802320A LINEAARIALGEBRA OSA I
|
|
- Aku Karjalainen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72
2 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus + eli kuvaus + : V V V, (v, w) v + w, missä v + w V, kun v V ja w V sekä LINEAARIALGEBRA 2 / 72
3 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus + eli kuvaus + : V V V, (v, w) v + w, missä v + w V, kun v V ja w V sekä laskutoimitus eli kuvaus : K V V, (k, v) k v, missä k v V, kun k K ja v V. LINEAARIALGEBRA 2 / 72
4 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: LINEAARIALGEBRA 3 / 72
5 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: LINEAARIALGEBRA 3 / 72
6 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). LINEAARIALGEBRA 3 / 72
7 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). (b) v + w = w + v kaikilla v, w V (vaihdannaisuus). LINEAARIALGEBRA 3 / 72
8 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). (b) v + w = w + v kaikilla v, w V (vaihdannaisuus). (c) On olemassa neutraalialkio 0 V, jolle 0 + v = v kaikilla v V. LINEAARIALGEBRA 3 / 72
9 Määritelmä ja esimerkkejä Määritelmä 1 Pari (K, V ) on K-kertoiminen lineaariavaruus eli vektoriavaruus, jos laskutoimitukset toteuttavat seuraavat aksiomit eli ehdot: 1. Yhteenlaskun aksiomit: (a) u + (v + w) = (u + v) + w kaikilla u, v, w V (liitännäisyys). (b) v + w = w + v kaikilla v, w V (vaihdannaisuus). (c) On olemassa neutraalialkio 0 V, jolle 0 + v = v kaikilla v V. (d) Kaikilla v V on olemassa vasta-alkio v V, jolle v + ( v) = 0. LINEAARIALGEBRA 3 / 72
10 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: LINEAARIALGEBRA 4 / 72
11 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. LINEAARIALGEBRA 4 / 72
12 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. LINEAARIALGEBRA 4 / 72
13 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. 3. Osittelulait: LINEAARIALGEBRA 4 / 72
14 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. 3. Osittelulait: (a) λ (v + w) = λ v + λ w kaikilla v, w V ja λ K. LINEAARIALGEBRA 4 / 72
15 Määritelmä ja esimerkkejä 2. Skalaarilla kertomisen aksiomit: (a) (λµ) v = λ (µ v) kaikilla v V ja λ, µ K. (b) 1 v = v kaikilla v V. 3. Osittelulait: (a) λ (v + w) = λ v + λ w kaikilla v, w V ja λ K. (b) (λ + µ) v = λ v + µ v kaikilla v V ja λ, µ K. LINEAARIALGEBRA 4 / 72
16 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi LINEAARIALGEBRA 5 / 72
17 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi LINEAARIALGEBRA 5 / 72
18 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi LINEAARIALGEBRA 5 / 72
19 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi sekä joukon K alkioita skalaareiksi. LINEAARIALGEBRA 5 / 72
20 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi sekä joukon K alkioita skalaareiksi. Edelleen laskutoimitusta + kutsutaan yhteenlaskuksi ja LINEAARIALGEBRA 5 / 72
21 Määritelmä ja esimerkkejä Määritelmän 1 mukaista joukkoa V kutsutaan lineaariavaruudeksi eli vektoriavaruudeksi kunnan K yli tai K-lineaariavaruudeksi tai K-vektoriavaruudeksi ja annettuja ehtoja sanotaan lineaariavaruuden V aksiomeiksi ja joukon V alkioita voidaan kutsua vektoreiksi sekä joukon K alkioita skalaareiksi. Edelleen laskutoimitusta + kutsutaan yhteenlaskuksi ja laskutoimitusta skalaarilla kertomiseksi. LINEAARIALGEBRA 5 / 72
22 Määritelmä ja esimerkkejä Erikoistapauksia: Esimerkki 1 Reaalinen vektoriavaruus, kun K = R. Tällöin yhteenlasku + on kuvaus + : V V V ja reaaliluvulla kertominen on kuvaus : R V V. LINEAARIALGEBRA 6 / 72
23 Määritelmä ja esimerkkejä Esimerkki 2 Kompleksinen vektoriavaruus, kun K = C. Tällöin yhteenlasku + on kuvaus + : V V V ja kompleksiluvulla kertominen on kuvaus : C V V. LINEAARIALGEBRA 7 / 72
24 Määritelmä ja esimerkkejä Huomautus 1 Identiteetin v = w molemmille puolin saa lisätä saman alkion y, jolloin v + y = w + y. LINEAARIALGEBRA 8 / 72
25 Määritelmä ja esimerkkejä Merkintä 1 Yleensä kertolasku jätetään merkitsemättä eli tehdään samaistus: λv := λ v. LINEAARIALGEBRA 9 / 72
26 Määritelmä ja esimerkkejä Merkintä 1 Yleensä kertolasku jätetään merkitsemättä eli tehdään samaistus: λv := λ v. Merkintä 2 λ v := (λ v). LINEAARIALGEBRA 9 / 72
27 Määritelmä ja esimerkkejä Merkintä 1 Yleensä kertolasku jätetään merkitsemättä eli tehdään samaistus: λv := λ v. Merkintä 2 λ v := (λ v). Merkintä 3 Asetetaan u v := u + ( v). (1) LINEAARIALGEBRA 9 / 72
28 Määritelmä ja esimerkkejä Esimerkki 3 Joukko R n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) R n, y = (y 1,..., y n ) R n identtisyys, yhteenlasku ja reaaliluvulla λ kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti R 1 on vektoriavaruus, joka voidaan samaistaa R:n kanssa. LINEAARIALGEBRA 10 / 72
29 Määritelmä ja esimerkkejä Lähtökohtana on, että reaaliluvut on kunta, jolloin reaaliluvut toteuttavat kunta-aksiomit eli liitännäisyyden, vaihdannaisuuden, etc. LINEAARIALGEBRA 11 / 72
30 Määritelmä ja esimerkkejä Lähtökohtana on, että reaaliluvut on kunta, jolloin reaaliluvut toteuttavat kunta-aksiomit eli liitännäisyyden, vaihdannaisuuden, etc. Aluksi nähdään, että reaalilukujen assosiatiivisuus-ominaisuus nousee vektoreiden assosiatiivisuudeksi. LINEAARIALGEBRA 11 / 72
31 Määritelmä ja esimerkkejä Lähtökohtana on, että reaaliluvut on kunta, jolloin reaaliluvut toteuttavat kunta-aksiomit eli liitännäisyyden, vaihdannaisuuden, etc. Aluksi nähdään, että reaalilukujen assosiatiivisuus-ominaisuus nousee vektoreiden assosiatiivisuudeksi. Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1a (liitännäisyys) eli kaikilla x, y, z R n. x + (y + z) = (x + y) + z LINEAARIALGEBRA 11 / 72
