ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

Koko: px
Aloita esitys sivulta:

Download "ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2."

Transkriptio

1 / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset, saadaan uvan neljän vapausasteen palielementti. Elementin solmusiirtmä- ja solmuvoimavetori ovat e L, E, I { u} { u ϕ u ϕ } {} f { f m f m } Kuva. Palielementti. Määritetään uvan palielementin jäsmatriisi ättämällä hväsi jäsmatriisin ominaisuusia ja ahden vapausasteen palielementin jäsmatriisia. Jäsmatriisin smmetrian ja session ES aavan () perusteella etsittävä jäsmatriisi on muotoa () [ ] EI/L EI/L EI/L EI/L () Matriisin () tuntemattomat aliot selviävät ättämällä asiaalisen elementin htedessä saatua tulosta, jona muaan jäsmatriisin saraeiden ja rivien aliot toteuttavat jään appaleen liiemahdollisuusia vastaavat tasapainohtälöt. Kuvan elementille nämä ovat pstsuuntainen voimatasapaino ja momenttitasapaino alupään suhteen f + f m + f L + m () Voimahtälön () muaan jäsmatriisin () ensimmäisen ja olmannen saraeen aliot ovat toistensa vastaluuja eli () Momenttihtälöstä () saadaan toisen, neljännen ja ensimmäisen rivin alioille htälöt L + EI/L EI/L EI/L + () EI/L + () L + EI/L EI/L L + EI/L + (7)

2 / Kooamalla edellä erätt tuloset saadaan neljän vapausasteen palielementin loaalimittausen muaisesi jäsmatriisisi [ ] EI L /L /L /L /L /L /L /L /L /L /L /L /L (8) Kosa uvan elementissä on solmujen poiittainen voima- ja siirtmämittaus, tarvitaan elementin alueella olevien uormitusten äsittelssä iinnitsmomenttien lisäsi näitä vapausasteita vastaavia tuireatioita, jota ovat elementin päiden poiittaiset tuivoimat. Session ES uvasta saadaan perustapausien tuivoimat ja -momentit. Neljän vapausasteen palielementillä voidaan lasea elementtiveron perushtälöstä nuristaan siirtmättömän tasoehän solmujen ohdilla olevat leiausvoimat vastaavien solmusiirtmien ollessa nollia. Se ei uitenaan elpaa leisesi siirtvänuraisen tasoehän elementisi, osa eri elementtien poiittaismittauset eivät ole leensä ehän nurissa samansuuntaiset. Neljän vapausasteen palielementillä voidaan rataista aii jatuvan palin tehtävät, joten tarastellaan seuraavasi tämän tppistä esimeriä. I N/m N I m m m I mm E GPa Kuva. Jatuva pali. (a) (b) ESIMERKKI ESE Sovelletaan neljän vapausasteen palielementtiä uvan (a) jatuvan palin rataisemiseen. Valitaan uvan (b) ahden elementin ja uuden vapausasteen elementtivero, jossa on tuivapausasteet muana. Taivutusjäden muutosohtaan on sijoitettava solmu, osa elementti on tasapasu. Tällä solmulla on nollasta poieava poiittaissiirtmä, joten tehtävää ei voi rataista ahden vapausasteen palielementillä. Pistevoiman vaiutusohtaan voitaisiin sijoittaa solmu, jolloin voima olisi solmuuormitus, mutta ätetään nt evivalenttisia solmuuormitusia. Kirjoitetaan elementtien evivalenttiset solmuuormitusvetorit session ES tauluon avulla ja jäsmatriisit aavan (8) muaisesti. Kätetään siöitä N ja mm, mutta niitä ei meritä välivaiheisiin näviin. EI L EI L 9 8 { r} { } 9 { r} { } 8

3 / [ ],,,, 8 [ ] 7 7 7,87 7, ,87 7,87 Sijoittelusummaamalla elementtien jäsmatriisit ja uormituset seä ottamalla huomioon palin tuennat saadaan elementtiveron perushtälösi M U 7 7 7,97 7, ,97,897 8, ,9 8,9 Vapaita solmusiirtmiä vastaavat htälöt ja niiden rataisu on,8,788 7,89 U U 7 7,897 Tuireatiot rateavat perushtälörhmän olmesta jäljelle jääneestä htälöstä.,8 N ) 7 7,97U (, Nm M ) 8U ( M,9 N ) 8,9U ( + + Elementin perushtälöstä tulee seuraavat loaalioordinaatiston solmuvoimavetorit

