ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti.

Koko: px
Aloita esitys sivulta:

Download "ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti."

Transkriptio

1 / EEMEIMEEEMÄ PERSEE SESSIO : Avasistion savalmntti. AVARSRISIKO EEMEIVERKKO Avasistion taaan ataisn päästään ättämällä lmnttivoa jona solmt ovat istion nivlin ohdilla in istion sava on lmntti. Kvassa on avasistion lmnttivo jossa on solma lmnttiä. Avasistion savalmntti on samanlainn in tasoistion savalmntti li tavittavat ominaisdt tasapasll savall ovat E A. Kolmilottinn gomtia aihttaa itnin jonin van lisää lasntatötä solmmittas pitää listää tasotapassta Kva. Avasistion lmnttivo sn lmntti. asntaa vatn avasistioll valitaan -globaalioodinaatisto jona aslidn snnissa solmmittas soittaan. Solmmittas sisältää tanslaatiosiitmät solmvoimat - - -snnassa. Kvassa globaalioodinaatiston oigo on sijoittt sol-

2 / mn. Solmlla on olm vapasasttta lmntillä si vapasasttta jolloin lmntin solmsvtoidn dimnsio on si lmntin jäsmatiisi on - matiisi. Elmnttivon vapasastidn määä on olm taa solmjn lmäää. Kvassa on sittt nolismbolilla solmn 8 vapasastt jota on lisäsi nmoit. Kvan lmnttivolla on vapasasttta von jäsmatiisi on - matiisi tntmattomia solmsita ovat vapaidn solmjn siitmäomponnttia tisolmjn ( 9 ) tiatioomponnttia. Elmnttivon globaalioodinaatiston lisäsi joaislla lmntillä on loaali -oodinaatisto jona -asli l lmntin sntaissti sn alsolmsta loppsolmn sä - -aslit ovat poiiliastasossa. Kvassa on sittt lmntin 7 loaalioodinaatisto solmmittas. Avasistion äsittl lmnttimntlmällä onnist lmnttimntlmän listn piaattidn maissti n vain tnntaan -globaalioodinaatistossa milivaltaisssa asnnossa olvan savalmntin globaalimittasn liittvä jäsmatiisi. Saavassa tämä johdtaan oodinaatiston itomntlmällä. JÄKKSMARIISI Avasistion savalmntin jäsmatiisi voidaan hlposti ijoittaa van loaalioodinaatiston solmmittasta ättän. ällöin lmntin loaalin solmmitta- ovat sn solmsiitmävtoi { } solmvoimavtoi { } { } { } { } { } () Kosa istion sava i ota vastaan liasvoimia - -snnassa ovat vapasastita vastaavat solmvoimat nollia olivatpa solmsiitmät mitä tahansa. ästä saa ttä lmntin jäsmatiisin vastaavin ivin smmtian pstlla mös saaidn aliot ovat nollia. Jäljll jäävät nljä.. saan aliota saadaan lmntin jäsmatiisista. Kvan lmntin loaalia solmmittasta vastaava jäsmatiisi on E A Kva. Avasistion lmntin loaalimittas. () Avasistion äsittln lmnttimntlmällä tavitaan vassa sittt lmntti jossa solmmittas on soittt globaaliaslidn snnissa. Solmsiitmävtoi

3 / solmvoimavtoi ovat tällöin { } { } { } { } () Kmmanin solmn loaali mittasjäjstlmä vassa saadaan soittamalla vassa olvall globaalill mittasjäjstlmäll oodinaatiston ito olmilottissti. ällöin tavitaan loaali- globaaliaslidn välistn lmin osinit li loaaliaslidn sntaosinit globaalioodinaatistossa. Kättään sntaosinill lhnnsmintöjä E A d os( ) os() os() os( ) os() d d os() os( ) os() () os() Koodinaatiston itomatiisi on d d d () Kva. Avasistion lmntin globaalimittas. Solmn solmsvtoidn välillä vallitsvat htdt ovat { } [ ]{ } { } [ ]{ } { } [ ] { } { } [ ] { } () hdistämällä solm osvat tlost () tl lmntin solmsvtoill htdt { } [ ]{ } {} [ ]{} (7) missä inmaattinn matiisi [ ] on d d d (8) d d d Kosa [ ] [ ] on mös [ ] [ ]. Globaalimittasn mainn lmntin jäsmatiisi [ ] voidaan nt lasa matiisista () (8) ongnssimnnoslla

4 /. Kn matiisin tomist soittaan päädtään saavaan tlosn (9) Jäsmatiisissa (9) tavitaan josivaion / lisäsi vain loaalin -aslin sntaosinit. voidaan lasa hlposti n solmjn oodinaatit tnntaan. Oloot alsolmn oodinaatit loppsolmn oodinaatit van maissti. astaan alsi oodinaattiotst () jolloin lmntin pits sntaosinit ovat () Mös vivalnttist solmomitst voidaan mntaa oodinaatiston iolla loaalista globaaliin mittasn. Esimisi lämpötilaomitsll tl loaalimittasssa {} { } α () mistä aavan { } {} avlla saa globaalimittasll {} { } α () Elmntin nomaalivoima joll saadaan las sn globaalimittasn solmsiitmin avlla lasmalla vtoin { } { } { } nljäs omponntti. los on ( ) ( ) ( ) ()

5 / ESIMERKKI FESE aastllaan vassa (a) sitttä avasistioa jota omittaa si pistvoima. Ristion lmnttivossa on olm lmnttiä nljä solma joista solmt ovat liimattomia tisolm. Von vapasastidn lmäää on tntmattomia solmsiitmiä on olm tntmattomia tiatioita hdsän. Kättään siitmäataisssa vain vapaita solmsiitmiä jolloin sijoittlsmmasn jäln päästään soaan olmn siitmätntmattoman htälöhmään. Kvassa (b) on sittt ätttävä solmjn vapasastidn nmointi jossa tttjn vapasastidn nmosi on mitt osa niitä vastaavia jäsmatiisin alioita i sijoittlsmmasssa ättä. asissa ättään siöjä mm jota mitään vain tlosiin. (a) mm mm mm (b) mm mm E GPa A mm A A A Kva. Avasistio sn lmnttivo. Kijoittaan alsi lmnttin jäsmatiisit osoitnmoilla vastttina.

6 / / / / / / / Sijoittlsmmaamalla lmnttin jäsmatiisit ottamalla homioon omits saadaan vapaill solmsiitmill htälöhmä sill atais mm mm iatiot voidaan poimia tiin päättvin lmnttin solmvoimavtoista jota taas saadaan lmntin pshtälöstä { } { }. Esimisi lmntill tl josta nähdään tiatiot F F F. Elmnttin nomaalivoimat voidaan lasa niidn solmvoimavtoista tavanomaissti statiialla. oinn mahdolliss on ättää aavaa () josta saa nomaalivoimill niitä vastaavill jännitsill avot

7 /7 [ ( ) ) )] [ [ ) ) ) ) )] )] σ σ σ ( / / mm ) MPa / ( )mm MPa mm mm mm mm HARJOIS FESH Ohisn ahdn pistvoiman omittaman avasistion aiin savojn poiiliasn pinta-ala on mm matiaalin E GPa. Solmissa on aii siitmät sttt. Määitä lmnttimntlmällä istion tntmattomat solmsiitmät tiatiot. as lmntin pshtälön avlla globaalioodinaatiston solmvoimavtoit. as vilä lmnttin nomaalivoimat -jännitst. mm Vast. 8 mm mm 7 9mm Vihjt:

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 13: Avaruuskehän palkkielementti.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 13: Avaruuskehän palkkielementti. / EEMENIMENEEMÄN PERUSEE SESSIO : Aarskhän palkkilmntti. AARUUSKEHÄN EEMENIERKKO solm solm Ka. Aarskhän lmnttirkko ja sn lmntti. Jos khä sisältää ain tasapaksja ja soria osia, sn tarkka ratkais saaaan

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista

3 KEHÄRAKENTEET. 3.1 Yleistä kehärakenteista Elementtimenetelmän peusteet. KEHÄRAKENTEET. leistä ehäaenteista Kehäaenteen osina oleat palit oiat ottaa astaan aiia annattimen asitusia, jota oat nomaali- ja leiausoima seä taiutus- ja ääntömomentti.

Lisätiedot

Nelisolmuinen levyelementti

Nelisolmuinen levyelementti Lv hm 6..3 Nliolminn lvlmntti arkatllaan kvan nliolmita lvlmnttiä. q 6 q 8 η 3 q 5 ( 3, 3 q 7 (, q (, v P q ξ (, q q 3 Pitn P koordinaatit voidaan laa mokoordinaattin ξ ja η avlla, jotka ovat normratt

Lisätiedot

CST-elementti hum

CST-elementti hum CS-lmntti hm 4..3 CS-lmntti arkatllaan kan kolmiolmita kolmiolmnttiä, jota kttaan akionmän kolmiolmntiki (Contant Strain riangl). q 6 3 q 5 ( 3, 3 ) (, ) q 4 q 3 P q (, ) q O Pitn P koordinaatit oidaan

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

Sauvaelementti hum

Sauvaelementti hum Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu

Lisätiedot

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0 Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

Aksiaalinen rakenne koostuu suoralla peräkkäin olevista sauvoista kuvan 2.1 mukaisesti. Aksiaalinen rakenne ei ole yleinen sovelluksissa,

Aksiaalinen rakenne koostuu suoralla peräkkäin olevista sauvoista kuvan 2.1 mukaisesti. Aksiaalinen rakenne ei ole yleinen sovelluksissa, Elementtimenetelmän persteet. RISTIORAENTEET. Asiaalinen raenne Asiaalinen raenne oost soralla perääin olevista savoista van. maisesti. Asiaalinen raenne ei ole yleinen sovellsissa,, A, E, A, E, A, E va.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2. / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,

Lisätiedot

Lämmönsiirto (ei tenttialuetta)

Lämmönsiirto (ei tenttialuetta) ämmönsiirto um 4..3 ämmönsiirto (i tnttialutta) rminologiaa ämpötila on suur, joka kuvaa, mitn kuuma jokin sin tai ain on. ämpötilaa (lat. tmpratura) mitataan SI-järjstlmässä klvinillä (K) tai clsiusastilla

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q q

Lisätiedot

Kahdeksansolmuinen levyelementti

Kahdeksansolmuinen levyelementti Levy8 ja RS hm 7.. Kahdekanolminen levyelementti akatellaan kvan kahdekanolmita levyelementtiä. q 6 y (,y q 8 ( 8,y 8 8 q 7 q 6 (,y q 5 q q q 7 q q ( 7,y 7 v ( 6,y 6 P 5 ( 5,y 5 q 9 6 q 5 (,y q (,y q q

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 08: Tasoristikon sauvaelementti, osa 1.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 08: Tasoristikon sauvaelementti, osa 1. 8/ ELEMENIMENEELMÄN PERUSEE SESSIO 8: asoristikon savaelementti, osa. LEISÄ Ristikkorakenne koost vain vetoa ja priststa kestävistä savoista. Savat liittvät rakenteen tkipisteisiin ja toisiinsa kitkattomilla

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006

S-55.1220/142 Piirianalyysi 2 1. Välikoe 10.3.2006 S-55.0/4 Piirianalyyi. Välioe 0.3.006 ae tehtävät 3 eri paperille in tehtävät 4 5. Mita irjoittaa joaieen paperiin elväti nimi, opielijanmero, rin nimi ja oodi. Tehtävät laetaan oaton oepaperille. Mita

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4 DEE- Lineaariset järjestelmät Harjoits 8, rataisehdotset Tämän harjoitsen ideana on opetella -mnnosen ättöä differenssihtälöiden rataisemisessa. Lisäsi ätetään -mnnosen ehäpä hödllisintä ominaistta, eli

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

76132S Sähkömagneettinen säteily 1

76132S Sähkömagneettinen säteily 1 763 ähkömagnttinn säti. MAXWELLIN YHTÄLÖT Kaikki sähkömagnttisia knttiä koskvat kassist imiöt voidaan johtaa njästä htäöstä. Thjössä nämä sähköknttää E ja magnttiknttää B kuvaavat htäöt saavat suraavan

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 07: Aksiaalinen sauvaelementti, osa 2. 7/ EEMENTTIMENETEMÄN PERSTEET SESSIO 7: Aksiaalinen sauvaelementti, osa. RATKAIS EEMENTIN AEESSA Verkon perusyhtälöstä [ K ]{ } = { F} saatavasta solmusiirtymävektorista { } voidaan poimia minkä tahansa

Lisätiedot

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

S SÄHKÖTEKNIIKKA

S SÄHKÖTEKNIIKKA S55.103 SÄHKÖTEKNIIKK. välikoe 7.4.1998 Kimmo Silvonen 1. Kva esittää yhdellä diodilla hätäratkaisna tehtyä kokoaaltotasasntaajaa. Sen toiminta ei tietenkään ole kovin ideaalista. Laske diodin ominaiskäyrän

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille Phingin osayliskaava 27.10.2014 Kysly alun asukkaill ja maanomistajill Arvoisa vastaanottaja, Raahn kaupunginhallitus on päättänyt aloittaa Phingin osayliskaavan ajaasaistamistyön. Phingin osayliskaava

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot

SATE1140 Piirianalyysi, osa 1 kevät /7 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot TE40 Pranalyys, osa kevät 07 /7 askharjots 8: Vahtosähköpressä esntyvät tehot Tehtävä. Määrtä komponentessa esntyvät tehot alla olevassa kvassa estetyssä prssä. e t 50sn5000 t V, 0 k, 0 k, 4 H, 5 nf g

Lisätiedot

4. Derivointi useammassa ulottuvuudessa

4. Derivointi useammassa ulottuvuudessa 6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaist 5 Kevät 26. Aberraatio shteellissteoriassa a) Tlkoon valo kten tehtävän kvassa (x, y)-tason x, y > neljänneksestä: x ˆx + y ŷ c cos θ ˆx c sin θ ŷ. () Lorenz

Lisätiedot

Kon Hydraulijärjestelmät

Kon Hydraulijärjestelmät on-41.44 Hydralijärjstlmät Laboratoriotyö - Tkimatriaali Sähköhydralisn järjstlmän säätö äskylin Erolin Säätäjä Astslait Toimilait ja korma w qv x Antri va 1. Hydralinn säätöjärjstlmä. vassa 1 säätöjärjstlmän

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

= + + = 4. Derivointi useammassa ulottuvuudessa

= + + = 4. Derivointi useammassa ulottuvuudessa 30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot

SATE1140 Piirianalyysi, osa 1 kevät /8 Laskuharjoitus 8: Vaihtosähköpiireissä esiintyvät tehot ST40 Pranalyys, osa kevät 07 /8 askharjots 8: Vahtosähköpressä esntyvät tehot Tehtävä. Määrtä komponentessa esntyvät tehot alla olevassa kvassa estetyssä prssä. 00 V, 0, 30, mh, 0,5 μf, f 5 khz. Kva. Prkaavo

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

NOVITA VENLA: HUVIRETKET-KIRJONEULESUKAT

NOVITA VENLA: HUVIRETKET-KIRJONEULESUKAT r i v H l n o j r i a s NOVITA VENLA: HUVIRETKET-KIRJONEULESUKAT Snnilija Niina Laiinn Kngän oo 38/39 Langanmni Novia Vnla (010) lonnonvaloinn 100 g, (499) hiili vajaa 50 g ja (182) prooli vajaa 50 g Sapio

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face

S-114.240 Hahmontunnistus ihmisläheisissä käyttöliittymissä Kasvojen tunnistus ja identiteetin tarkistus: ZN-Face S-114.240 Hahmontunnistus ihmisläheisissä äyttöliittymissä Kasvojen tunnistus ja identiteetin taristus: ZN-Face Kalle Korhonen sorhon@cc.hut.fi 13.4.2000 Tiivistelmä: Raportissa tutustutaan aupalliseen

Lisätiedot

PVC-IKKUNOIDEN ASENNUS

PVC-IKKUNOIDEN ASENNUS OHJE Tarvittavat työkalut Asnnusraudat Sorkkar auta Ruuvja / ruuvja ja tulppia, jos sinä on btonia Vsivaaka Ruuvinväännin Saumausvaahtoa, laajnvaa saumanauhaa, villakaistaa jn. Taivutu spihdit Kiiloja

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

SATE2180 Kenttäteorian perusteet / 5 Laskuharjoitus 2 / Coulombin ja Gaussin lait -> sähkökentän voimakkuus ja sähkövuon tiheys

SATE2180 Kenttäteorian perusteet / 5 Laskuharjoitus 2 / Coulombin ja Gaussin lait -> sähkökentän voimakkuus ja sähkövuon tiheys ATE180 Kenttäteoian peusteet 018 1 / Tehtävä 1. Pisteessä P 1 (,, -4) sijaitsee - mc suuuinen negatiivinen vaaus ja pisteessä P (1, -4, ) on positiivinen C vaaus. Määitä positiiviseen vaaukseen vaikuttava

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei

Lisätiedot

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011

S-55.1220 Piirianalyysi 2 Tentti 27.10.2011 S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω

Lisätiedot

OULUN YLIOPISTO Konetekniikan osasto 460071A Autojen ja työkoneiden rakennejärjestelmät I 5 op Mauri Haataja. 1. Pyöräajoneuvojen ominaisohjaus

OULUN YLIOPISTO Konetekniikan osasto 460071A Autojen ja työkoneiden rakennejärjestelmät I 5 op Mauri Haataja. 1. Pyöräajoneuvojen ominaisohjaus OUUN YIOPISTO Konetekniikan osasto 467A Atojen ja työkoneiden rakennejärjestelmät I 5 op Mari Haataja. Pyöräajonevojen ominaisohjas. Henkilöatojen pyöräntenta Hyötyajonevojen ajo-ominaisksiin vaikttavat

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

AS Säätötekniikan matemaattiset apuneuvot Esimerkkitentti (vuodelta 1998)

AS Säätötekniikan matemaattiset apuneuvot Esimerkkitentti (vuodelta 1998) S-7 Sääöniin mmi pnvo Eimrini vodl 998 niä oll mn irj Virnn Sääöniin mmii mriiin vioi drminni äänimriii Millä vioidn j rvoill äänimriii on olm? Millä prmrin rlirvoill mriii on inglrinn äänimriii i ol n

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt.

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt. Liit 6 Mäntyharjun lukion järjstyssääntö Lukion työskntlyä ohjaavat lukiolaki, lukioastus, optushallituksn ohjt, koulutoimn toimintasääntö ja järjstyssäännöt. Järjstyssääntöjn tavoittna on turvata kouluyhtisön

Lisätiedot

RATKAISUT: Kertaustehtäviä

RATKAISUT: Kertaustehtäviä hysica 6 OETTAJAN OAS 1. painos 1(16) : Luku 1 1. c) 1 0,51 A c) 0,6 A 1 0,55 A 0,6 A. b) V B 4,0 V c) U BC,0 V b) 4,0 V c),0 V 3. a) Kichhoffin. 1 + 3 1 3 4 0,06 A 0,06 A 0 V. b) Alin lamppu syttyy. Kokonaisvita

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Ulvilan kaupunki. Ulvilan Kaasmarkun Ryöpäkinmäen ja Fatiporin pohjoispuolen liito-oravaselvitys 2014 AHLMAN GROUP OY

Ulvilan kaupunki. Ulvilan Kaasmarkun Ryöpäkinmäen ja Fatiporin pohjoispuolen liito-oravaselvitys 2014 AHLMAN GROUP OY Ulvilan kaupunki Ulvilan Kaasmarkun Ryöpäkinmän ja Faporin pohjoispuoln liito-oravaslvitys 204 AHLN GROUP OY RAPORTTEJA 3/204 SISÄLLYSLUETTELO Johdanto... 3 Raporsta... 3 Slvitysaluidn yliskuvaukst...

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,

Lisätiedot

Koordinaatiston muunnokset. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista)

Koordinaatiston muunnokset. Kari Tammi, Tommi Lintilä (Janne Ojalan kalvoista) Koodinaatiston muunnokset Kai Tammi, Tommi Lintilä (Janne Ojalan kalvoista) Monikappalesimulointikussi Olisitko kiinnostunut käymään kussin Kon-16.411 Monikappalesimulointi? Kussi jäjestettiin viimeisen

Lisätiedot

Q Q 3. [mm 2 ] 1 1 = L

Q Q 3. [mm 2 ] 1 1 = L EDE-00 Elementtimenetelmän perusteet. Harjoitus 5r Syksy 03. 400 mm 0 kn 600 mm A 400 mm B 8 kn 300 mm 5 kn 000 mm 8 kn 300 mm 300 mm 00 mm. Määritä pisteiden A ja B siirtymät elementtimenetelmällä, kun

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

SUORITUSTASOILMOITUS

SUORITUSTASOILMOITUS Nro 1.4003 Tuotetyypin yksilöllinen tunniste: 1.4003 EN 100884:2009 EN 100884:2009 Mitta ja muototoleranssit Toleranssit standardien EN ISO 94442 ja EN ISO 94452 mukaan 0,2%venymisraja (myötöraja) Rp0,2

Lisätiedot

KEINULAUDANTIE 3 & 5. Ideasuunnitelma

KEINULAUDANTIE 3 & 5. Ideasuunnitelma KEINULAUDANTIE & Idesuunnitelm Arkkitehtuuritoimisto B& Oy..07 Orthoilmkuv 0, Helsingin kupunki Ajnts-semkv, Helsingin kupunki KEINULAUDANTIE JA / IDEASUUNNITELA..07 0 7 Pmo 8 0 8 8 0 8 0 8 7 0 0 8 0 0

Lisätiedot

MIKROTEORIA, HARJOITUS 3 KYSYNTÄ YLI AJAN JA EPÄVARMUUDEN VALLITESSA, OSTAJANA JA MYYJÄNÄ, SEKÄ TYÖN TARJONTA

MIKROTEORIA, HARJOITUS 3 KYSYNTÄ YLI AJAN JA EPÄVARMUUDEN VALLITESSA, OSTAJANA JA MYYJÄNÄ, SEKÄ TYÖN TARJONTA MIKROTEORI, HRJOITUS 3 KYSYNTÄ YLI JN J EPÄVRMUUEN VLLITESS, OSTJN J MYYJÄNÄ, SEKÄ TYÖN TRJONT Voistojen eistämässä kylässä kasvatetaan ainoana elinkeinona vehnää Sadot vaihtelevat vosittain, siten, että

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Tilastolliset menetelmät: Varianssianalyysi

Tilastolliset menetelmät: Varianssianalyysi Variassiaalsi Tilastolliset meetelmät: Variassiaalsi 0. Ysisuutaie variassiaalsi. asisuutaie variassiaalsi. olmi a useampisuutaie variassiaalsi T @ Ila Melli (006) 433 Variassiaalsi T @ Ila Melli (006)

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuja viikolle 5. ( ) Jeremias Berg Disreeti Matematiia Paja Rataisuja viiolle 5. (28.4-29.4 Jeremias Berg Yleisiä ommeteja: Näissä tehtävissä aia usei rataisua oli ysittäie lasu. Kuitei vastausee olisi hyvä lisätä ommeteja siitä misi jou

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet vä9 / orms.3 Talousmatmatiian prustt 6. harjoitus, viio 9 45...3.9 L Ma A R5 Ti 4 6 F453 R Ma 4 F453 L To 8 A R Ma 6 8 F453 R6 To 4 F4 R3 Ti 8 F45 R7 P 8 F453 R4 Ti 4 F453 R8 P F453. Las intgraalit a 6x

Lisätiedot

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen

MUUNTAJAT. KAAVAT ideaalimuuntajalle 2 I2 Z. H. Honkanen MTAJAT H. Honkann Muuntaja on lait, jossa nsiön vaihtovita saa aikaan muuttuvan magnttikntän muuntajasydämn. Tämä muuttuva magnttiknttä saa aikaan vian toisiokäämiin. Tasasähköllä muuntaja i toimi, tasavita

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset alkaen

Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset alkaen Sivistyslautakunta 40 16.05.2017 Veittijärvi-Moision ja Vuorentausta-Soppeenharjun kouluyksiköiden nimien muutokset 1.8.2017 alkaen 606/01.017/2016 SIVLTK 16.05.2017 40 Sivistysjohtaja Matti Hursti: Sivistysjohtajan

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1. 6/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 6: Asiaalinen sauvaelementti, osa. ASIAALINEN RAENNE L, A, E L, A, E L, A, E uva. Asiaalinen raenne. Asiaalinen raenne taroittaa tässä yhteydessä raennetta, joa oostuu

Lisätiedot

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut Tknillinn korkakoulu Mat-5.187 Epälinaarisn lmnttimntlmän prustt (Mikkola/Ärölä) 11. harjoituksn ratkaisut Tht. 1 Rfrnssitilan suurita käyttän (kokonais-lagrang) lausuttu hto krittisn aika-askln pituudll

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Opittavia asioita. Mitä marsilainen sanoi musiikkikaupassa flyygelille? Lopeta tuo idioottimainen hymyily!

Opittavia asioita. Mitä marsilainen sanoi musiikkikaupassa flyygelille? Lopeta tuo idioottimainen hymyily! 1. Pörinää! Opittavia asioita Laulan reippaasti hyvässä lauluasennossa. Soitan soittimia. Kuuntelen keskittyneesti. Keksin sanoja, ääniä, rytmejä, liikkeitä ja sooloja. Opin rytminuotit taa ja ti-ti sekä

Lisätiedot

Matemaattiset apuneuvot II, harjoitus 6

Matemaattiset apuneuvot II, harjoitus 6 Matemaattiset apuneuvot II, hajoitus 6 K. Tuominen 0. joulukuuta 207 Palauta atkaisusi Moodlessa.pdf tiedostona maanantaina.2. kello 0:5 mennessä. Mekitse vastauspapeiin laskuhajoitusyhmäsi assain nimi.

Lisätiedot

18. SIPOREX-VAAKAELEMENTTISEINÄN SUUNNITTELU

18. SIPOREX-VAAKAELEMENTTISEINÄN SUUNNITTELU E 18. SIPOREX-VAAKAELEMENTTISEINÄN SUUNNITTELU 18.1 Rakntllinn suunnittlu Kuormaluokka Siporx-vaakasinälmntit mitoittaan ylnsä vaakasuorall kuormall (usimmitn tuulikuormall) yksiaukkoisna palkkina. Valmistaja

Lisätiedot

Maanjäristyksen kestävien kytkentäkotelotelineiden suunnittelu

Maanjäristyksen kestävien kytkentäkotelotelineiden suunnittelu Lari Nosiainen Maanjäristyksen kestävien kytkentäkotelotelineiden snnittel Metropolia Ammattikorkeakol Insinööri (AMK) Kone- ja totantotekniikka Insinöörityö 3.4.14 Tiivistelmä Tekijä Otsikko Sivmäärä

Lisätiedot

M8 pl 215 (Lentoasemantie materiaa / yht. määrä li

M8 pl 215 (Lentoasemantie materiaa / yht. määrä li Jyväsn Enegia Oy Kustannusavio (yeissuunnitema) VT 4 vää, Johtosiiot 5.9.2012, / askettu Destia Oy:n tiesuunniteman peusteea nnusosa t kaivu (m3kt) määä / yht. määä / yht. määä M6 p120 (Tikkakoskentie)

Lisätiedot

S-market Sykkeen Herkkukeittiöstä voit tilata helposti suolaiset ja makeat herkut arkeen ja juhlaan.

S-market Sykkeen Herkkukeittiöstä voit tilata helposti suolaiset ja makeat herkut arkeen ja juhlaan. Heruettö S-mret Syeen Heruettöstä vot tlt helpost suolset j met herut reen j juhln. Tässä nsoss errotn er vhtoehdost. Teemme uj myös täysn sn toveden mun. Tluset j lsätedot myymälästä t puhelmtse, p. 044-0840

Lisätiedot

Täydellistä harmoniaa.

Täydellistä harmoniaa. Geberit Oy Tahkotie 1 01530 VANTAA puh. 09 867 8450 fax. 09 867 84577 myynti.fi@geberit.com www.geberit.fi Täydellitä harmoniaa. Geberit huuhtelupainikkeet FI/01.2015/1817925 Geberit Geberit piilohuuhteluäiliöiä

Lisätiedot

PVC-muovista valmistettu sileäpintainen maaviemärijärjestelmä 04 I 2009 51009

PVC-muovista valmistettu sileäpintainen maaviemärijärjestelmä 04 I 2009 51009 U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A U p o n o r - M A Av i e m ä r i - j ä r j e s t e l m ä P V C Viettoviemärijärjestelmät PVC-muovista valmistettu sileäpintainen

Lisätiedot

q =, r = a b a = bq + r, b/2 <r b/2.

q =, r = a b a = bq + r, b/2 <r b/2. Luuteoria I Harjoitusia 2009 1 Osoita, että (a x = x x R, (b x x< x +1 x R, (c x + = x + x R, Z, (d x + y x + y x, y R, (e x y xy x, y R 0 2 Oloot a, b, q, r Z ja a = qb + r, 0 r< b Näytä, että a a q =,

Lisätiedot