon A jouo. Silloin #A on jouon A alioiden luumäärä. Määritelmä 4 [ x] on suurin sellainen oonaisluu, että [ x ] x < [ x] + 1 Määritelmä 5 ω (n < M aiilla mielivaltaisen, missä x on reaaliluu. on positiivisen oonaisluvun n erilaisten aluteijöiden luumäärä. Määritelmä 6 1, jos n = 1 µ ( n = 0, jos nei ole neliövapaa. n ( 1 ω(, muuten Luu on neliövapaa, jos sillä ei ole teijöitä muotoa m. (Huom. µ (n on multipliatiivinen funtio. Lause 1 Jos funtio f on multipliatiivinen, niin ( d f ( d = ( 1 f ( p d n µ, missä p on aluluu. (Huom. Kun meritsen jotain luua p:llä, taroitan aina poieusetta aluluua. p n Lause (Inluusio-Eluusio periaate Oloon S jouo, jossa on N erilaista aliota, ja oloon osajouoja, joissa on vastaavasti oloon S ij... l jouojen S,..., N,..., N S,..., S 1 r mielivaltaisia S:n 1 r aliota. Kaiille i < j <... < l r 1, i, S j Sl leiausjouo. Ja oloon N ij... l jouon alioiden luumäärä. Silloin jouon S S... S alioiden luumäärä on: ( 1 r K N Ni + Nij r Nij ( 1 N1... r. 1 i r 1 i< j r 1 i< j< r S ij... l

6 3 Lause 3 (Kiinalainenjäännös lause Jos n,..., 1, n n ovat suhteellisia aluluuja, suurempia uin 1, ja a 1, a,..., a ovat oonaisluuja, niin on olemassa ysiäsitteinen a mod a a1(mod n1 a a (mod n M a a (mod n n1 n n, että Lause 4 On olemassa vaiot c1 ja c, että x x c1 < π ( x < c aiilla x, missä π (x on luua x pienempien ln x ln x aluluujen luumäärä. 3. Tuloset ja niiden todistuset 3.1 Seula Lähdemme liieelle ouluurssilla opetetusta Erasthoneen seulasta ja näytämme uina sitä voidaan soveltaa niin, että saadaan selville, uina monella eri tavalla luu voidaan esittää ahden aluluvun summana. Mutta ensin muutama määritelmä: Määritelmä 7 P( = uina monella eri tavalla luu voidaan esittää ahden eri aluluvun summana. T( = uina monella eritavalla luu voidaan esittää luua suurempien ahden eri aluluvun summana. (Funtio sisällyttää myös luvun 1 aluluujen jouoon. R( = p p Määritelmä 8 { } M(d = # t 1 t < t 0( mod d yleensä R(:n teijänä. (Huom. Tutielmassa äsittelen d:tä

7 4 Kirjoitetaan alleain aii eri mahdollisuudet esittää luu ahden positiivisen oonaisluvun summana ja sen viereen summatermien luua pienemmät aluteijät. (Huom. M(d on niiden summaparien luumäärä, että d jaaa summaparin termien tulon ja summaparin termit ovat erisuuria. Esim. Tarastellaan luua = 50. Teijät 5-50 Summa Teijät 0-5 d M(d, ,3,5, , , *3 9 3, * ,3 * *5 4,3, * *7, ,5 *3* *3* ,3 *5* *5*7, ,7 *3*5*7 1 5, , P(50 = 4 T(50 = , ,3, , ,7, , Tiedetään, että jos luvulla ei ole aluteijöitä, niin luu on aluluu. Ellei luu ole jou näistä aluteijöistä, jolloin luu on myös aluluu. Yllä olevaan aavioon on meritty luujen vierelle niiden aluteijät, jota ovat pienempiä tai yhtä suuria uin 50. Nyt helposti nähdään mitä luvuista ovat aluluuja ja mitä eivät. (Sellaiset parit, joista molemmat luvut ovat aluluuja, on alleviivattu.