4 / f m f m 8,,,, 7,89,788,9,,99, f m f m,87 7, ,87 7, ,89,788 7,8,99,, Saatujen tulosien avulla voidaan laatia uvan muaiset palin vapaaappaleuva seä leiausvoima- ja taivutusmomenttiuva.,,9 N N/m N -,9 + Q, Nm, N,9, + M t -,, Kuva. Palin vapaaappaleuva ja rasitusuvat. KUUDEN VAPAUSASTEEN PALKKIELEMENTTI leisen tasoehän äsitteln tarvitaan elementti, joa voi olla mielivaltaisessa asennossa -globaalioordinaatistossa ja jona solmuilla on translaatiovapausasteet - ja - suunnissa seä rotaatiovapausaste -tason normaalin Z mpäri. Kosa solmuja on asi, elementti on globaalimittausella varustettu uuden vapausasteen palielementti. Tarastel- e laan tilannetta ensin elementin loaalioordinaatistossa. Kun uvan elementin solmuihin lisä- L, E, I, A tään palin suuntainen mittaus, saadaan uvan Kuva. Palielementti. uuden vapausasteen palielementti. Sen solmusiirtmä- ja solmuvoimavetori ovat { u} { u u ϕ u u ϕ } {} { f f m f f m } f (9)

5 / joissa on iertmän ja momentin mittausesta jätett alaindesi z pois, osa seaannusen vaaraa ei ole. Kosa veto/puristus ei ole tennässä taivutuseen ja leiauseen, saadaan uvan elementin jäsmatriisi sijoittelusummaamalla asiaalisen elementin jäsmatriisi ja neljän vapausasteen palielementin jäsmatriisi uvan vapausastenumeroinnin muaisesti. Tulosena on jäsmatriisi [ ] κ /L κ /L κ /L κ /L κ /L κ κ /L κ κ /L κ /L κ /L κ /L κ /L κ κ /L κ () jossa on meritt EA / L ja κ EI/ L. Elementtiuormituset äsitellään evivalenttisten solmuuormitusten avulla, nt tarvitaan vain aiiin olmeen solmuvapausasteeseen liittviä iinnitsreatioita. Näitä on perustapausille esimerisi session ES tauluossa. Neljän ja uuden vapausasteen palielementin ättö jatuvien palien tarasteluun onnistuu suoraan jäsmatriisien (8) ja () avulla, osa tällöin elementtien loaalioordinaattiaseleiden vastinsuunnat htvät. leisen tasoehän tapausessa elementtien loaalioordinaatistojen vastinsuunnat eivät hd. Tällöin raenteelle on sovittava Zglobaalioordinaatisto, jona aseleiden suhteen aiien elementtien solmumittaus suoritetaan. Tästä seuraa, että leisen tasoehän äsittelemiseen elementtimenetelmällä tarvitaan uvan (b) globaalioordinaatistossa mielivaltaisessa asennossa olevan elementin globaalimittauseen liittvä jäsmatriisi. Etsitt jäsmatriisi saadaan esimerisi (a) (b) L, E, I, A e α L, E, I, A e α {} u {} f [ ] { u} { f} [ ] Kuva. Palielementin loaali- ja globaalimittaus. oordinaatiston ierron avulla, jolloin lähdetään liieelle uvan (a) elementin loaalioordinaatiston solmusuurevetoreista { u } ja { f} seä jäsmatriisista [ ]. Kosa uvan (b) solmumittausesta päästään uvan (a) solmumittauseen iertämällä ensisi mainittua ulma α vastapäivään, on voimassa

6 { u } [ B]{ u} { f} [ B]{} f / () missä inemaattinen matriisi [ B ] on nt [ B] cosα sinα sinα cosα cosα sinα sinα cosα () B on ortogonaalinen matriisi, jolloin[ B ] [ B] T. Globaalioordinaatiston jäsmat- saadaan lasetusi ongruenssimuunnosella eli [ ] riisi [ ] T [ ] [ B] [ ][ B] () Kaavan () jäsmatriisi [ ] voitaisiin irjoittaa aui sijoittamalla matriisit [ ] ja [ B ] aavoista () ja (). Tulos on uitenin epähavainnollinen ja elementtien jäsmatriisit voidaan lasea ohjelmassa htä hvin aavasta (). Elementtiuormitusille saadaan loaalioordinaatiston evivalenttinen solmuuormitusvetori {} r tauluon avulla. Se voidaan muuntaa globaalioordinaatistoon aavan () avulla eli {} r [ B]{} r {} r [ B] T { r} () ESIMERKKI ESE (a) 8 m (b) N N/m 8 m Kuva. Tasoehä ja sen elementtivero. m Tarastellaan uvan (a) tasoehää uuden vapausasteen palielementin avulla ättäen uvassa (b) esitettä ahden elementin veroa, jossa tuivapausasteet on otettu muaan lasentaan. Kummanin elementin poiileiausen pintaala on A mm ja neliömomentti I mm seä materiaalin immomoduuli E GPa. Muodostetaan alusi elementtien loaalit jäsmatriisit ja inemaattiset matriisit ja niistä ongruenssimuunnosella elementtien globaalit jäsmatriisit. Lasuis-

7 /7 sa ätetään siöitä N ja mm. Elementille saadaan tuloset cos α,97 sin α, 7 EA /L, 7 κ EI/L [ ] B,97,7,7,97,97,7,7,97 [ ],7,7,87 8,7,87 8,7 8,7 8,7,,7,7,87 8,7,87 8,7 8,7, 8,7 Globaalioordinaatiston jäsmatriisi saadaan edellä olevista matriiseista aavalla (). Suorittamalla tarvittavat matriisien ertolasut saadaan tulosesi jäsmatriisi [ ],,9 7,,,9 7,,9,9 7,87,9,9 7,87 7, 7,87 7, 7,87, Elementille on [ ] [ ] ja {} { r},,9 7,,,9 7,,9,9 7,87,9,9 7,87 7, 7,87, 7, 7,87 r, joten aavan () ja session ES tauluosta [ ],7,7,87 8,7,87 8,7 8,7 8,7,,7,7 7,87 8,7,87 8,7 8 8,7, 9 8,

8 /8 Session ES tauluosta saadaan elementin evivalenttisesi solmuuormitusvetorisi {} r {,, } Elementtiveron solmuuormitusvetori on { } { M 8,7, M } Elementtiveron perushtälösi [ ]{ U} { R} K tulee sijoittelusummausella ja ottamalla huomioon tuennat,,9 7,,,9 7,,9,9 7,87,9,9 7,87 7, 7,87 7, 7,87,,,9 7,,9,9 7,,7,9,9 7,87,9,,8,87 8,7 7, 7,87, 7,,8 8,7,,7,7,87 8,7,87 8,7 8,7, 8,7 U U M 8,7,, M +, Rataisemalla elementtiveron perushtälö saadaan seuraavat solmusiirtmät ja tuireatiot, N,77N M 7,8Nmm U,99 mm U,987 mm,7 rad 9, N,77 N M,8 Nmm Elementtien solmuvoimavetorit globaalioordinaatistossa saadaan elementin perushtälöstä { f} [ ] { u} { r} {} f {,,77 7,8,,77 8, } {} f { 9, 9, 8, 9,,77,8 }, josta seuraa

9 /9 Elementille on { f } {} f, mutta elementin loaalioordinaatiston solmuvoimavetori on vielä lasettava aavasta { f } [ B] { f }, josta tulee {} f {,87,7 7,8,87,7 8, } Kuvassa 7 on esitett elementtien solmuvoimavetorit vapaaappaleuvia ättäen,,78,77 N 8, Nm {} f { f},,78,77,87,7 8,,7,87 {} f {} f 9, 8, 9, N/m Kuva 7. Solmuvoimavetorit.,8 9,,77 LEIKKAUSVOIMAN VAIKUTUS Edellä johdetut palielementtien jäsmatriisit perustuivat teniseen taivutusteoriaan, jolloin palin taipumisessa on otettu huomioon vain taivutusmomentin vaiutus. Palin leiausvoima aiheuttaa mös taipumista, joa vaiuttaa hieman tulosiin. Leiausvoiman vaiutusen määrits leiselle poiileiauselle ei onnistu tarasti annattimen teorialla, mutta ätännössä riittävä liirataisu saadaan ättämällä ns. leiauserrointa φ, joa riippuu palin materiaalista ja geometriasta. Monille poiileiausille voidaan johtaa leiausertoimen liiarvo tenisen taivutusteorian tai energiaperiaatteen avulla. Voidaan osoittaa, että leiauserrointa ätettäessä jäsmatriisi () muuttuu muotoon [ ] κ (+ φ)l κ (+ φ)l κ (+ φ)l κ (+ φ)l κ (+ φ)l ( + φ) κ (+ φ) κ (+ φ)l ( φ) κ (+ φ) κ (+ φ)l κ (+ φ)l κ (+ φ)l κ (+ φ)l κ (+ φ)l ( φ) κ (+ φ) κ (+ φ)l ( + φ) κ (+ φ) ()

10 / Leiausertoimen φ lausee voidaan esittää muodossa s s EI A i φ (+ ν) () GA L A L jossa E, G ja ν ovat materiaalivaiot, A s tehollinen leiauspinta-ala (leiausvoiman vastaanottava pinta-ala) ja i poiileiausen neliösäde. Leiauspinta-aloja on lödettävissä lujuusopin irjallisuudesta, esimerisi suoraulmiolle A s A /, mprälle A s 9A / ja I-profiilille uuman pinta-ala. Kaavasta () nähdään, että leiausmuodonmuutosen vaiutus on pieni, jos palin hoiuusluu λ L / i ei ole ovin pieni. Kun ν, ja arvioidaan areasti A s A, saadaan leiausertoimelle φ seuraavia arvoja λ φ,,78,9, joista nä selvästi, että tavanomaisen hoiuuden omaavalla palilla leiausvoiman vaiutus taipuman arvoon on vähäinen. HARJOITUS ESH N/m m N m 8 m Valitse uvan tasoehälle sopiva elementtivero ättäen uuden vapausasteen palielementtiä ja jättäen tuiin liittvät vapausasteet solmumittausesta pois. Muodosta elementtiveron perushtälö ja rataise siitä solmusiirtmät. Määritä pstsuuntaisen palin normaalivoima-, leiausvoima- ja taivutusmomenttiuva. Lase pstsuuntaisen palin normaalijännitsen itseisarvon masimi. Palit ovat profiilia IPE8 SS8, jona A mm ja I z 7,9 mm. Materiaalin E GPa. Vast. U,98 mm U,9mm,79 {} f { 7,7,9 8,97,9,9 7,7 } ( s. N, mm ) Vihjeet:

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1. 6/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 6: Asiaalinen sauvaelementti, osa. ASIAALINEN RAENNE L, A, E L, A, E L, A, E uva. Asiaalinen raenne. Asiaalinen raenne taroittaa tässä yhteydessä raennetta, joa oostuu

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017 KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

Aksiaalinen rakenne koostuu suoralla peräkkäin olevista sauvoista kuvan 2.1 mukaisesti. Aksiaalinen rakenne ei ole yleinen sovelluksissa,

Aksiaalinen rakenne koostuu suoralla peräkkäin olevista sauvoista kuvan 2.1 mukaisesti. Aksiaalinen rakenne ei ole yleinen sovelluksissa, Elementtimenetelmän persteet. RISTIORAENTEET. Asiaalinen raenne Asiaalinen raenne oost soralla perääin olevista savoista van. maisesti. Asiaalinen raenne ei ole yleinen sovellsissa,, A, E, A, E, A, E va.

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

LAATTATEORIAA. Yleistä. Kuva 1.

LAATTATEORIAA. Yleistä. Kuva 1. LAATTATEORIAA Yleistä Kuva 1. Laatta on kahden pinnan rajoittama rakenneosa, jonka paksuus on pieni muihin mittoihin verrattuna. Pintojen puolivälissä oleva keskipinta on taso ennen laatan kuormittamista.

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko.

10 knm mm 1000 (a) Kuva 1. Tasokehä ja sen elementtiverkko. Elementtimenetelmän perusteet Esimerkki. kn kn/m 5 = 8 E= GPa mm 5 5 mm (a) 5 5 6 Y X (b) Kuva. Tasokehä ja sen elementtiverkko. Tarkastellaan kuvassa (a) olevan tasokehän statiikan ratkaisemista elementtimenetelmällä.

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4 DEE- Lineaariset järjestelmät Harjoits 8, rataisehdotset Tämän harjoitsen ideana on opetella -mnnosen ättöä differenssihtälöiden rataisemisessa. Lisäsi ätetään -mnnosen ehäpä hödllisintä ominaistta, eli

Lisätiedot

HalliPES 1.0 OSA 14: VOIMALIITOKSET

HalliPES 1.0 OSA 14: VOIMALIITOKSET HalliPES 1.0 OSA 14: VOIMALIITOKSET 28.4.2015 1.0 JOHDANTO Tässä osassa esitetään primäärirungon voimaliitosia ja niien mitoitusohjeita. Voimaliitoset mitoitetaan tapausohtaisesti määräävän uormitusyhistelmän

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN J LOVIEN ITOITUS Leiauslujuuen ja poiittaisen vetolujuuen ansiosta Kerto -tuotteisiin on maollista teä reiiä. Reiät voivat olla joo pyöreitä tai suoraulmaisia. Erityisesti ristiviiluraenteinen

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

4 YLEINEN ELEMENTTIMENETELMÄ

4 YLEINEN ELEMENTTIMENETELMÄ Elementtimenetelmän perusteet 4. 4 YLEINEN ELEMENIMENEELMÄ 4. Johdanto Elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä. ällöin tarkastellaan tiettä

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

Sähköstatiikka ja magnetismi Mekaniikan kertausta

Sähköstatiikka ja magnetismi Mekaniikan kertausta Sähöstatiia ja magnetismi Meaniian etausta Antti Haato 17.05.013 Newtonin 1. lai Massan hitauden lai Jatavuuden lai Kappaleen nopeus on vaio tai appale pysyy paiallaan, jos siihen ei vaiuta voimia. Newtonin

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja

[ k ] ja ekvivalenttisen solmukuormitusvektorin { r } määritystä kaavoista (4.20) ja Elementtimenetelmän perusteet 7. 7 D-SOLIDIRAKEEE 7. ohdanto Edellä tarkasteltiin interpolointia ja numeerista integrointia emoneliön ja emokolmion alueissa. Emoelementtien avulla voidaan muodostaa vaihtelevan

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Järjestelmän kuvaus aikatasossa

Järjestelmän kuvaus aikatasossa Digitaalinen Signaalinäsittel T25 Luento 2-24.3.26 Jaro.Vuori@evte.fi Man cannot inherit the past; he has to recreate it Arthur Koestler, The act of creation, 964 Järjestelmän uvaus aiatasossa Differenssihtälö

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 14: Yleisen lujuusopin elementtimenetelmän perusteita. 4/ LMNIMNLMÄN PRS SSSIO 4: Yleisen lujuusopin elementtimenetelmän perusteita. JOHDANO A A A A Yleinen elementtimenetelmä on osittaisdifferentiaalihtälörhmän reuna-arvotehtävän likimääräinen ratkaisumenetelmä.

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa

Tuomo Mäki-Marttunen Stokastiset ja tavalliset differentiaaliyhtälöt inertiapaikannuksessa TAMPEREEN TEKNILLINEN YLIOPISTO Luonnontieteiden ja ympäristöteniian tiedeunta Tuomo Mäi-Marttunen Stoastiset ja tavalliset differentiaaliyhtälöt inertiapaiannusessa Diplomityö Aihe hyväsytty tiedeuntaneuvostossa

Lisätiedot

HARMONINEN VÄRÄHTELIJÄ

HARMONINEN VÄRÄHTELIJÄ Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,

Lisätiedot

REIKIEN JA LOVIEN MITOITUS

REIKIEN JA LOVIEN MITOITUS REIKIEN JA LOVIEN ITOITUS REIKIEN JA LOVIEN ITOITUS Leiauslujuuen ja poiittaisen etolujuuen ansiosta Kertotuotteisiin on mahollista tehä reiiä. Erityisesti ristiiiluraenteinen soeltuu ohteisiin, joissa

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ 76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

Naulalevylausunto LL10 naulalevylle

Naulalevylausunto LL10 naulalevylle LAUSUNTO NRO VTT S 09771 08 1 (1) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 FI 15100 Lahti 3.9.2008 Simo Jouainen Ari Kevarinmäi VTT Asiantuntijapalvelut PL 1000 02044 VTT Puh. 020 722 5566,

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät TAVOITTEET Johdetaan htälöt, joilla muutetaan jännitskomponentit koordinaatistosta toiseen Kätetään muunnoshtälöitä suurimpien normaali- ja leikkaus jännitsten laskemiseen pisteessä Määritetään ne tasot,

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz

Lisätiedot

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Luu 2 Disreettiaiaiset järjestelmät - aiataso DEE- Lineaariset järjestelmät Risto Mionen 6.9.26 Diseettiaiainen vs jatuva-aiainen Jatuvan signaalin u(t) nätteistäminen disreetisi

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011 BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti. / EEMEIMEEEMÄ PERSEE SESSIO : Avasistion savalmntti. AVARSRISIKO EEMEIVERKKO Avasistion taaan ataisn päästään ättämällä lmnttivoa jona solmt ovat istion nivlin ohdilla in istion sava on lmntti. Kvassa

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT S 07136 07 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 FI 15100 Lahti 7.5.2007 Simo Jouainen Ari Kevarinmäi VTT, Raennejärjestelmät PL 1000 02044 VTT Puh. 020 722 5566,

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

KPM-Engineering, valvojana DI Heikki Löytty

KPM-Engineering, valvojana DI Heikki Löytty Tampereen ammattioreaoulu Raennusteniian oulutusohjelma Talonraennusteniia Alesei Jeremin Opinnäytetyö Puuraenteien vertailulasennat Euroooi 5 ja venäläisen raennusnormiston muaisesti Työnohjaaja Työn

Lisätiedot

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k

i ni 9 = 84. Todennäköisin partitio on partitio k = 6, k k 1. Neljä tuistettavissa oleva hiuase iroaoise jouo ahdolliset eergiatasot ovat 0, ε, ε, ε, 4ε,, jota aii ovat degeeroituattoia. Systeei ooaiseergia o 6ε. sitä aii ahdolliset partitiot ja osoita, että irotiloje

Lisätiedot

Naulalevylausunto LL10 naulalevylle

Naulalevylausunto LL10 naulalevylle 1 (4) Tilaaja Tilaus Yhteyshenilö Riste Oy Kimmo Köntti Teollisuustie 7 1554 Villähde Kimmo Köntti, 5.11.218. Tilausvahvistus nro O-2679-18. Eurofins Expert Services Oy Ari Kevarinmäi Kemistintie 3, Espoo

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-02366-17 1 (5) Tilaaja Tilaus Yhteyshenilö Riste Oy Asonatu 11 15110 Lahti 15.3.2017 Kimmo Köntti VTT Expert Services Oy Ari Kevarinmäi PL 1001, 02044 VTT Puh. 020 722 5566 ari.evarinmai@vtt.fi

Lisätiedot

PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU

PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU Timo Ollila 011 Oulun seuun ammattioreaoulu PIENTALON SUUNNITTELU JA KUSTANNUSVERTAILU Timo Ollila Opinnäytetyö 14.4.011 Raennusteniian oulutusohjelma Oulun seuun

Lisätiedot

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s. SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Luentomonisteen harjoitustehtävien vastauset Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt. Järjestelmien lineaarisuus: Järjestelmä on lineaarinen,

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

T Puurakenteet 2. Kantavat puurakenteet Liimapuuhallin kehän mitoitus EC5 mukaan Harjapalkin mitoitus

T Puurakenteet 2. Kantavat puurakenteet Liimapuuhallin kehän mitoitus EC5 mukaan Harjapalkin mitoitus T500 Puuraenteet Kantavat puuraenteet n eän mitoitus EC5 muaan Harjapain mitoitus T500 Puuraenteet Lasuesimeri: n jäyäantaisen eän arjapain ja piarin mitoitus, pain ja piarin iitos ei ota momenttia Tämän

Lisätiedot

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008 OHJ-2300 Johdatus tietojenäsittelyteoriaan Sysy 2008 1 2 Organisaatio & aiataulu Luennot: prof. Tapio Elomaa P1: Ti 14-16 TC 103 ja to 14 16 TC 133 P2: Ti 14-16 TB 219 ja to 12 14 TB 224 26.8. 20.11. Jussi

Lisätiedot

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere Tampereen aupuni Juha Jaaola PL 487 33101 Tampere LAUSUNTO RAIDELIIKENTEEN NOPEUDEN KASVATTAMISESTA RANTA- TAMPELLAN ALUEEN RUNKOMELU- JA TÄRINÄRISKIIN Ranta-Tampellan alueen tärinää on arvioitu selvitysessä

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 1. Työn tavoitteet 1.1 Mittausten taroitus Tässä työssä tutit valoa aaltoliieenä. Ensimmäisessä osassa tutustut valon taipumiseen eli

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

Työ ja energia. Haarto & Karhunen.

Työ ja energia. Haarto & Karhunen. Työ ja energia Haarto & Karhunen Voiman teemä työ Voiman F teemä työ W määritellään voiman F ja uljetun matan s pistetulona. Siis uljetun matan s ja matan suuntaisen voiman omponentin tulona. W = F s =

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Disreettiaiaiset järjestelmät aiatason analsi DEE- Lineaariset järjestelmät Risto Mionen Disreettiaiaiset järjestelmät 7 3 5 Lineaaristen, vaioertoimisten differenssihtälöiden

Lisätiedot