32 Määritelmä ja esimerkkejä Lasketaan ensin vasen puoli x + (y + z) =(x 1,..., x n ) + ((y 1,..., y n ) + (z 1,..., z n )) = (x 1,..., x n ) + (y 1 + z 1,..., y n + z n ) = (x 1 + (y 1 + z 1 ),..., x n + (y n + z n )) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ), missä koordinaateissa on käytetty reaalilukujen liitännäisyyttä. LINEAARIALGEBRA 12 / 72
33 Määritelmä ja esimerkkejä Lasketaan ensin vasen puoli x + (y + z) =(x 1,..., x n ) + ((y 1,..., y n ) + (z 1,..., z n )) = (x 1,..., x n ) + (y 1 + z 1,..., y n + z n ) = (x 1 + (y 1 + z 1 ),..., x n + (y n + z n )) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ), missä koordinaateissa on käytetty reaalilukujen liitännäisyyttä. Ja sitten oikea puoli (x + y) + z =((x 1,..., x n ) + (y 1,..., y n )) + (z 1,..., z n ) = (x 1 + y 1,..., x n + y n ) + (z 1,..., z n ) = ((x 1 + y 1 ) + z 1,..., (x n + y n ) + z n ). Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x, y, z R n. LINEAARIALGEBRA 12 / 72
34 Määritelmä ja esimerkkejä Seuraavaksi osoitetaan, että nolla-alkio on (0,..., 0). Lasketaan siis: x +(0,..., 0) = (x 1,..., x n )+(0,..., 0) = (x 1 +0,..., x n +0) = (x 1,..., x n ) = x, joka pätee kaikilla x R n. Siten 0 = (0,..., 0). LINEAARIALGEBRA 13 / 72
35 Määritelmä ja esimerkkejä Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. LINEAARIALGEBRA 14 / 72
36 Määritelmä ja esimerkkejä Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. Lasketaan ensin vasen puoli (λµ) x = (λµ) (x 1,..., x n ) = (λµx 1,..., λµx n ) (2) LINEAARIALGEBRA 14 / 72
37 Määritelmä ja esimerkkejä Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. Lasketaan ensin vasen puoli ja sitten oikea puoli (λµ) x = (λµ) (x 1,..., x n ) = (λµx 1,..., λµx n ) (2) λ (µ x) = λ (µx 1,..., µx n ) = (λµx 1,..., λµx n ). (3) LINEAARIALGEBRA 14 / 72
38 Määritelmä ja esimerkkejä Osoitetaan vielä Vektoriavaruuden Määritelmän 1 kohta 2(a) eli (λµ) x = λ (µ x) kaikilla x R n ja λ, µ R. Lasketaan ensin vasen puoli ja sitten oikea puoli (λµ) x = (λµ) (x 1,..., x n ) = (λµx 1,..., λµx n ) (2) λ (µ x) = λ (µx 1,..., µx n ) = (λµx 1,..., λµx n ). (3) Havaitaan, että vasen ja oikea puoli ovat samat kaikilla x R n ja λ, µ R. LINEAARIALGEBRA 14 / 72
39 Määritelmä ja esimerkkejä Esimerkki 4 Olkoon K kunta. Tällöin joukko K n, n Z + on vektoriavaruus, kun vektoreiden x = (x 1,..., x n ) K n, y = (y 1,..., y n ) K n identtisyys, yhteenlasku ja skalaarilla λ K kertominen määritellään koordinaateittain: x = y x i = y i i = 1,..., n; x + y = (x 1 + y 1,..., x n + y n ); λ x = (λx 1,..., λx n ). Erityisesti K 1 on vektoriavaruus, joka voidaan samaistaa K:n kanssa. LINEAARIALGEBRA 15 / 72
40 Määritelmä ja esimerkkejä Esimerkki 5 Joukko M(k, n) = {A A on k n matriisi} on vektoriavaruus, kun se varustetaan tavallisella matriisien yhteenlaskulla ja reaaliluvulla kertomisella. LINEAARIALGEBRA 16 / 72
41 Määritelmä ja esimerkkejä Esimerkki 6 Olkoon F(R, R) = {f f : R R on kuvaus}. Määritellään kaikilla f, g F(R, R) ja λ R identtisyys, yhteenlasku ja reaaliluvulla kertominen seuraavasti: f = g, jos f (x) = g(x) (4) (f + g)(x) = f (x) + g(x) (5) (λ f )(x) = λf (x) (6) kaikilla x R. Tällöin F(R, R) on vektoriavaruus. LINEAARIALGEBRA 17 / 72
42 Määritelmä ja esimerkkejä Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1c): Määritellään nollafunktio O asettamalla O(x) = 0 x R. (7) LINEAARIALGEBRA 18 / 72
43 Määritelmä ja esimerkkejä Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1c): Määritellään nollafunktio O asettamalla Tällöin O(x) = 0 x R. (7) (O + f )(x) = O(x) + f (x) = 0 + f (x) = f (x) x R, (8) LINEAARIALGEBRA 18 / 72
44 Määritelmä ja esimerkkejä Osoitetaan Vektoriavaruuden Määritelmän 1 kohta 1c): Määritellään nollafunktio O asettamalla Tällöin O(x) = 0 x R. (7) (O + f )(x) = O(x) + f (x) = 0 + f (x) = f (x) x R, (8) joten funktioiden identtisyyden nojalla O + f = f. (9) Siten nollafunktio on yhteenlaskun neutraalialkio funktioavaruudessa. LINEAARIALGEBRA 18 / 72
45 Määritelmä ja esimerkkejä Osoitetaan kohta 1d): Määritellään f asettamalla ( f )(x) = f (x) x R. (10) Tällöin (f + ( f ))(x) = f (x) + ( f )(x) = f (x) f (x) = 0 = O(x) x R, (11) joten funktioiden identtisyyden nojalla f + ( f ) = O. (12) Siten f on alkion f vasta-alkio funktioavaruudessa. LINEAARIALGEBRA 19 / 72
46 Laskusääntöjä Lause 1 Olkoon V vektoriavaruus. Tällöin (a) yhteenlaskun neutraalialkio on yksikäsitteinen; LINEAARIALGEBRA 20 / 72
47 Laskusääntöjä Lause 1 Olkoon V vektoriavaruus. Tällöin (a) yhteenlaskun neutraalialkio on yksikäsitteinen; (b) vektorin vasta-alkio on yksikäsitteinen; LINEAARIALGEBRA 20 / 72
48 Laskusääntöjä Lause 1 Olkoon V vektoriavaruus. Tällöin (a) yhteenlaskun neutraalialkio on yksikäsitteinen; (b) vektorin vasta-alkio on yksikäsitteinen; (c) kaikilla v, w V on olemassa täsmälleen yksi x V, jolle v + x = w (toisin sanoen yhtälöllä v + x = w on yksikäsitteinen ratkaisu). Koska (V, +) on Abelin ryhmä, niin todistukset löytyvät kurssilta A Algebran perusteet. LINEAARIALGEBRA 20 / 72
49 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee LINEAARIALGEBRA 21 / 72
50 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; LINEAARIALGEBRA 21 / 72
51 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; LINEAARIALGEBRA 21 / 72
52 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; c] ( v) = v; LINEAARIALGEBRA 21 / 72
53 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; c] ( v) = v; d] (v + w) = v w; LINEAARIALGEBRA 21 / 72
54 Laskusääntöjä Lause 2 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio ja 0 K. Kaikilla v, w V ja λ, µ K pätee a] 0 v = λ 0 = 0; b] ( 1) v = v; c] ( v) = v; d] (v + w) = v w; e] λ v = ( λ) v = λ ( v); LINEAARIALGEBRA 21 / 72
55 Laskusääntöjä f] ( λ) ( v) = λ v; LINEAARIALGEBRA 22 / 72
56 Laskusääntöjä f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; LINEAARIALGEBRA 22 / 72
57 Laskusääntöjä f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; LINEAARIALGEBRA 22 / 72
58 Laskusääntöjä f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; i] λ v = 0 jos ja vain jos λ = 0 tai v = 0; LINEAARIALGEBRA 22 / 72
59 Laskusääntöjä f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; i] λ v = 0 jos ja vain jos λ = 0 tai v = 0; j] Jos λ v = λ w ja λ 0, niin v = w; LINEAARIALGEBRA 22 / 72
60 Laskusääntöjä f] ( λ) ( v) = λ v; g] λ (v w) = λ v λ w; h] (λ µ) v = λ v µ v; i] λ v = 0 jos ja vain jos λ = 0 tai v = 0; j] Jos λ v = λ w ja λ 0, niin v = w; k] Jos λ v = µ v ja v 0, niin λ = µ. LINEAARIALGEBRA 22 / 72
61 Laskusääntöjä Todistetaan kohdan LINEAARIALGEBRA 23 / 72
62 Laskusääntöjä Todistetaan kohdan a] tapaus: 0 v = 0. LINEAARIALGEBRA 23 / 72
63 Laskusääntöjä Todistetaan kohdan a] tapaus: 0 v = 0. Aluksi 0 v = (0 + 0) v = 0 v + 0 v. (13) LINEAARIALGEBRA 23 / 72
64 Laskusääntöjä Todistetaan kohdan a] tapaus: 0 v = 0. Aluksi 0 v = (0 + 0) v = 0 v + 0 v. (13) Lisätään vasta-alkio 0 v yhtälön molemmille puolille, jolloin 0 = 0 v + ( 0 v) = (0 v + 0 v) + ( 0 v) = 0 v + (0 v 0 v) = 0 v + 0 = 0 v. (14) LINEAARIALGEBRA 23 / 72
65 Laskusääntöjä b] ( 1) v = v. LINEAARIALGEBRA 24 / 72
66 Laskusääntöjä b] ( 1) v = v. Lasketaan ( 1) v + v: ( 1) v + v = ( 1) v + 1 v = ( 1 + 1) v = 0 v = 0. (15) Täten vasta-alkion määritelmän ja yksikäsitteisyyden nojalla ( 1) v = v. LINEAARIALGEBRA 24 / 72
67 Laskusääntöjä e] Osoitetaan tapaus λ v = ( λ) v käyttämällä b]-kohdan tulosta w = ( 1) w. LINEAARIALGEBRA 25 / 72
68 Laskusääntöjä e] Osoitetaan tapaus λ v = ( λ) v käyttämällä b]-kohdan tulosta w = ( 1) w. Lasketaan V.P = λ v = ( 1) (λ v) = (( 1)λ) v = ( λ) v = O.P. (16) LINEAARIALGEBRA 25 / 72
69 Laskusääntöjä i] Esitetään ensin väite muodossa: λ v = 0 λ = 0 tai v = 0. LINEAARIALGEBRA 26 / 72
70 Laskusääntöjä i] Esitetään ensin väite muodossa: λ v = 0 λ = 0 tai v = 0. :n todistus: Oletuksena on, että λ = 0 tai v = 0. Nyt on osoitettava, että λ v = 0. LINEAARIALGEBRA 26 / 72
71 Laskusääntöjä i] Esitetään ensin väite muodossa: λ v = 0 λ = 0 tai v = 0. :n todistus: Oletuksena on, että λ = 0 tai v = 0. Nyt on osoitettava, että λ v = 0. Katso a]-kohta. LINEAARIALGEBRA 26 / 72
72 Laskusääntöjä :n todistus: Nyt oletuksena on On siis osoitettava, että λ = 0 tai v = 0. λ v = 0. (17) LINEAARIALGEBRA 27 / 72
73 Laskusääntöjä :n todistus: Nyt oletuksena on λ v = 0. (17) On siis osoitettava, että λ = 0 tai v = 0. Tehdään vastaoletus: λ 0 ja v 0. LINEAARIALGEBRA 27 / 72
74 Laskusääntöjä :n todistus: Nyt oletuksena on On siis osoitettava, että λ = 0 tai v = 0. Tehdään vastaoletus: λ 0 ja v 0. λ v = 0. (17) Tällöin λ 1 K, joten yhtälö (17) voidaan kertoa puolittain alkiolla λ 1. Saadaan λ 1 (λ v) = λ 1 0 (λ 1 λ) v = 0 1 v = v = 0. (18) Ristiriita vastaoletuksen kanssa. LINEAARIALGEBRA 27 / 72
75 Aliavaruus Määritelmä 2 Vektoriavaruuden V epätyhjä osajoukko W on vektoriavaruuden V aliavaruus, jos W on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen, toisin sanoen LINEAARIALGEBRA 28 / 72
76 Aliavaruus Määritelmä 2 Vektoriavaruuden V epätyhjä osajoukko W on vektoriavaruuden V aliavaruus, jos W on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen, toisin sanoen 1 W V ; 2 jos w 1, w 2 W, niin w 1 + w 2 W ; 3 jos w W ja λ K, niin λw W. LINEAARIALGEBRA 28 / 72
77 Aliavaruus Seuraava lause antaa hyvän tavan todeta joukko vektoriavaruudeksi: Osoitetaan joukko jonkin tunnetun vektoriavaruuden aliavaruudeksi. Lause 3 Epätyhjä joukko W V on vektoriavaruuden V aliavaruus jos ja vain jos W varustettuna avaruuden V yhteenlaskulla ja skalaarilla kertomisella on vektoriavaruus. LINEAARIALGEBRA 29 / 72
78 Aliavaruus Esimerkki 7 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. LINEAARIALGEBRA 30 / 72
79 Aliavaruus Esimerkki 7 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. LINEAARIALGEBRA 30 / 72
80 Aliavaruus Esimerkki 7 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. AA1. Koska 0 W 0, niin W 0. LINEAARIALGEBRA 30 / 72
81 Aliavaruus Esimerkki 7 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. AA1. Koska 0 W 0, niin W 0. AA2. Olkoot w 1, w 2 W 0. Tällöin w 1 = w 2 = 0 ja siten w 1 + w 2 = 0 W 0. LINEAARIALGEBRA 30 / 72
82 Aliavaruus Esimerkki 7 Olkoon V vektoriavaruus ja 0 V sen nolla-alkio. Tällöin osajoukot {0} ja V ovat vektoriavaruuden V aliavaruuksia. Todistetaan, että {0} on aliavaruus. Merkitään hetkeksi W 0 = {0}. AA1. Koska 0 W 0, niin W 0. AA2. Olkoot w 1, w 2 W 0. Tällöin w 1 = w 2 = 0 ja siten w 1 + w 2 = 0 W 0. AA3. Olkoot λ K ja w W 0. Tällöin w = 0 ja siten λ w = λ 0 = 0 W 0. Huomautus 2 Sanotaan, että {0} ja V ovat triviaalit aliavaruudet. LINEAARIALGEBRA 30 / 72
83 Aliavaruus Esimerkki 8 Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. LINEAARIALGEBRA 31 / 72
84 Aliavaruus Esimerkki 8 Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. AA1. Koska nollakuvaus O : R R on jatkuva, niin O C(R, R) ja siten C(R, R). LINEAARIALGEBRA 31 / 72
85 Aliavaruus Esimerkki 8 Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. AA1. Koska nollakuvaus O : R R on jatkuva, niin O C(R, R) ja siten C(R, R). AA2. Jos f, g C(R, R), niin f + g on jatkuva ja siten f + g C(R, R). LINEAARIALGEBRA 31 / 72
86 Aliavaruus Esimerkki 8 Joukko C(R, R) = {f f : R R on jatkuva kuvaus} on vektoriavaruuden F(R, R) aliavaruus. AA1. Koska nollakuvaus O : R R on jatkuva, niin O C(R, R) ja siten C(R, R). AA2. Jos f, g C(R, R), niin f + g on jatkuva ja siten f + g C(R, R). AA3. Olkoot λ R ja f C(R, R), tällöin λf on jatkuva, joten λf C(R, R). LINEAARIALGEBRA 31 / 72
87 Aliavaruus Esimerkki 9 Olkoon Pol(R, R) = {f F(R, R) f (x) = a 0 + a 1 x a n x n kaikilla x R joillekin n N ja a 0,..., a n R} eli Pol(R, R) on kaikkien polynomien joukko. Tällöin Pol(R, R) on vektoriavaruuksien C(R, R) ja F(R, R) aliavaruus. LINEAARIALGEBRA 32 / 72
88 Aliavaruus Esimerkki 10 Olkoot k N ja Pol k (R, R) = {f Pol(R, R) polynomin f aste k}. Tällöin Pol k (R, R) on avaruuden Pol(R, R) aliavaruus. Saadaan siis aliavaruusketju Pol 0 (R, R) Pol 1 (R, R)... Pol k (R, R) Pol k+1 (R, R) Pol(R, R) C(R, R) F(R, R). LINEAARIALGEBRA 33 / 72
89 Aliavaruus Huomautus 3 Olkoon K kunta. Yleensä K-kertoimisten polynomien joukolle käytetään merkintää K[x] = {f (x) f (x) = a 0 + a 1 x a n x n joillekin n N ja a 0,..., a n K}. Kun polynomien yhteen- ja kertolasku määritellään tavanomaisesti, niin saadaan polynomirengas (K[x], +, ), missä nolla- ja ykköspolynomit ovat 0(x) = x + 0 x , 1(x) = x + 0 x Edelleen vakiopolynomille a(x) = a + 0 x + 0 x voidaan käyttää lyhennysmerkintää a. LINEAARIALGEBRA 34 / 72
90 Lineaarikombinaatio ja lineaarinen verho Määritelmä 3 Olkoon V vektoriavaruus kunnan K yli. Vektori v V on vektoreiden v 1,..., v n V (äärellinen) lineaarikombinaatio, jos on olemassa sellaiset luvut λ 1,..., λ n K, että v = n λ i v i. (19) i=1 LINEAARIALGEBRA 35 / 72
91 Lineaarikombinaatio ja lineaarinen verho Määritelmä 3 Olkoon V vektoriavaruus kunnan K yli. Vektori v V on vektoreiden v 1,..., v n V (äärellinen) lineaarikombinaatio, jos on olemassa sellaiset luvut λ 1,..., λ n K, että v = n λ i v i. (19) i=1 Esimerkki 11 V = R 3, K = R, v 1 = (1, 1, 0), v 2 = (0, 1, 1), v 3 = (1, 0, 1) ja v = (3, 3, 0). Tällöin v = v 1 + 2v 2 + 2v 3 (20) = 2v 1 + v 2 + v 3. (21) Siten (3, 3, 0) on vektoreiden v 1, v 2 ja v 3 lineaarikombinaatio mutta esitys ei ole yksikäsitteinen. LINEAARIALGEBRA 35 / 72
92 Lineaarikombinaatio ja lineaarinen verho Esimerkki 12 V = C 3, K = C. ( i, i, 2 + i) = 1 ( i, i, i) + 1 (0, 0, 2) (22) = i ( 1, 1, 1) + i (0, 0, 2i). (23) LINEAARIALGEBRA 36 / 72
93 Lineaarikombinaatio ja lineaarinen verho Määritelmä 4 K-vektoriavaruuden V epätyhjän osajoukon S lineaarinen verho S koostuu kaikista joukon S äärellisistä K-lineaarikombinaatioista, toisin sanoen S K = S = {u V u = n λ i v i, i=1 joillekin n N, v 1,..., v n S ja λ 1,..., λ n K}. LINEAARIALGEBRA 37 / 72
94 Lineaarikombinaatio ja lineaarinen verho Esimerkki 13 V = R 2, K = R, e 1 = (1, 0), e 2 = (0, 1). Tällöin e 1, e 2 R = {λ 1 e 1 + λ 2 e 2 = (λ 1, λ 2 ) λ 1, λ 2 R} = R 2. (24) LINEAARIALGEBRA 38 / 72
95 Lineaarikombinaatio ja lineaarinen verho Esimerkki 14 Koska f Pol 1 (R, R) täsmälleen silloin, kun on olemassa sellaiset a 0, a 1 R, että f (x) = a 0 + a 1 x, niin Yleisemmin Pol 1 (R, R) = 1, x R. Pol k (R, R) = 1, x,..., x k R. LINEAARIALGEBRA 39 / 72
96 Lineaarikombinaatio ja lineaarinen verho Lause 4 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Tällöin LINEAARIALGEBRA 40 / 72
97 Lineaarikombinaatio ja lineaarinen verho Lause 4 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Tällöin (a) S K on avaruuden V aliavaruus. LINEAARIALGEBRA 40 / 72
98 Lineaarikombinaatio ja lineaarinen verho Lause 4 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Tällöin (a) S K on avaruuden V aliavaruus. (b) Jos S W ja W on avaruuden V aliavaruus, niin S K W. LINEAARIALGEBRA 40 / 72
99 Lineaarinen vapaus ja riippuvuus Seuraavassa tarkastellaan vektoreiden s 1,..., s n V muodostamia listoja s 1,..., s n, missä n N on listan pituus. LINEAARIALGEBRA 41 / 72
100 Lineaarinen vapaus ja riippuvuus Seuraavassa tarkastellaan vektoreiden s 1,..., s n V muodostamia listoja s 1,..., s n, missä n N on listan pituus. Tapaus n = 0 tarkoittaa, että lista on tyhjä eli listassa ei ole alkioita. LINEAARIALGEBRA 41 / 72
101 Lineaarinen vapaus ja riippuvuus Seuraavassa tarkastellaan vektoreiden s 1,..., s n V muodostamia listoja s 1,..., s n, missä n N on listan pituus. Tapaus n = 0 tarkoittaa, että lista on tyhjä eli listassa ei ole alkioita. LINEAARIALGEBRA 41 / 72
102 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. LINEAARIALGEBRA 42 / 72
103 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. LINEAARIALGEBRA 42 / 72
104 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) LINEAARIALGEBRA 42 / 72
105 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) jos ehdosta n λ i s i = 0, λ 1,..., λ n K, (25) i=1 LINEAARIALGEBRA 42 / 72
106 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) jos ehdosta seuraa, että n λ i s i = 0, λ 1,..., λ n K, (25) i=1 λ 1 = λ 2 =... = λ n = 0. (26) LINEAARIALGEBRA 42 / 72
107 Lineaarinen vapaus ja riippuvuus Määritelmä 5 Olkoon V vektoriavaruus kunnan K yli ja s 1,..., s n V, n N. Tapaus n = 0: Tyhjä lista on lineaarisesti vapaa. Tapaus n 1: Alkiolista s 1,..., s n on lineaarisesti vapaa (kunnan K yli) jos ehdosta seuraa, että n λ i s i = 0, λ 1,..., λ n K, (25) i=1 λ 1 = λ 2 =... = λ n = 0. (26) Muutoin lista s 1,..., s n on lineaarisesti sidottu (kunnan K yli). LINEAARIALGEBRA 42 / 72
108 Lineaarinen vapaus ja riippuvuus Lineaarisesti vapaa=lineaarisesti riippumaton LINEAARIALGEBRA 43 / 72
109 Lineaarinen vapaus ja riippuvuus Lineaarisesti vapaa=lineaarisesti riippumaton vektorit ovat lineaarisesti vapaita eli riippumattomia LINEAARIALGEBRA 43 / 72
110 Lineaarinen vapaus ja riippuvuus Lineaarisesti vapaa=lineaarisesti riippumaton vektorit ovat lineaarisesti vapaita eli riippumattomia lineaarisesti sidottu=lineaarisesti riippuva LINEAARIALGEBRA 43 / 72
111 Lineaarinen vapaus ja riippuvuus Lineaarisesti vapaa=lineaarisesti riippumaton vektorit ovat lineaarisesti vapaita eli riippumattomia lineaarisesti sidottu=lineaarisesti riippuva vektorit ovat lineaarisesti sidottuja eli riippuvia LINEAARIALGEBRA 43 / 72
112 Lineaarinen vapaus ja riippuvuus Lause 5 Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) LINEAARIALGEBRA 44 / 72
113 Lineaarinen vapaus ja riippuvuus Lause 5 Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) jos ja vain jos LINEAARIALGEBRA 44 / 72
114 Lineaarinen vapaus ja riippuvuus Lause 5 Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) jos ja vain jos on olemassa sellaiset luvut λ 1,..., λ n K, että n λ i s i = 0 (27) ja ainakin yksi λ i 0, 1 i n. i=1 LINEAARIALGEBRA 44 / 72
115 Lineaarinen vapaus ja riippuvuus Lause 5 Olkoot V vektoriavaruus kunnan K yli ja s 1,..., s n V, n Z +. Alkiolista s 1,..., s n on lineaarisesti riippuva (kunnan K yli) jos ja vain jos on olemassa sellaiset luvut λ 1,..., λ n K, että n λ i s i = 0 (27) ja ainakin yksi λ i 0, 1 i n. i=1 LINEAARIALGEBRA 44 / 72
116 Lineaarinen vapaus ja riippuvuus Esimerkki 15 Tutkitaan listaa s 1, s 2, missä vektorit ovat identtiset eli s 1 = s 2 = s. Tällöin 1 s 1 + ( 1) s 2 = s s = 0, joten lista s 1, s 2 = s, s on lineaarisesti sidottu. LINEAARIALGEBRA 45 / 72
117 Lineaarinen vapaus ja riippuvuus Esimerkki 15 Tutkitaan listaa s 1, s 2, missä vektorit ovat identtiset eli s 1 = s 2 = s. Tällöin 1 s 1 + ( 1) s 2 = s s = 0, joten lista s 1, s 2 = s, s on lineaarisesti sidottu. Edelleen kaikki listat, joissa on toisto eli sama alkio esiintyy vähintään kahdesti, ovat lineaarisesti sidottuja. LINEAARIALGEBRA 45 / 72
118 Lineaarinen vapaus ja riippuvuus Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. LINEAARIALGEBRA 46 / 72
119 Lineaarinen vapaus ja riippuvuus Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. Siten on luonnollista sanoa, että joukko S = {s 1,..., s n } on lineaarisesti vapaa. LINEAARIALGEBRA 46 / 72
120 Lineaarinen vapaus ja riippuvuus Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. Siten on luonnollista sanoa, että joukko S = {s 1,..., s n } on lineaarisesti vapaa. Tyhjää listaa vastaa tyhjä joukko, jonka takia sovitaan, että on lineaarisesti vapaa. LINEAARIALGEBRA 46 / 72
121 Lineaarinen vapaus ja riippuvuus Olkoon s 1,..., s n, n N, lineaarisesti vapaa lista. Tällöin listassa ei esiinny toistoa, joten listassa ja joukossa S = {s 1,..., s n } on sama määrä alkioita. Siten on luonnollista sanoa, että joukko S = {s 1,..., s n } on lineaarisesti vapaa. Tyhjää listaa vastaa tyhjä joukko, jonka takia sovitaan, että on lineaarisesti vapaa. Edelleen, jos listassa s 1,..., s n, n Z + ei ole toistoa ja lista on lineaarisesti sidottu, niin myös vastaavaa joukkoa S = {s 1,..., s n } sanotaan lineaarisesti sidotuksi. LINEAARIALGEBRA 46 / 72
122 Lineaarinen vapaus ja riippuvuus Esimerkki 16 Nolla-alkion muodostama lista 0 on lineaarisesti sidottu, koska 1 0 = 0. Siten joukko {0} on lineaarisesti sidottu. LINEAARIALGEBRA 47 / 72
123 Lineaarinen vapaus ja riippuvuus Esimerkki 16 Nolla-alkion muodostama lista 0 on lineaarisesti sidottu, koska 1 0 = 0. Siten joukko {0} on lineaarisesti sidottu. Esimerkki 17 Olkoon 0 v V. Alkion v muodostama lista v on lineaarisesti vapaa, koska ehdosta λ v = 0 seuraa λ = 0. Niinpä yhden vektorin muodostama joukko {v} on lineaarisesti vapaa, jos v 0. LINEAARIALGEBRA 47 / 72
124 Lineaarinen vapaus ja riippuvuus Esimerkki 18 V = R 3, K = R, s 1 = (1, 1, 0), s 2 = (0, 1, 1), s 3 = (1, 0, 1) ja s 4 = (3, 3, 0). Koska 1 s 1 + ( 1) s 2 + ( 1) s 3 = 0; (28) 2 s s s 3 + ( 1) s 4 = 0, (29) LINEAARIALGEBRA 48 / 72
125 Lineaarinen vapaus ja riippuvuus Esimerkki 18 V = R 3, K = R, s 1 = (1, 1, 0), s 2 = (0, 1, 1), s 3 = (1, 0, 1) ja s 4 = (3, 3, 0). Koska 1 s 1 + ( 1) s 2 + ( 1) s 3 = 0; (28) 2 s s s 3 + ( 1) s 4 = 0, (29) niin s 1, s 2, s 3 on lineaarisesti riippuva ja myös s 1, s 2, s 3, s 4 on lineaarisesti riippuva. LINEAARIALGEBRA 48 / 72
126 Lineaarinen vapaus ja riippuvuus Esimerkki 19 Joukko {1, 3} on lineaarisesti vapaa kunnan Q yli. Esimerkki 20 Joukko {1, 3} on lineaarisesti sidottu kunnan R yli. LINEAARIALGEBRA 49 / 72
127 Lineaarinen vapaus ja riippuvuus Määritelmä 6 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, LINEAARIALGEBRA 50 / 72
128 Lineaarinen vapaus ja riippuvuus Määritelmä 6 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, toisin sanoen ehdosta n λ i s i = 0, λ i K, (30) i=1 LINEAARIALGEBRA 50 / 72
129 Lineaarinen vapaus ja riippuvuus Määritelmä 6 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, toisin sanoen ehdosta n λ i s i = 0, λ i K, (30) i=1 seuraa, että λ 1 = λ 2 =... = λ n = 0 (31) kaikilla joukon S äärellisillä osajoukoilla {s 1,..., s n }. LINEAARIALGEBRA 50 / 72
130 Lineaarinen vapaus ja riippuvuus Määritelmä 6 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti vapaa (kunnan K yli) jos ja vain jos sen jokainen äärellinen epätyhjä osajoukko on lineaarisesti vapaa, toisin sanoen ehdosta n λ i s i = 0, λ i K, (30) i=1 seuraa, että λ 1 = λ 2 =... = λ n = 0 (31) kaikilla joukon S äärellisillä osajoukoilla {s 1,..., s n }. Muutoin S on lineaarisesti sidottu. LINEAARIALGEBRA 50 / 72
131 Lineaarinen vapaus ja riippuvuus Lause 6 Olkoot V vektoriavaruus kunnan K yli ja S V epätyhjä osajoukko. Joukko S on lineaarisesti sidottu (kunnan K yli), jos on olemassa äärellisen monta alkiota s 1,..., s n S ja sellaiset luvut λ 1,..., λ n K, että ja ainakin yksi λ i 0, 1 i n. n λ i s i = 0 (32) i=1 LINEAARIALGEBRA 51 / 72
132 Lineaarinen vapaus ja riippuvuus Lause 7 Olkoot V vektoriavaruus kunnan K yli, S V epätyhjä osajoukko ja x V. Tällöin x S K {x} S K = S K ; (33) Jos S on lineaarisesti vapaa kunnan K yli, niin x V \ S K {x} S on lineaarisesti vapaa/k. (34) LINEAARIALGEBRA 52 / 72
133 Lineaarinen vapaus ja riippuvuus Todistetaan (34) tapauksessa S = {s 1,..., s n }. : Oletuksena siis, että x / S K. Asetetaan lineaarikombinaatio nollaksi α 1 s α n s n + α n+1 x = 0, α k K. (35) Jos α n+1 0, niin x = β 1 s β n s n, β k K x S K. (36) Ristiriita. Joten α n+1 = 0 ja siten α 1 s α n s n = 0, α k = 0 k. (37) Siten x, s 1,..., s n on lineaarisesti vapaa. LINEAARIALGEBRA 53 / 72
134 Lineaarinen vapaus ja riippuvuus : Oletuksena siis, että x, s 1,..., s n on lineaarisesti vapaa. Vastaoletus: x S K. Tällöin x = λ 1 s λ n s n, λ k K, (38) Siten x, s 1,..., s n on lineaarisesti sidottu. Ristiriita oletuksen kanssa, joten vastaoletus väärä. Niinpä x / S K. LINEAARIALGEBRA 54 / 72
135 Lineaarinen vapaus ja riippuvuus Esimerkki 21 Joukko {1(x), x, x 2 } Pol 2 (R, R) on lineaarisesti riippumaton (kunnan R yli). LINEAARIALGEBRA 55 / 72
136 Lineaarinen vapaus ja riippuvuus Esimerkki 21 Joukko {1(x), x, x 2 } Pol 2 (R, R) on lineaarisesti riippumaton (kunnan R yli). Todistus: Olkoot λ 0, λ 1, λ 2 R sellaiset, että kaikilla x R. λ 0 1(x) + λ 1 x + λ 2 x 2 = 0(x) LINEAARIALGEBRA 55 / 72
137 Lineaarinen vapaus ja riippuvuus Esimerkki 21 Joukko {1(x), x, x 2 } Pol 2 (R, R) on lineaarisesti riippumaton (kunnan R yli). Todistus: Olkoot λ 0, λ 1, λ 2 R sellaiset, että kaikilla x R. λ 0 1(x) + λ 1 x + λ 2 x 2 = 0(x) Valitaan x = 0, jolloin saadaan λ = 0, eli λ 0 = 0. Valitaan x = 1 ja x = 1, jolloin saadaan { { λ 1 + λ 2 = 0 λ 1 = 0 λ 1 + λ 2 = 0 λ 2 = 0. Siis λ 0 = λ 1 = λ 2 = 0. LINEAARIALGEBRA 55 / 72
138 Lineaarinen vapaus ja riippuvuus Esimerkki 22 Joukko {1, x,..., x k } Pol k (R, R) on lineaarisesti riippumaton. LINEAARIALGEBRA 56 / 72
139 Lineaarinen vapaus ja riippuvuus Esimerkki 22 Joukko {1, x,..., x k } Pol k (R, R) on lineaarisesti riippumaton. Esimerkki 23 Joukko {1, x,..., x k,...} Pol(R, R) on lineaarisesti riippumaton. LINEAARIALGEBRA 56 / 72
140 Lineaarinen vapaus ja riippuvuus Esimerkki 22 Joukko {1, x,..., x k } Pol k (R, R) on lineaarisesti riippumaton. Esimerkki 23 Joukko {1, x,..., x k,...} Pol(R, R) on lineaarisesti riippumaton. Esimerkki 24 Joukko {1, sin 2, cos 2 } C(R, R) on lineaarisesti riippuva (kunnan R yli), sillä 1 sin 2 x + 1 cos 2 x 1 1 = 0 = 0(x) kaikilla x R. LINEAARIALGEBRA 56 / 72
141 Kanta ja dimensio Määritelmä 7 K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos LINEAARIALGEBRA 57 / 72
142 Kanta ja dimensio Määritelmä 7 K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos (a) S on lineaarisesti riippumaton kunnan K yli, ja LINEAARIALGEBRA 57 / 72
143 Kanta ja dimensio Määritelmä 7 K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos (a) S on lineaarisesti riippumaton kunnan K yli, ja (b) S K = V. LINEAARIALGEBRA 57 / 72
144 Kanta ja dimensio Määritelmä 7 K-Vektoriavaruuden V epätyhjä osajoukko S on avaruuden V kanta (kunnan K yli), jos (a) S on lineaarisesti riippumaton kunnan K yli, ja (b) S K = V. Lause 8 (Hamelin kantalause) Jokaisella vektoriavaruudella V {0} on olemassa kanta. Todistus, joka perustuu valinta-aksiomiin on aika haastava eikä kuulu tämän kurssin vaatimuksiin. LINEAARIALGEBRA 57 / 72
145 Kanta ja dimensio Lause 9 Olkoon V vektoriavaruus kunnan K yli, R, T V, r := #R ja t := #T. Jos R T K ja r > t 1, (39) niin R on lineaarisesti sidottu kunnan K yli. Todistus. Induktio lukumäärän t suhteen. Olkoon t = 1, jolloin r 2. Kirjoitetaan Koska R T K, niin R = {x 1,..., x r }, T = {y 1 }. LINEAARIALGEBRA 58 / 72
146 Kanta ja dimensio x 1 =a 1 y 1, a 1 K x 2 =a 2 y 1, a 2 K, missä ainakin toinen luvuista a i 0, olkoon a 1 0. Tällöin 1 x 2 a 1 1 a 2x 1 = 0 (40) joten x 1, x 2 on lineaarisesti sidottu ja siten R on lineaarisesti sidottu. LINEAARIALGEBRA 59 / 72
147 Kanta ja dimensio Olkoon s Z +. Induktio-oletus: Kaikilla t s väite pätee. Induktioaskel: Olkoon t = s + 1 = #T, r = #R, r > t ja R = {x 1,..., x r }, T = {y 1,..., y s+1 }. Aluksi huomataan, että r s + 2. Oletuksen R T K nojalla x 1 =a 1,1 y 1 + a 1,2 y a 1,s+1 y s+1, x 2 =a 2,1 y 1 + a 2,2 y a 2,s+1 y s+1,... x r =a r,1 y 1 + a r,2 y a r,s+1 y s+1, missä a i,j K. Jos olisi a 1,1 = a 2,1 =... = a r,1 = 0, niin R y 2,..., y s+1 K, #R = r s + 2 > #{y 2,..., y s+1 } = s, (41) joten induktio-oletuksen nojalla R olisi lineaarisesti sidottu tässä tapauksessa. LINEAARIALGEBRA 60 / 72
148 Kanta ja dimensio Tarkastellaan seuraavaksi tapaus, josa ainakin yksi luvuista a 1,1, a 2,1,..., a r,1 on nollasta eroava, olkoon a 1,1 0. Määritellään seuraavaksi uudet vektorit joille pätee: x 1 = 0 ja x k = x k a 1 1,1 a k,1x 1, k = 1,..., r, R := {x 2,..., x r } y 2,..., y s+1 K. (42) Jos joukossa R olisi identtisiä alkioita, niin R olisi sidottu. Muutoin joukkojen lukumäärille pätee #R = r 1 s + 1 > #{y 2,..., y s+1 } = s, (43) joten induktio-oletuksen nojalla R on nytkin lineaarisesti sidottu. LINEAARIALGEBRA 61 / 72
149 Kanta ja dimensio Siten b 2 x b r x r = 0, b k K, (44) ja b j 0, jollakin 2 j r. Sijoitetaan x k = x k a 1 1,1 a k,1x 1 takaisin, jolloin saadaan lineaarikombinaatio ( b 2 a 1 1,1 a 2,1... b r a 1 1,1 a r,1)x 1 + b 2 x b r x r = 0, (45) missä ainakin yksi kerroin on nollasta eroava, nimittäin b j 0. Niinpä x 1, x 2,..., x r on lineaarisesti sidottu mikä todistaa induktioaskeleen. LINEAARIALGEBRA 62 / 72
150 Kanta ja dimensio Lause 10 Olkoon V {0} vektoriavaruus kunnan K yli. Jos avaruudella V on olemassa äärellinen kanta kunnan K yli, niin kaikissa kannoissa kunnan K yli on sama määrä alkioita. Todistus. Olkoot S 1 ja S 2 kantoja, s 1 := #S 1 ja s 2 := #S 2. Tällöin S 1 on lineaarisesti vapaa ja S 2 on lineaarisesti vapaa sekä Jos olisi S 1 K = S 2 K = V. s 1 > s 2, (46) ja koska S 1 S 2 K, niin Lauseen 9 nojalla S 1 olisi lineaarisesti sidottu. Ristiriita. LINEAARIALGEBRA 63 / 72
151 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). LINEAARIALGEBRA 64 / 72
152 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. LINEAARIALGEBRA 64 / 72
153 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. LINEAARIALGEBRA 64 / 72
154 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. LINEAARIALGEBRA 64 / 72
155 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. Tällöin käytetään merkintää dim K V = dim V = n. LINEAARIALGEBRA 64 / 72
156 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. Tällöin käytetään merkintää dim K V = dim V = n. Jos V = {0}, niin dim K V = 0. LINEAARIALGEBRA 64 / 72
157 Kanta ja dimensio Määritelmä 8 K-vektoriavaruus V on äärellisulotteinen, jos sillä on olemassa äärellinen kanta (kunnan K yli). Myös {0} on äärellisulotteinen. Muulloin V on ääretönulotteinen. Jos avaruuden V kannassa on n alkiota (kunnan K yli), missä n N, niin avaruuden V dimensio on n. Tällöin käytetään merkintää dim K V = dim V = n. Jos V = {0}, niin dim K V = 0. Muulloin dim K V =. LINEAARIALGEBRA 64 / 72
158 Kanta ja dimensio Huomautus 4 Lauseen 10 nojalla vektoriavaruuden V dimensio on hyvin määritelty. LINEAARIALGEBRA 65 / 72
159 Kanta ja dimensio Huomautus 4 Lauseen 10 nojalla vektoriavaruuden V dimensio on hyvin määritelty. Seuraus 1 Jos dim K V = n, jollain n Z +, niin jokainen lineaarisesti riippumaton avaruuden V osajoukko S, jossa on n alkiota, on avaruuden V kanta. LINEAARIALGEBRA 65 / 72
160 Kanta ja dimensio Seuraus 2 Jos dim K V = n jollain n N, niin jokainen sellainen avaruuden V osajoukko, jossa on vähintään n + 1 alkiota, on lineaarisesti riippuva kunnan K yli. LINEAARIALGEBRA 66 / 72
161 Kanta ja dimensio Seuraus 2 Jos dim K V = n jollain n N, niin jokainen sellainen avaruuden V osajoukko, jossa on vähintään n + 1 alkiota, on lineaarisesti riippuva kunnan K yli. Seuraus 3 Jos V on vektoriavaruus kunnan K yli, W on avaruuden V aliavaruus ja S on avaruuden W kanta, niin on olemassa sellainen avaruuden V kanta T, että S T. Erityisesti dim K W dim K V. (47) LINEAARIALGEBRA 66 / 72
162 Kanta ja dimensio Lause 11 Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 LINEAARIALGEBRA 67 / 72
163 Kanta ja dimensio Lause 11 Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 Määritelmä 9 Lineaarikombinaatiota (48) sanotaan vektorin v kantaesitykseksi kannan S suhteen ja LINEAARIALGEBRA 67 / 72
164 Kanta ja dimensio Lause 11 Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 Määritelmä 9 Lineaarikombinaatiota (48) sanotaan vektorin v kantaesitykseksi kannan S suhteen ja kertoimet λ i ovat vektorin v koordinaatit kannassa S. LINEAARIALGEBRA 67 / 72
165 Kanta ja dimensio Lause 11 Olkoot V äärellisulotteinen vektoriavaruus kunnan K yli ja S = {v 1,..., v n } avaruuden V kanta. Tällöin jokaista vektoria v V kohti on olemassa yksikäsitteiset luvut λ 1,..., λ n K siten, että v = n λ i v i. (48) i=1 Määritelmä 9 Lineaarikombinaatiota (48) sanotaan vektorin v kantaesitykseksi kannan S suhteen ja kertoimet λ i ovat vektorin v koordinaatit kannassa S. Tällöin voidaan kirjoittaa v = (λ 1,..., λ n ) S = (λ 1,..., λ n ), jota sanotaan vektorin v koordinaattiesitykseksi kannassa S. LINEAARIALGEBRA 67 / 72
166 Kanta ja dimensio Esimerkki 25 Koska {1, x,..., x n } on avaruuden Pol n (R, R) eräs kanta, niin dim Pol n (R, R) = n + 1. LINEAARIALGEBRA 68 / 72
167 Kanta ja dimensio Esimerkki 25 Koska {1, x,..., x n } on avaruuden Pol n (R, R) eräs kanta, niin dim Pol n (R, R) = n + 1. Koska {1, x, x 2,..., x k,...} Pol(R, R) on lineaarisesti riippumaton, niin dim Pol(R, R) =. LINEAARIALGEBRA 68 / 72
168 Kanta ja dimensio Esimerkki 25 Koska {1, x,..., x n } on avaruuden Pol n (R, R) eräs kanta, niin dim Pol n (R, R) = n + 1. Koska {1, x, x 2,..., x k,...} Pol(R, R) on lineaarisesti riippumaton, niin dim Pol(R, R) =. Tuloksen (47) nojalla saadaan dim Pol(R, R) = dim C(R, R) = dim F(R, R) =. LINEAARIALGEBRA 68 / 72
169 Kanta ja dimensio Esimerkki 26 Laske dim S, kun S = {1 + x, 1 + x 2, 1 + 2x 3x 2 } Pol 2 (R, R). Ratkaisu: Tutkitaan, onko joukko S lineaarisesti riippumaton. Nyt a(1 + x) + b(1 + x 2 ) + c( 1 + 2x 3x 2 ) = 0 (a + b c)1 + (a + 2c)x + (b 3c)x 2 = 0 Koska 1, x, x 2 on lineaarisesti vapaa, niin LINEAARIALGEBRA 69 / 72
170 Kanta ja dimensio saadaan a + b c = 0 a + 2c = 0 a + 2c = 0 a + 2c = 0 b 3c = 0 b 3c = 0 a = 2c b = 3c c R. (Ensimmäisessä kohdassa viimeinen yhtälö on vähennetty ensimmäisestä.) LINEAARIALGEBRA 70 / 72
171 Kanta ja dimensio Koska yllä olevalla yhtälöryhmällä on epätriviaali ratkaisu, esim. a = 2, b = 3, c = 1, niin S on lineaarisesti riippuva. Tästä nähdään, että polynomi 1 + 2x 3x 2 on lineaarikombinaatio polynomeista 1 + x ja 1 + x 2, joten S = 1 + x, 1 + x 2. Joukko {1 + x, 1 + x 2 } on lineaarisesti riippumaton, sillä a(1 + x) + b(1 + x 2 ) = 0 (a + b)1 + ax + bx 2 = 0 Näin ollen dim S = 2. a = 0 ja b = 0. LINEAARIALGEBRA 71 / 72
172 Kanta ja dimensio Esimerkki 27 Reaaliluvut muodostavat ääretönulotteisen vektoriavaruuden rationaalilukujen kunnan yli eli dim Q R =. Todistus on aika haastava eikä kuulu tämän kurssin vaatimuksiin. LINEAARIALGEBRA 72 / 72
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
Lisätiedot802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I
802320A LINEAARIALGEBRA OSA I LINEAR ALGEBRA PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Lineaariavaruus eli Vektoriavaruus 3 1.1 Määritelmä ja esimerkkejä....................
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lisätiedot802320A LINEAARIALGEBRA OSA II
802320A LINEAARIALGEBRA OSA II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 64 Sisätuloavaruus Määritelmä 1 Olkoon V reaalinen vektoriavaruus. Kuvaus on reaalinen
Lisätiedotpdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus Lineaarikuvaus Ominaisarvo 0-68
SISÄLTÖ Sisältö pdfmark=/pages, Raw=/Rotate 90 1 Lineaariavaruus eli Vektoriavaruus 0-1 2 Sisätuloavaruus 0-20 3 Lineaarikuvaus 0-41 4 Ominaisarvo 0-68 5 Esimerkkejä 0-88 1. Lineaariavaruus eli V 1 Lineaariavaruus
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotLINEAARIALGEBRA A 2016 TOMI ALASTE EDITED BY T.M. FROM THE NOTES OF
LINEAARIALGEBRA 83A 6 EDITED BY T.M. FROM THE NOTES OF TOMI ALASTE SISÄLTÖ Sisältö Lineaariavaruus eli Vektoriavaruus Sisätuloavaruus 3 Lineaarikuvaus 4 Ominaisarvo 34 5 Esimerkkejä 44 . Lineaariavaruus
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Lisätiedot1 Sisätulo- ja normiavaruudet
1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus
LisätiedotLineaarialgebra II P
Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.
Lisätiedot802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotLineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44
Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.
LisätiedotOsoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.
LINEAARIALGEBRA Harjoituksia 2016 1. Olkoon V = R 2 varustettuna tavallisella yhteenlaskulla. Määritellään reaaliluvulla kertominen seuraavasti: λ (x 1, x 2 ) = (λx 1, 0) (x 1, x 2 ) R 2 ja λ R. Osoita,
Lisätiedotx = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
Lisätiedot9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista
29 9 Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista Tarkastelemme kertalukua n olevia lineaarisia differentiaaliyhtälöitä y ( x) + a ( x) y ( x) + + a ( x) y( x) + a ( x) y= b( x) ( n) ( n
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2017 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO Syksy 2017 LINEAARIALGEBRA 1 / 59 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 60 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III
802320A LINEAARIALGEBRA OSA III LINEAR ALGEBRA PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Lineaarikuvaus 2 1.1 Määritelmä............................ 2 1.2 Matriisiesitys/Matrix
LisätiedotLINEAARIALGEBRA. Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions
LINEAARIALGEBRA Harjoituksia/Exercises 2019 Valittuja ratkaisuja/selected solutions 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n )
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
LisätiedotVapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotLineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto
Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotLineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
LisätiedotHY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Lisätiedot{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotLineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
LisätiedotYleiset lineaarimuunnokset
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotVastaavasti, jos vektori kerrotaan positiivisella reaaliluvulla λ, niin
1 / 14 Lukiossa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Tarkastellaan aluksi tason vektoreita (R 2 ). Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
Lisätiedotja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
Lisätiedot7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotKanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2019 LINEAARIALGEBRA 1 / 69 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
LisätiedotKertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:
LisätiedotLineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Lisätiedotominaisvektorit. Nyt 2 3 6
Esimerkki 2 6 8 Olkoon A = 40 0 6 5. Etsitäänmatriisinominaisarvotja 0 0 2 ominaisvektorit. Nyt 2 0 2 6 8 2 6 8 I A = 40 05 40 0 6 5 = 4 0 6 5 0 0 0 0 2 0 0 2 15 / 172 Täten c A ( )=det( I A) =( ) ( 2)
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Lisätiedot1 Avaruuksien ja lineaarikuvausten suora summa
MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
Lisätiedot802320A LINEAARIALGEBRA OSA II/PART II
802320A LINEAARIALGEBRA OSA II/PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 LINEAARIALGEBRA 1 / 67 Sisätuloavaruus/Inner product space Määritelmä 1 Olkoon V reaalinen vektoriavaruus.
Lisätiedot1 Ominaisarvot ja ominaisvektorit
1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVT 2019 1 Contents 1 Sisätulo- ja normiavaruudet 3 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II
802320A LINEAARIALGEBRA OSA II LINEAR ALGEBRA PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Contents 1 Sisätulo- ja normiavaruudet 2 1.1 Sisätuloavaruus/Inner product space..............
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Marko Leinonen Matemaattiset tieteet Syksy 2016 1 / 220 Luennoitsija: Marko Leinonen marko.leinonen@oulu.fi MA333 Kurssilla käytetään Noppaa (noppa.oulu.fi) Luentomoniste
LisätiedotKuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
LisätiedotOrtogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
Lisätiedotx 2 x 3 x 1 x 2 = 1 2x 1 4 x 2 = 3 x 1 x 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili
6 4 2 x 2 x 3 15 10 5 0 5 15 5 3 2 1 1 2 3 2 0 x 2 = 1 2x 1 0 4 x 2 = 3 x 1 x 5 2 5 x 1 10 x 1 5 LINEAARIALGEBRA I Oulun yliopisto Matemaattisten tieteiden laitos 2014 Esa Järvenpää, Hanna Kiili Sisältö
Lisätiedot2. REAALIKERTOIMISET VEKTORIAVARUUDET
30 REAALIKERTOIMISET VEKTORIAVARUUDET 1 Koordinaattiavaruus R n Olkoon n N = {1,, 3, } positiivinen kokonaisluku (luonnollisten lukujen joukko on tällä kurssilla N = {0, 1,, 3, }) Merkitään R n = R n 1
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotVektorien virittämä aliavaruus
Vektorien virittämä aliavaruus Esimerkki 13 Mikä ehto vektorin w = (w 1, w 2, w 3 ) komponenttien on toteutettava, jotta w kuuluu vektoreiden v 1 = (3, 2, 1), v 2 = (2, 2, 6) ja v 3 = (3, 4, 5) virittämään
LisätiedotPäättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1
Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
LisätiedotOminaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
Lisätiedot5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
LisätiedotOrtogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Lisätiedot1. Lineaarinen yhtälöryhmä ja matriisi
I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Lisätiedot5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/210 Lineaarialgebra (muut ko) p. 2/210 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2
LisätiedotTOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
Lisätiedot1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Lineaarikuvaukset Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 16 R. Kangaslampi Vektoriavaruudet Lineaarikuvaus
LisätiedotJohdatus lineaarialgebraan
Johdatus lineaarialgebraan Lotta Oinonen ja Johanna Rämö 6. joulukuuta 2012 Helsingin yliopisto Matematiikan ja tilastotieteen laitos 2012 Sisältö 1 Avaruus R n 4 1 Avaruuksien R 2 ja R 3 vektorit.....................
LisätiedotKoodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3. Lineaariset koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 22 3.1 Lineaarisen koodin määrittely Olkoon F äärellinen kunta.
LisätiedotLineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä
LisätiedotLineaarialgebra ja matriisilaskenta I. LM1, Kesä /218
Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.
Lisätiedot