8 5 Lause 5 T ( = µ ( d M ( d d R( Kosa M(d on niiden summaparien luumäärä, että d jaaa summaparin termien tulon, niin Inluusio-Eluusio periaatteen muaan T( sisältää aii ne summaparit, joiden umpiaan termi ei ole jaollinen millään aluluvulla. Täten annettu väite on tosi. Esim. Käyttämällä aiemmin esiintynyttä esimeriä voidaan lauseen 5 perusteella irjoittaa. T(50 = =, miä selvästi pitää paiaansa. Seuraavien ahden luvun aiana on taroitus piloa M(d osiin ja saattaa se ysinertaisempaan muotoon. 3. Funtio v(d; Voidaan selvästi tehdä seuraava jao. Määritelmä 9 M(d = v(d; + h(d;, missä v(d; = # t 1 t d t 0 ( mod d d { } ja h(d; = # t 1 t mod d t 0( mod d ( { } (1 Alusi syvennymme tarastelemaan funtiota v(d;. Lemma 1 syt ( t, + t = syt(, t, jos ei jaa t :tä. Selvästi syt ( t, + t = syt( t,( t + t = syt(, t, sillä jos p jaaa a:n ja ei jaa b:tä, niin se ei myösään jaa a+b:tä. Täten annettu väite on tosi. Lause 6 v(d; = ω( d ω( syt(, d

9 6 Tiedetään, että t = ( t( + t ja syt ( t, + t = syt(, t jos ei jaa t :tä. Siten joainen aluluu p joa ei jaa :ta ja jaaa d:n seä t :n, jaaa jommanumman luvuista ( t tai ( + t ja siten aii yhtälön (1 rataisut toteuttavat ehdon t ±(mod p,(huom. jos p=, niin t 1(mod. Ja jos q jaaa :n ja d:n seä t :n, niin q jaaa molemmat luvut ( t : n, että ( + t : n mistä seuraa, että aii yhtälön (1 rataisut toteuttavat ehdon t 0(mod q. Jos u i {, }, niin joainen yhtälön (1 rataisu a toteuttaa seuraavan ongruenssi ryhmän: a 0(mod q1 M a a 0(mod qn u1(mod p1 M a um (mod pm Ja q 1 Lqn p 1 L pm = d Nyt huomataan Kiinalaisen jäännöslauseen perusteella, että joainen erilainen u i :n valinta tuottaa erilaisen rataisun modulo d. Kiinalainen jäännöslause myös sanoo, että joainen ongruenssi ryhmä tuottaa ysiäsitteisen rataisun modulo d. Siten tuloperiaatteen muaan rataisujen luumäärä on m ω( d ω( syt(, d =. Täten annettu väite on tosi. Lemma Jos syt(a, b = 1, niin ω ( a + ω( b = ω( ab Väite seuraa suoraan funtion ω (n määritelmästä. Täten annettu väite on tosi. Lause 7 Jos syt(a, b = 1, niin Funtio v(d; on multipliatiivinen. ω( a ω( syt(, a ω( b ω( syt(, b ω ( a + ω( b ( ω( syt(, a + ω( syt(, b =, joa on lemma muaan: ω( ab ω( syt(, ab. Täten annettu väite on tosi.

10 7 3.3 Funtio h(d; Funtio h(d, on paljon monimutaisempi. Esitämme seuraavasi joitain funtiota h(d; osevia lauseita. Lause 8 Jos syt(d, a = 1, niin h(ad; a = h(d; Kosa syt(ad, a = a, niin a jaaa aii yhtälön ( a x 0(mod ad rataisut. Yhtälö voidaan siis irjoittaa muotoon: a ( y 0(mod da y 0(mod d, missä ay = x. Ja yhtälön määrittelyjouo voidaan irjoittaa muotoon: 1 x a mod ad 1 y mod d. Täten annettu väite on tosi. Lause 9 Jos p on pariton aluluu ja 1 a < p, niin h(p; a = 1, jos a ( p 1 /, jos a > ( p 1 / Huomataan, että a toteuttaa aina yhtälön: a x, 1 x a. Täten h(p; a 1. Kun yhtälö irjoitetaan muotoon: a x = ( a x( a + x, niin nähdään, että toinen rataisu on p a = b jos ja vain jos b < a. Täten annettu väite on tosi. Seuraavat asi lausetta seuraavat suoraan funtion h(d; :n määritelmästä. Lause 10 Jos < Lause 11 d, niin h(d; = 1 Jos d jaaa :n, niin h(d; = 0 Lause 1 h(d; d-a = v(d; d-a ja a<d, jos < Tutitaan milloin d ei jaa luua ( d a ( d b luua d ja 0 b < a. Huomataan, että silloin d ei jaa a b ja 0 b < a. Täten lauseen 6 ja h(d; :n määritelmän muaan annettu väite on tosi. Lauseiden 10 ja 1 pohjalta voidaan saada yleisempi tulos:

11 8 Lause 13 h(d; a + h(d; d-a = v(d; a +1, 1 a < { } { t :1 t < a mod d a t 0 mod d } d h(d; a = # t :1 t < a mod d a t 0( mod d d +1 määritelmän muaan ja h(d; d-a = v(d; a - # (, sillä ( a ( d t a t (mod d d t > d a. Täten annettu väite on tosi lauseen 6 muaan. ja 3.4 Funtio H( ja funtio V( Otetaan äyttöön seuraavat uudet merinnät: V ( = µ ( d v( d; d ja d R( H ( ( d h( d; = µ. Huomataan helposti, että T( = V( + H(. d R( Konjetuuri 1 H( = O( π ( Määritelmä 10 a b a a = +, missä b b a a on luvun desimaaliosa. b b Määritelmän 10 avulla V( voidaan irjoittaa muodossa: V ( = µ ( d v( d; - d µ ( d v( d;. Ottamalla teijäsi ensimmäisestä d d R( d R( summasta nähdään, että summan sisään jää jäljelle funtio, joa on multipliatiivinen, sillä multipliatiivisten funtioiden tulo on multipliatiivinen. Täten lauseen 1 perusteella saamme seuraavan lauseen: Lause 14 t( p E( = µ ( d v( d; = d 1, missä d R( d R( p, jos syt(, p = 1 t(p = 1, jos syt(, p 1

12 9 d R( [ ] n= Lause 15 8 n 1 = n E( t( p 1 p d R( [ ] Täten annettu väite on tosi. Otasumme seuraavaa: Konjetuuri d R( 1 / 1 = p 8 ( d v( d; d d R( / µ = O( π ( p 1 p 1 Lause 16 Jos onjetuurit 1 ja ovat tosia, niin joainen mielivaltaisen suuri parillinen luu voidaan esittää ahden aluluvun summana. Konjetuurien perusteella voidaan irjoittaa T( = E( + O( π ( Lim c ln ln = Lim 4c perusteella voidaan päätellä, että = Lim 1 4 ln c. Huomataan, että =, missä c on vaio. Täten lauseiden 4 ja 15 E( Lim =, mistä väite seuraa. O( π ( 4. Tulosten arviointi Tavoitteena oli selvittää uina monella eri tavalla luu voidaan esittää luua ahden eri aluluvun summana. Saimme seulamenetelmällä ombinatoristisen aavan T ( ( d M ( d d R( suurempien = µ. Puramalla sen osiin ja tutimalla niitä saimme paljon arvoasta tietoa

13 10 sen raenteesta. Tutielmassa ei saada aiaisesi mitään ihmeellisiä tulosia, mutta se tosin ei ole ihme, sillä aihein on suhteellisen haastava. Konjetuureille, joita tutielmassa esitetään, ei ole mitään unnon selitystä misi näin pitäisi olla. On paljon mahdollista, että ne ovat epätosia. Tietooneiden avulla voitaisiin taristaa niiden totuutta hyvin pitälle, mutta ei todistaa. Kosa en hallitse tietooneohjelmointia, minulla ei ole edes numeerisia todistusaineistoja onjetuurien tuesi. Tutielma on osoitus siitä, uina vaieaain aihetta voidaan tutia ysinertaisilla työaluilla. Kun tutimus aiheen parissa vielä etenee, joudutaan todennäöisesti ottamaan äyttöön paljon monimutaisempia työaluja, joita ovat esim. omplesianalyysi ja algebrallinen luuteoria. Lähdeluettelo [1] LeVeque, William J., 1977, Fundamentals of Number Theory, Dover Publications [] Päivitetty: lo 19.1, luettu:

14 11 Liite 1 n P(n T(n H(n E(n n µ ( d v( d; n d d R(n / -1/ /6-1/ /6-5/ /3 -/ /3 / /6-1/ /10 3/ /5 / /5 -/ /10 --3/ /5 -/ /10-3-1/ /3-1-1/ /5-4/ /5-4/ /10-1-7/ /5-1-1/5 Tauluossa olevat arvot on lasettu ynällä ja paperilla, äyttämällä apuna tutielmassa esitettyjä lauseita ja menetelmiä.

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

Eulerin φ-funktion ominaisuuksia

Eulerin φ-funktion ominaisuuksia TAMPEREEN YLIOPISTO Pro gradu -tutielma Jua Peltola Eulerin φ-funtion ominaisuusia Informaatiotieteiden ysiö Matematiia Marrasuu 2013 Tampereen yliopisto Informaatiotieteiden ysiö PELTOLA, JUKKA: Eulerin

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

(c) Määrää/Determine välillä/in the interval [1000, 10000] olevien 7. jaollisten kokonaislukujen lukumäärä/ number of integers divisible by 7.

(c) Määrää/Determine välillä/in the interval [1000, 10000] olevien 7. jaollisten kokonaislukujen lukumäärä/ number of integers divisible by 7. Luuteorian perusteet Exercises/Harjoitusia 2016 1. Show by induction/osoita indutiolla, that/että Osoita, että a n 1 = (a 1)(a n 1 + a n 2 + + a + 1). a n + 1 = (a + 1)(a n 1 a n 2 + a + 1) jos 2 n. (c)

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................

Lisätiedot

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

q =, r = a b a = bq + r, b/2 <r b/2.

q =, r = a b a = bq + r, b/2 <r b/2. Luuteoria I Harjoitusia 2009 1 Osoita, että (a x = x x R, (b x x< x +1 x R, (c x + = x + x R, Z, (d x + y x + y x, y R, (e x y xy x, y R 0 2 Oloot a, b, q, r Z ja a = qb + r, 0 r< b Näytä, että a a q =,

Lisätiedot

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s. SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Reaalianalyyttistä lukuteoriaa

Reaalianalyyttistä lukuteoriaa Reaalianalyyttistä luuteoriaa Henri Ylinen Matematiian ro grau Jyväsylän ylioisto Matematiian ja tilastotieteen laitos Sysy 6 Tiivistelmä: Henri Ylinen, Reaalianalyyttistä luuteoriaa matematiian ro grau

Lisätiedot

Täydellisesti multiplikatiivisten funktioiden karakterisoinnit

Täydellisesti multiplikatiivisten funktioiden karakterisoinnit TAMPEREEN YLIOPISTO Pro gradu -tutielma Sau Sairanen Täydellisesti multipliatiivisten funtioiden araterisoinnit Matematiian, tilastotieteen ja filosofian laitos Matematiia Loauu 2007 2 Tampereen yliopisto

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

Alkulukujen harmoninen sarja

Alkulukujen harmoninen sarja Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008 OHJ-2300 Johdatus tietojenäsittelyteoriaan Sysy 2008 1 2 Organisaatio & aiataulu Luennot: prof. Tapio Elomaa P1: Ti 14-16 TC 103 ja to 14 16 TC 133 P2: Ti 14-16 TB 219 ja to 12 14 TB 224 26.8. 20.11. Jussi

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema,

41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema, Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis luonnontieteellinen tiedekunta Tekijä/Författare Author Katja Niemistö Työn nimi / Arbetets titel Title Täydelliset luvut Oppiaine /Läroämne Subject

Lisätiedot

Eksponenttifunktio. Johdanto. Määritelmä. Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

Eksponenttifunktio. Johdanto. Määritelmä. Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Solmu 3/08 3 Esponenttifuntio Pea Alestalo Matematiian ja systeemianalyysin laitos Aalto-yliopisto Jodanto Esponenttifuntio e x on eräs täreimmistä matematiiassa ja varsinin sen sovellusissa esiintyvistä

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Laskennallisen kombinatoriikan perusongelmia

Laskennallisen kombinatoriikan perusongelmia Laseallise obiatoriia perusogelia Varsi oissa tehtävissä, joissa etsitää tietylaiste järjestelyje, jouoje ts luuääriä, o taustalla joi uutaista peruslasetatavoista tai lasetaogelista Tässä esitelläälyhyesti

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Määritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki

Määritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki Alkuluvut LUKUTEORIA JA TODISTAMINEN, MAA11 Jokainen luku 0 on jaollinen ainakin itsellään, vastaluvullaan ja luvuilla ±1. Kun muita eri ole, niin kyseinen luku on alkuluku. Määritelmä, alkuluku/yhdistetty

Lisätiedot

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

2.1. Bijektio. Funktion kasvaminen ja väheneminen ******************************************************** .. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

HARMONINEN VÄRÄHTELIJÄ

HARMONINEN VÄRÄHTELIJÄ Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89. 5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

Multiplikatiivisista funktioista

Multiplikatiivisista funktioista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Marita Riihiranta Multiplikatiivisista funktioista Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2. / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Disreeti matematiia perusteet Yhteeveto ja esimerejä ym., osa I G. Gripeberg Aalto-yliopisto. maalisuuta 05 Jouo-oppi ja logiia Todistuset logiiassa Idutioperiaate Relaatiot ja futiot Futiot Iso-O

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0402 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg 1 Jouo-oppi ja logiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O alto-yliopisto 12. maalisuuta 2015 3 Kombiatoriia ym. Summa-,

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot